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Quantum open-systems approach to current noise in resonant tunneling junctions
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A quantum Markovian master equation is derived to describe the current noise in resonant tunneling devices.
This equation includes both incoherent and coherent quantum tunneling processes. We show how to obtain the
population master equation by adiabatic elimination of quantum coherences in the presence of elastic scatter-
ing. We calculate the noise spectrum for a double well device and predict subshot noise statistics for strong
tunneling between the wells. The method is an alternative to Green'’s function methods and population master
equations for very small coherently coupled quantum d&6163-182¢09)01916-5

[. INTRODUCTION theoretical schemes that go beyond population rate equa-
tions.

Quantum features of conductance in mesoscopic electron- In the first part of this paper we derive the operator master
ics is currently a major theoretical and experimental researcRquation to describe a bound electronic system coupled in-
interest in condensed matter physic®evelopments are coherently to two reservoirs. We then apply this equation to
driven by two complementary imperatives. First, a techno<calculate the current two-time correlation function for a
logical trend to fabricate devices on smaller and smalleingle well, with a single bound state. This model of course

scales is rapidly approaching the point where quantum efc@n equally well be treated by a population master equation
approach as in the approach of Carlos Egeieal.,'’ but we

fects will become a problem unless explicit attempts to ex- g ! X .
P P P derive the known results simply to display the method in a

ploit quantum features are made. Quantum tunneling cal i text. In Sec. Il | thods to treat th
lead to undesired coupling between fabricated structures. ofmiiar context. In Sec. 1l we apply our methods to treat the

the other hand, tunneling offers the possibility of very fastca5€ of coherent_ coupling between the t_)ound states of adja-
switching times. Second, the new devices require improve(-:ent wells. In thl.s case our a_pproach yields re_sults that go
beyond the traditional population master equation approach.
. . ) _ ' Myve derive the current spectrum in the device and demon-
a low temperature, high mobility regime. Small devices Withgy a6 ne features that arise precisely because of the coher-
very long coherence times can be dominated by coherenin: coypling between the two wells. To make contact with
guantum effects. It is becoming increasingly clear that intrin-yrevious work we show that in the limit when elastic scat-
sic quantum fluctuations play an important role at lowtering dominates the coherent coupling, a population rate
temperature$. equation may be derived that is equivalent, in the appropriate
Current noise in resonant tunneling devideSTD) pro-  |imit, to that obtained by Carlos Egues al!’
vides a path to understanding noise in the deep quantum
domain. In a biased RTD one or more bound quantum states IIl. THE MASTER EQUATION
are coupled incoherently to two electron reservoirs main-
tained at different chemical potentials. There are a number of We begin with the derivation of the master equation for a
experimentat®and theoreticd **results. RTDs involve ex- Single quantum tunneling channel connecting two reservoirs
change of fermions between the reservoirs and the boundnder external bias. This system is quite adequately de-
states. We propose in this paper an approach to such devicé%”bed by other methods,_ mcludm_g population master equa-
based on quantum Markov master equatinSuch an ap- tions. Hovyever, we treat it here simply to demonstrate our
proach to quantum noise in nonequilibrium systems has beeq.pproach in a familiar setting. There_fore our results are not
used with great success in quantum optics. This provides ew and could equally well be obtained by other methods.

alternative approach to the conventional Green’s function his is not th? case for the coherent_ly cpupled do_uble We.”
methods, and offers additional physical insights. For exSystem we .d'SCUSS next. The Hamiltonian describing this
ample, it enables one to deal with coherent coupling betweefR0C€SS IS given By
adjacent well states which couples off-diagonal elements of
the density matrix in the occupation number basis and cannot4=>' ¢Fala,+s.cfc+ >, s‘p:b;;bp
be described by population master equations. Such coupling k p
can occur in strongly coupled quantum dots, as in the recent
experiments of Blicket al*® and Oosterkampt al1®

If the strength of this coherent coupling dominates the
time scales of elastic and inelastic relaxation, a population

. . 1)

master equation cannot describe the system. Coherently
coupled nanostructures are likely to become increasingly imwhere a, (al), c (c"), and b, (bg) are the annihilation
portant and thus there is considerable motivation to develofcreation) operators of electrons in the emitt@) reservoir,

+ Ek (Texcta+ TEalc) + % (Tepbhe+TEcTby),
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in the central quantum well, and in the collec{@®) reser- t )
voir, respectively. The energy of the bound state without bias lga(t) = f dty(Ty(t)T](ty))e @0ttt 9
is &g, which under bias becomes=¢,— aeV, wherea is a 0
structure-dependent coefficient. The single;'ﬁ_ particle energies
in the emitter and collector are, respectively=k?/2m and _ f‘ t “wg(t—ty)
ey =p?2m—eV. The energy reference is at the bottom of ealt) Odtl<1“2(t1)1“2(tl)>e ’ (19
the conduction band of the emitter reservoir.

