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Quantum open-systems approach to current noise in resonant tunneling junctions

He Bi Sun and G. J. Milburn
Department of Physics, University of Queensland, St. Lucia 4072, Australia

~Received 30 December 1997!

A quantum Markovian master equation is derived to describe the current noise in resonant tunneling devices.
This equation includes both incoherent and coherent quantum tunneling processes. We show how to obtain the
population master equation by adiabatic elimination of quantum coherences in the presence of elastic scatter-
ing. We calculate the noise spectrum for a double well device and predict subshot noise statistics for strong
tunneling between the wells. The method is an alternative to Green’s function methods and population master
equations for very small coherently coupled quantum dots.@S0163-1829~99!01916-5#
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I. INTRODUCTION

Quantum features of conductance in mesoscopic elect
ics is currently a major theoretical and experimental resea
interest in condensed matter physics.1 Developments are
driven by two complementary imperatives. First, a tech
logical trend to fabricate devices on smaller and sma
scales is rapidly approaching the point where quantum
fects will become a problem unless explicit attempts to
ploit quantum features are made. Quantum tunneling
lead to undesired coupling between fabricated structures
the other hand, tunneling offers the possibility of very fa
switching times. Second, the new devices require impro
ments to the theoretical description of electronic transpor
a low temperature, high mobility regime. Small devices w
very long coherence times can be dominated by cohe
quantum effects. It is becoming increasingly clear that intr
sic quantum fluctuations play an important role at lo
temperatures.2

Current noise in resonant tunneling devices~RTD! pro-
vides a path to understanding noise in the deep quan
domain. In a biased RTD one or more bound quantum st
are coupled incoherently to two electron reservoirs ma
tained at different chemical potentials. There are a numbe
experimental3–6 and theoretical7–13results. RTDs involve ex-
change of fermions between the reservoirs and the bo
states. We propose in this paper an approach to such de
based on quantum Markov master equations.14 Such an ap-
proach to quantum noise in nonequilibrium systems has b
used with great success in quantum optics. This provide
alternative approach to the conventional Green’s functi
methods, and offers additional physical insights. For
ample, it enables one to deal with coherent coupling betw
adjacent well states which couples off-diagonal element
the density matrix in the occupation number basis and can
be described by population master equations. Such coup
can occur in strongly coupled quantum dots, as in the rec
experiments of Blicket al.15 and Oosterkampet al.16

If the strength of this coherent coupling dominates
time scales of elastic and inelastic relaxation, a popula
master equation cannot describe the system. Cohere
coupled nanostructures are likely to become increasingly
portant and thus there is considerable motivation to deve
PRB 590163-1829/99/59~16!/10748~9!/$15.00
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theoretical schemes that go beyond population rate eq
tions.

In the first part of this paper we derive the operator mas
equation to describe a bound electronic system coupled
coherently to two reservoirs. We then apply this equation
calculate the current two-time correlation function for
single well, with a single bound state. This model of cou
can equally well be treated by a population master equa
approach as in the approach of Carlos Egueset al.,17 but we
rederive the known results simply to display the method i
familiar context. In Sec. III we apply our methods to treat t
case of coherent coupling between the bound states of a
cent wells. In this case our approach yields results that
beyond the traditional population master equation approa
We derive the current spectrum in the device and dem
strate new features that arise precisely because of the co
ent coupling between the two wells. To make contact w
previous work we show that in the limit when elastic sc
tering dominates the coherent coupling, a population r
equation may be derived that is equivalent, in the appropr
limit, to that obtained by Carlos Egueset al.17

II. THE MASTER EQUATION

We begin with the derivation of the master equation fo
single quantum tunneling channel connecting two reserv
under external bias. This system is quite adequately
scribed by other methods, including population master eq
tions. However, we treat it here simply to demonstrate
approach in a familiar setting. Therefore our results are
new and could equally well be obtained by other metho
This is not the case for the coherently coupled double w
system we discuss next. The Hamiltonian describing t
process is given by9

H5(
k

«k
Eak

†ak1«cc
†c1(

p
«p

Cbp
†bp

1(
k

~TEkc
†ak1TEk* ak

†c!1(
p

~TCpbp
†c1TCp* c†bp!,

~1!

where ak (ak
†), c (c†), and bp (bp

†) are the annihilation
~creation! operators of electrons in the emitter~E! reservoir,
10 748 ©1999 The American Physical Society
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in the central quantum well, and in the collector~C! reser-
voir, respectively. The energy of the bound state without b
is «0, which under bias becomes«c5«02aeV, wherea is a
structure-dependent coefficient. The single particle ener
in the emitter and collector are, respectively,«k

E5k2/2m and
«p

C5p2/2m2eV. The energy reference is at the bottom
the conduction band of the emitter reservoir.

The fourth and fifth terms in the Hamiltonian describe t
coupling between the quasibound electrons in the well
the electrons in the reservoir. The tunneling coefficie
TEk ,TCp depend on the barrier profile and the bias volta
We will assume that at all times the two reservoirs remain
thermal equilibrium, with chemical potentialsmC ,mE , with
mE2mC5eV, despite the tunneling of electrons. This is o
of the key defining characteristics of a reservoir. It assum
in effect that two very different time scales describe the
namics of the reservoirs and the quaisbound quantum sta
the well.

In the interaction picture the Hamiltonian may be writt
as

HI~ t !5\(
i 51

2

@c†G i~ t !eiv0t1cG i
†~ t !e2 iv0t#, ~2!

where the bound state frequency isv05«c /\ and the reser-
voir operators are given by

G1~ t !5(
k

TEkake
2 ivk

Et, ~3!

G2~ t !5(
p

TCpbpe2 ivp
Ct, ~4!

where

vk
E5

«k
E

\
, ~5!

vp
C5

«p
C

\
. ~6!

We now obtain an equation of motion for the dens
operator of the bound state,r(t), in the well following the
standard method based on second-order perturbation th
and tracing over reservoir states.18 Thus we need

dr~ t !

dt
52

1

\2E0

t

dt1 TrR†HI~ t !,@HI~ t1!,rR^ r~ t !#‡, ~7!

whererR is the thermal equilibrium state of the two rese
voirs, and TrR denotes a trace over the reservoir variabl
Note that the factorization of the well state and reserv
states has been assumed. This is reasonable if the well
and the reservoir states are initially uncorrelated and p
vided there is a wide separation in the relaxation time sc
of the well state and the reservoirs. The only nonzero co
lation functions we need to compute are

I E1~ t !5E
0

t

dt1^G1
†~ t1!G1~ t1!&e2 iv0~ t2t1!, ~8!
s
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I E2~ t !5E
0

t

dt1^G1~ t1!G1
†~ t1!&e2 iv0~ t2t1!, ~9!

I C1~ t !5E
0

t

dt1^G2
†~ t1!G2~ t1!&e2 iv0~ t2t1!, ~10!

I C2~ t !5E
0

t

dt1^G2~ t1!G2
†~ t1!&e2 iv0~ t2t1!. ~11!

In order to illustrate the important physical approximatio
required in deriving the master equation, we will now expl
itly evaluate the first of these correlation functions.

Using the definition of the reservoir operators and t
assumed thermal Fermi distribution of the electrons in
emitter, we find

I E1~ t !5(
k

n̄EkuTEku2E
0

t

dt1 ei ~vk
E

2v0!t. ~12!

As the reservoir is a large system by definition, we can
place the sum overk by an integral to obtain

I E1~ t !5