The fourth and fifth terms in the Hamiltonian describe the ¢
coupling between the quasibound electrons in the well and Icz(t)zf dty(T5(t)Th(ty))e @olt-t), (12)
the electrons in the reservoir. The tunneling coefficients 0

Tek. Tcp depend on the barrier profile and the bias voltage.

We will assume that at all times the two reservoirs remain in" order to illustrate the important physical approximations
thermal equilibrium, with chemical potentialsc , e, with _reqwred in derlvmg the master equation, we WI_II now explic-
we— pe=eV, despite the tunneling of electrons. This is One|tIy evaluate the first of these correlation functions.
of the key defining characteristics of a reservoir. It assumes Using the definition .Of .the_ reservoir operators anq the
in effect that two very different time scales describe the dy_assumed thermal Fermi distribution of the electrons in the
namics of the reservoirs and the quaisbound quantum state fmnitter, we find
the well.

In the interaction picture the Hamiltonian may be written

_ t L E
as IGED nEk|TEk|2J dt; e'l@ic@olt, (12
X 0

2

H(O =43 [c'Ty(t)e oot cT(t)eoot], ) As the reservoir is a large system by definition, we can re-
i=1

place the sum ovek by an integral to obtain

where the bound state frequencydg=¢./% and the reser- “dw
|E1(t):f

— t .
Voir operators are given by P(w)n(w)|TE(w)|2f drell®= w7
0

(13

0 2
()= Teage ', 3
K where we have changed the variable of time integration. The
dominant term in the frequency integration will come
Fz(t)=2 Tcpbpefiwgt, (4) from frequencie_s neawy as the time integrat_ion _is signifi-

P cant at that point. We assume that the bias is such that
the quasibound state is well below the Fermi level in the
emitter. This implies that neav= w,, the average occupa-
tion of the reservoir state is very close to unity. This is an

=k (5) effective low temperature approximation. Now we make
f the first Markov approximation. We assume that the function
p(0)N{w)|Te(w)|? is slowly varying arounde = w,, and
c sg thus the frequency integration will lead to a function which
Wp= (6) is a rapidly decaying function of time compared to dynami-
cal time scales for the quasibound state. This implies that on
We now obtain an equation of motion for the densitytime scales of interest in an experiment we can extend the
operator of the bound statg(t), in the well following the ~ upper limit of the time integration to infinity as a good ap-
standard method based on second-order perturbation theojoximation. In that caskz; becomes time independent and

where

and tracing over reservoir stat€sThus we need may be approximated by
dp(t) 1 [t *dw )
T:_ﬁfodtlT"R[H|(t),[H|(t1)7PR®P(t)]], (7 |E1(t)~fo 7P(w)|TE| d(wg) = yL(wo), (14

where pg is the thermal equilibrium state of the two reser- which defines the effective ratg of injection of electrons
voirs, and Tk denotes a trace over the reservoir variablesfrom the left reservoifthe emittey into the quasibound state
Note that the factorization of the well state and reservoirof the well. This rate will have a Comp“cated dependence on
states has been assumed. This is reasonable if the well stafgs pias voltage through botla, and the coupling coeffi-
and the reservoir states are |n|t|a”y uncorrelated and prOCients|TE(w)|_ In this paper we do not address this issue.

vided there is a wide Separation -in the relaxation time Scaleﬂ/e S|mp|y seek the noise properties as a function of the rate
of the well state and the reservoirs. The only nonzero correggnstants.

lation functions we need to compute are Evaluating all the other correlation functions under simi-
. lar assumptions we find that the quantum master equation for
IEl(t):f dt1<r*{(t1)rl(tl)>e—iwoa—tl)' (8) the. denglty op.erat.or representing the well-state in the inter-
0 action picture is given by
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dp _ fom 7" (26" pc—ccp— poch) E(dNg(t+ 7)dNg(t))= v Tr(ccTe?cTp..c)dt?, (20)
dt 2
e E(dNg(t+ 7)dNg(1))= & Tr(c'ce’cp..chHdt?, (21)
+ ==(2¢cpc’—clep—pclo). (15
2

E(dNg(t+7)dNg(t))= 7y, yr Tr(cc’e cp..cT)dt?,
y_ and yg are constants determining the rate of injection of (22
electrons from emitter into the well and from the well into
the collector, respectively. The rate constants can be deter- g(dNg(t+ 7)dNg(t))= yry, Tr(c'cetctp..c)dt2.
mined by a self-consistent band calculation involving the (23)
bias voltage. The two Poisson processes shown in the master

equations, namely the injection of electrons into the well - cajcylating the above correlation components using the
described by the first term in the right-hand side and thgnaster equation with corresponding initial conditions, and
emission of electrons out of the well by the second term, argpstituting them together with the shot-noise component

conditioned by the rateg, (cc')(t) and yg(c'c)(t): into Eq. (19), yields
E(dNg(t))= vy, (cchdt;E(dN(t))=yg(cc)dt, (16)
€l €l 4
where the average is taken with respect to the well state at G(r)= 75( T+ T 1- n:R) e~ Yl
any timet. The master equatiofl5) is diagonal in the oc- Y

cupation number representation. The mean occupation num-

bern=Tr (cTCp(t)) can therefore be determined easily from Thus the spe_ctr_al d_ensity of current fluctuation in the fre-
the rate equation quency domain is given by

z—?=n(1—ﬁ)—vaﬁ 17) S(w)=2JO G(7)(e'+e ndr
However the occupation number of the well states is not . 4y, vr o
directly measured in current experiments although the charge =el,|1+|1-—— 22| (24)
distribution in the devices can be measured in other Yy Toe

H 9
experiments. L o . . The current Fano factdf(w) is defined as the ratio of cur-
The current noise is a fluctuation in classical stochastic

. ) . ; fent noise density over the full shot noise density, and for

processes. It is measured in the relatively high temperaturie ;
. ow frequencies > w)

reservoirs of the leads, well away from the well state, and the

strong, fast electron-electron interactions in the reservoir es-

tablish the classical level of the observed variable. It is, how- £(0 S(0) 2y YR

ever, conditioned on the underlying quantum stochastic pro- (0)

cess in the well, which is described by the master equation.

We thus have the familiar problem of connecting the ob-the shot noise is suppressed and reaches the minimum of
served classical stochastic process to the quantum source gos in a symmetric structure with, = yg. The result is the
information in an open quantum system. In this problem Wesgme as those derived by Chen and Tiaging the nonequi-
proceed as follows. The c_urrent pulse in the emitter and coljjprium Green'’s function method. The result can also be ob-
lector may be determined from the Ramo-Shockleyiyineq by a classical master equation calculatfodowever,
theorent® For a symmetric geometry this takes the form  q classical master equation cannot be used to treat the case
e of coherent coupling in a double well system discussed be-
i(t)dt==[dNg(t)+dNc(t)]. (18) low.
2 The suppression of fluctuations at low frequency is due to
The connection to the quantum source is then made by Eghe exclusion principle in the well state, reflected in the mas-
(16). Using Eq. (16), the average current is given by ter eqtuatlolf\] byl thf appeart'ancelof Ihethamlccﬁr?mu'ﬂf}g Ile|d
R N o operators. No electron can tunnel onto the well if an electron
E(é(;Z;R /);/L,(\}vhenr)eyzizl +'$R t:r?d tsrt;asdl}/bssctg; itnhcli?ca:t&ecs is already there. We need to wait a time of the ordeyyof
the steady state. for the eIeptron to tunnel back out into the collector. Thus
The fluctuations in the observed curreift), are quanti- strong anticorrelations are established in the two fundamen-
fied by the two-time correlation function: tal Poisson processedN;(t). If the tunneling particles were
bosons, the well could accumulate a large number of par-
e ticles, enhancing the probability for emission into the collec-
G(n)= Eim5(7)+<|(t)1|(t+ ) °. (190 tor. This would lead to a rapid bunching of emission events
into the collector and a supershot noise current would result.
To relate these classical averages to the fundamental quaAt high frequencies, we are looking at fast processes in
tum processes occurring in the well, we apply the theory ofwhich an electron tunnels into the well and immediately tun-
open quantum systeéthto the present system and calculate nels out. The Fano factor at high frequencies is 0.5 due to the
the following correlation components with>0:22 assumed form of Ramo-Shockley theorem.

- 2€i, - y2

. (25
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Ill. NOISE PROPERTIES OF A COHERENTLY COUPLED 1 ' ' ' ' ' ' ' '

DOUBLE WELL STRUCTURE 055l

We now apply our approach to a triple barrier and double | B
guantum well involving elastic scattering within the wells
and coherent coupling between the wells. The main proce- _ .
dures are parallel to those in the single well case but now§ osN\\*
involve off-diagonal elements of the density matrix. The
master equation is

085

0.751

Current Fano F.

0.7

dp 7

T 7(2011301— C1Cip—pCyCy) 065
0.6f
TR Tt t 1 T
+ 7(2021302_ C3Cop— pCyCo) — mlciCy,[CiC1,p]] 0.55¢
T + . t t 0450 ; : é "
- 7]2[C2C2 ’[CZCZ !p]]_ I Q[(C1C2+ CZCI) 'p]’ (26) Normalized Frequency
T T . . . .
wherec; (c;) andc, (c;) are annihilation(creatior) op- FIG. 1. The current Fano fact@®(w)/2ei,, versus normalized
erators of electrons in the left and right quantum well, re-frequencyw/y, in rapid incoherent scattering;2>402. All pa-
spectively,; is the rate of elastic scattering in thth well,  rameters are normalized by,. The corresponding parameters

and Q) is the coherent coupling rate between the two well(4,/vy,, Q/y.) for the curves are, from the top, dottg@:5, 0.1;

states. The irreversible term describing the elastic scatteringot-dash:(0.5, 0.3; solid: (0.5, 0.24.

is derived in much the same way as the inelastic tunneling

terms that describe electrons entering and leaving the devicg, e

with one additional assumption. To get a Markov master

equation for number conserving scattering events, we must

assume that the temperature of the bath describing such pro- fro=(Ye— et A) (AL pe)(Yet et A) (29

cesses is high enough that the bath states are well away from

the ground states. This is not a very restrictive assumption ] .

for realistic devices at milliKelvin temperatures. The devia-and A=y ”e__‘mZ’ Ae==7e~ ”eiA'zThe gmse spectra

tions that can result for very low temperatures are describe@'® derived in two cases. In case #,>4€7, when the

in Gardiner* The derivation of the scattering term in the €lastic scattering ratey;, is higher than the coherent cou-

master equatiof27) is detailed in the Appendix. pllng rate between the well states, the current noise spectrum
The last term in this equation represents a coherent cou®

pling between the two wells and causes a single electron to

periodically tunnel backward and forward between the two

wells, until it is eventually lost through the final barrier. Re- S(w)=2ei E e

cently Blick et al® have made measurements on a structure 12 4A

that can be roughly approximated by our model. As they

point out, this device exhibits a new feature, in that a single (= et A)(Ye— me—A)

electron can be in a superposition state between the two + (— Yo 79e—A)2+ 02

wells and is thus like an artificial molecule. We first derive Ye= Te

the noise features in the presence of this coherent coupling.

We will then show that, in the limit of strong elastic scatter-  The current Fano factor against normalized frequency is

ing, 7>, the system can be described in terms of populaplotted in Fig. 1 where the spectrum shows a Lorentzian

tion rate equations that have been extensively used in thRature. In case 252<40?2, the opposite situation, when

past. ) ) ) coherent coupling is much stronger than elastic scattering,
The steady-state current is easily found to be given by the noise spectrum

(et A)(ye— metA)
(= 7ve— 7/e+A)2+ w?

} . (30

. ZeQZ')’e
== > 27) 1 ye [(ye= 7etiZ)(me+iR)
7€+27677€+4Q S(a)):ze'oc §+Te|m e™ Te ~772 . ,
for a symmetric systemy, = yr= e, 71= 17,= 7.. The ap- A [(=remmetid)+o 31)
propriate correlation functions may be evaluated to give
(), (t+ 7)) whereA = \/40%— 72, the peak position shifted to the non-
ey |2 1 zero frequency as shown in Fig. 2. A comparison of these
=()\ X ) (4QZ+ E[f+e‘+f+f_e”*f] : two quantum processes is shown in Fig. 3. When elastic
LA

scattering increases, the Fano factor increases. Increasing the
(28 coherent coupling results in noise suppression and the non-
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FIG. 2. The current Fano fgctozr versus normalized frequency |G, 4. The current Fano factors versus normalized frequency
/e in strong coherent couplingye<4Q°. All parameters are for double well structures when,=0. The normalized parameter

normalized byy.. The corresponding parameterge( ve, Q/ve) )/, for the curves are, from the top, O(@ash ling, 0.645(dot-
for the curves are, from the top, dott€@; 0.2; dot-dash10.4, 0.4; dash ling, 5.0 (solid line).

solid: (0.5, 0.5.

noise to increase, as electrons injected into the first well are

zero frequ_ency peak feature are more significant as the tW&uickIy cycled to the second well, where they can incoher-
well coupling and the quantum correlations are stronger. Furaqy escape to the collector. This explains the nonzero fre-
ther, when elastic scattering is extremely weak;—0, and

U quency peaked structure of the noise power spectrum. In the
coherent coupling is stron§)> y., the steady-state current ,qe of largef), however, coherent coupling dominates. In
I..—ev,/2 approaches the single well case as expected igh,¢ case if an electron tunnels into the first well it periodi-

this limit. A significant outcome is that the best noise reduc-ca”y returns to that well at a frequency of 2 To see this, it
tion at low frequency whem,=0 reaches 0.22. is sufficient to note that the two levels which are degenerate
The coherent tunneling between the two wells has g, the absence of tunneling become split into symmetric and
strong effect on the noise characteristics. Electrons are PeTintisymmetric combinations, separated in energy bQ.2A
odically transferred between the two wells at the tunnelinggiae”initially localized in one well can then be written as a
frequency. If an electron from the emitter |s_|njected into thelinear combination of the two new eigenstates. The phase
first well, no further electrons can enter this well until this jitterence in the superposition rotates througtat the fre-
eIect_ron 1S rer_nloved, which takes _place on a ftime sc_ale deciuencyﬂ which leads to a state localized in the other well.
termined by() " ~. Thus at frequencies smaller thélh noise s ig just the standard description of tunneling in a two-
is suppressed by the exclusion principle, just as for the singlgi,te system. The periodic return of the electron to the first
well case. At the tunnel frequency, however, we expect thye|| suppresses another electron from entering the well.

Thus at large values df we expect noise suppression to
occur atw=2(). This behavior is indeed seen in Fig. 4.

We now show that in the limit of strong elastic scattering
7,>() (case 1 above a population master equation can be
) derived that describes a classical sequential tunneling struc-
ture. The sequential model is traditionally formulated in
- terms of a classical master equation for the occupation prob-
abilities of each well. In our case, we have restricted the
. discussion to a single bound state in each well and thus the
maximum population in each well is unity. However, we can
] derive an equivalent classical master equation to describe
sequential tunneling even in this case.

Our method is an extension of adiabatic methods used in
guantum optics to obtain rate equations. We assume that the

1

e
3

Current Fano Factor
=} =}
o @

o
~

@ // | off-diagonal elements of the double well density operator are
b= . . . ‘ . . . rapidly damped due to the elastic scattering rages The
o o5 1 15 2 25 3 385 4 45 5 off-diagonal elements are then assumed to relax almost in-

Normalized Frequency

stantaneously to their steady-state values and adiabatically

FIG. 3. The comparison of the influences of the elastic scatterfollow the more slowly changing diagonal matrix elements.
ing and the coherent tunneling. The corresponding parameters From Eq.(27) we find the following equations of motion
(76! ¥e, Qly,) for the curves are, from the tofa) (0.2, 0.0; (b) for the matrix elements in the occupation number basis for
(0.2, 0.3; (c) (0.2, 0.5; (d) (0, 0.645. each well:
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YL YR
) = LN+ 1) 800 (M3 1) 8]~ (M, 1+ a8, )
grinanalplmym;) = — u(N38,, 1= 2N3My 8, 10m, 1+ M8, 1) (ninz|plmymy)

= 72(N58h,1~ 2N2My 3, 18, 1+ M3 81, 1)
+ Y16n, 18m, 1VN1M1(N1 — 105 p| My~ 1mp) + YR, 08m,.o — 1™ My + 1) (M + 1)
X(Nny,ny+1|plmy,my+1)— 1 3n, 16n,0( — )"~y (ny+1)(ny— 1,05+ 1| p|mymy,)
+8n,,00n,,1(— 1"V (N1 + 1)ng(ng+ 10y — L p[mMimy) — 8y 00, 2(—1)™y(My+1)m,

X{Nn1,nalp|my+1,my—1) = 8 18,0l —1)™1V(My+1)my(ny, Nyl p|my— 1my+ 1)},

whereny,n, refer to the occupation number of the first and second wells, respectively.
Note that the diagonal matrix elements represent the occupation probabilities of each well,

P(ng,ny,t)=(ny,n,|p(t)|ng,nz). (32

The diagonal matrix elements then obey the equation

d
a<n1n2|P| NiNz)=[ = y.(N1+1) 8, o= YrRN26n, 11(N1N2|p[N1N) + 8y 1y 1N — 1z p[ny— 1)

+ 0, 0Yr(N2+ 1)(N1,No+ 1 p|ny,np+ 1) +i(—1)"OQ{ 8, 18n,0VN1(N2+1)
X[{n1 =1+ 1|p|ning) —(n1,nylplng = 1y + 1)1+ 85 000, 1V (N1 +1)Na[(N1, Nzl p[Ng + 10— 1)

—(ny+1,n,—1|p[niny) 1} (33
We now define the off-diagonal matrix elements as
Y1=(ny,nylp[n;+1n,—1),
Yo=(ny,n;lp/n;—1n,+1),
Yy=(n;—1n,+1|p|ni+1n,—1).

Therefore, the population equation that we are interested in is

d
git (1.2, =[= 7N+ 1) 8n 0= YRN26n,,)1P(N1,N2,1)+ 6y, 171 NP (N1 =102, + 6y o¥r(N2+ 1)P(Ng,np+ 1)
—2Q(=1)"M[ 8y, 00n, V(N1 +1)N2 IM Y1 =8, 16n, 0VN1(N2+1) IMY,]. (39

Note that the elastic scattering ratgg, 7, do not directly enter this equation. This is because elastic scattering does not
change the occupation of the well states but does disrupt the phase coherence between the wave functions in the wells. This
will lead to a decay of the relevant off-diagonal matrix elements, which obey the equations

VR
— 5 N26n,1~ 7]1[”55%1““(”1+ 1)%8n,+10]— 7]2”%5n2,1

d d YL

g 1O =gg{nnalp[ng+ 1= 1) =1 === (N1 + 1)y o
XY1(1) =i(=1)"-10 8, 165, 0VN1(N2+1) Y3(1)
- | ( - 1)le 5n1,05n2,1\ nl+ l)nzp(nl+ l,nz_ 1,t)

+i(=1)MQ 8, +116n,-10V(N1+1)NP(Ng, N5 1),
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dv =2 1+ 1= = +1)8. g+ Ny S RS 4 (N+1)8 — 728
at 2( )—a<n1n2|p|nl Ny+1)= ?[(nl )0n, 0t N10n —10l 7[”2 ny 1t (N2t 1) S 114l = 71N16n 1

= 72l N300, 1+ (Np+1)%8, 141 Ya(1) =i (= 1)"Q 8 o6n, 1V(N1+1)NRY5 (1)
—i(=1)"7Q8, 16, 0VN1(Np+1)P(N1— 1o+ 11)
+i(=1)"-10 68, —1,00n,+1,1VN1(N2+1)P(Ng,N, 1),

d d
FrAE) =a<n1— 1nz+1lp[ny+1n,—1)

YL YR
= _?nlb‘nlfl,o_?(nz"i' 1)6n,+1,1= ma(ny+ 1)25n1+1,1_ 72(Nz+ 1)25n2+1,1 Ya(t)

—i(=1)MQ 8y —106n,+1,1VN1(N2+ 1) Y1 (1) +i(—=1)"Q Sy +116h,-1,0V(N1+ 1IN, Y5 (1).

To proceed, we solve the equations f1,Y,,Y; in the steady state, assuming that the diagonal matrix elements are
constant in time over the lifetime of the off-diagonal matrix elements. This is the adiabatic approximation. These steady-state
values are then substituted back into the equation for the diagonal matrix elements to obtain a classical jump process master
equation to describe sequential tunneling. The algebra is tedious, so we will not give details. The result is

d
git (N1:n2,0 == y[(N1+1)8n 0= YRN26n,)1P(N1,N2,1)+ 6y, 171N P (N1 =12, + 6y o¥r(N2+1)P(Ng, N+ 10)

(22833~ 23232

- 292 5n1,05n2,1(n1+ 1)n2 [P(nl+ 11n2_ 110) - P(nlanIO)]

D
(217833~ a13831)
+ 6,100, 0N1 (N2 + 1)#[P(nl— 1n,+1,0—P(ny,ny,0]¢, (35
|
whereD is given by " YR
agz= _?nlb‘nlvl_i(nZ_" 1) 6n,,0

D = a11(a22833~ 823032) — Q13822831 — (g + 1)25%0_ 7N+ 1)25%0_
with . ) )
In addition to the incoherent tunneling of electrons be-
tween the wells and the external reservoirs, we now have
YL YR incoherent(sequentigl tunneling between the two wells at
an= _7(n1+1)5“1’0_?n25“2’1 rates determined b§)?/ z;. The form of this equation cor-
5 ) 5 responds to the sequential tunneling master equation ob-
= 71[N18n 1+ (N1 +1)“6n 0] = 72N56n,1, tained by Carlos Eguest al!’ We have thus shown that, in
the limit of strong decoherence induced by elastic scattering
of the bound states, a population master equation may de-
a13= (—1)"Q 3, 16, 0VN1(N2+1)= —ag, scribe sequential tunneling in the device. This will be the
appropriate limit in the case tha>(). However, future
guantum nanostructure devices are likely to operate in the
opposite limit. In that case our method is ideally suited for

YL
822~ —7[(n1+ 1)6n, ot 165,11 determining the device characteristics.

YR
5 [N20n,1% (N2 +1) 8, 0]~ 7NT8n 1 IV. SUMMARY

We have shown how the quantum theory of open systems,
formulated as a quantum stochastic process, enables the cur-
rent noise spectrum to be calculated for mesoscopic tunnel-

ing devices. Our approach explicitly treats quantum noise

—_ — —_— n = — . . - . . g
823~ (= 1)" 3y, 00n,1V(N1+1)Ny=—8g, properties of the charge carriers, and gives a simple intuitive

— 1a[N38,,1+ (N +1)28, o,
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picture to understand the results. As fabrication technologyherea,, 3, are Bose destruction operators describing inde-
develops, quantum noise limited networksawmtherenttun-  pendent reservoir oscillators. Note that each bound state in
neling devices, such as quantum dots and quantum poirthe well is coupled to an independent reservoir. This assumes
contacts, will become increasingly important. Such coherthat there are no correlations between well states due to the
ently coupled devices are essential for the implementation aephasing that takes place through elastic collisions.

a quantum computer, which must operate reversiblin We will only consider here the derivation of the master
such device. The full operator master equation methods wequation arising from the elastic scattering of bound states
have demonstrated here provide a powerful description, inand the harmonic oscillator reservoirs. The relevant part of
cluding both diagonal and off-diagonal matrix elements inthe master equation’is

the same equation.

Our model does not treat the transverse unbound modes in dp(t) _ 1t
the well of a realistic resonant tunneling device. These can “qt ~ ;2 OdTTrB[Hsca(t)v[Hsca( 7).p(7)®pgl],
easily be incorporated by additional states in the well and (A7)

additional jump process channels in the master equation. We
have not done that here as we sought to derive the irreducibiherepg is the equilibrium state of the bath, and wherg Tr
level of current noise in tunne“ng devices. Our model may jinmeans to trace over the bath variables. This equation is based
fact apply to very tightly confined quantum dot structureson a second-order expansion in the interaction energy be-
which could conceivably be fabricated with a single boundtween the reservoir states and the bound states of the well.
well state at donor impurities. Further extensions of theWe have also assumed that the system and bath states are
model are also needed to treat the case where the well statedgcorrelated very rapidly on the time scale of interest in the
just below the Fermi level in the collector, in which case thesystem, so that the bath remains close to its equilibrium state.
current noise acquires an additional temperature-dependehtie bath Hamiltonian is
classical component. These more general cases will be
treated in a larger publication. Hg= >, wqagaq. (A8)

q
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dp(t) 1 ! T T Lo
APPENDIX TR ﬁfodTTrB Cncng Mg (ag € a't

In this appendix we derive the master equation describing
elastic scattering of the quasibound states of the well which _
cause a dephasing of the electron quasibound states but do +aqref"”q't),
not change their populations. The Hamiltonian for the
double-well system in the Schiimger picture is

c;ﬂcn; Mq( e “a”

+ age” "), p(7)® pg

] . (A9)
H:HOJFHTJFHscat, (Al)

2 We now define
c
Ho= 21 snc;cn+§k: eqajac+ >, e5bib, . ‘
n= P E=clc,>, Mg (aqe@a+aqge '), (AL0)
q’
+ 2 wqatag+Q(clc,+cley), (A2)
q . .
FEcEcng Mq(age""q(“TMaqe"‘”q<“7>). (A11)

HT=; (Tewca+ T’Eka;c)’L% (Tepbpe+ TEpeTbp), Therefore
(A3)
dp(t) 1t
2 dat =~ 42 odTTrB{EFP(”)@pB_Ep(T)®pBF
Hsca™ 2 CECnFn, (A4)
n=1 —Fp(7)®pgE+p(7)®@pgFE}. (Al12)
where The state of the reservoirs is taken to be a thermal state at
temperatureT, thus
_ t
Fl_% Mq(aq+aq)' (AS) TrB[aqaqrpB]=TrB[aga;,pB]:0, (A13)

1
T,=2 Mo(B4+ By, (AB) TrB[agaqrpB]=6qqf—eEq,kBT % (A14)
- -
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The first term on the right-hand side of E&\12),

t
J d7TrgEFp(t)®pg
0

ei[(wqrqu)terqT]
eEq/kBT_l

t
:f d7>, MM Sqq
0 g’

J’_

1 .
i[(wg— wg)t—wg7] T 2
1+eEq/kBT_1)e 4 e 1(Cncn) p

ei wqT
eEq/kBT— 1

t
=f drS, M2
0 q

1 —lwgT t 2
+ 1+m e q (CnCn) P
Sin(wgt 2
22 |Mq|2 i q) 1+
q wq eEq/kBT_l

-1
+ imw—qt)l(clcn)zpz(77n+i§n)(clcﬂ)2p’
q

(A15)
where
sin(wgt) 2
= 2 q
=2 [Mof* = (1+eEq,kBT_1 . (AL6)
cofwqt)—1
£=2 [MglP———. (AL7)
q @q
Similarly,
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t
- JOdTTI’BEp(T)@pBF: —( h— [ fn)ClCangCn )
(A18)

t
- JOdTTrBFp(T)(X)PBE: — (i én)C;CnPC;Cn )
(A19)

f;dTTer(T)@ﬁpBFE:(nn—ifn)p(CECn)Z- (A20)

The coefficientsy, ,&, appear to be time dependent, but
under reasonable physical assumptions are time
independent? These assumptions are, first, thi assumed
to be a time scale over which the system operators vary
significantly. On this time scale, bath correlation functions
decay rapidly. Second, the bath is at finite temperature and
there is significant excitation above the reservoir ground
state. Finally, the coupling constarit, are independent of
g up to some large cutoff wave number. Under these assump-
tions these coefficients can be evaluated in the limit of
—o. We refer the reader to Ref. 14 for more details.

The total contribution from the scattering term to the mas-
ter equation is therefore by substituting Eq#&15) and
(A18)—(A20) and coresponding terms for the second well
into Eq. (A12):

dp(t) & i€ <
l;_t: 2 %[Cgcn '[Cxcnap]]Jrﬁ nzl [CECn,p] .

n=1
(A21)

The effect of the terni¢ is to add a small perturbation to
the energy of each quasibound well state and is equivalent to
the Lamb shift term in atomic physics.
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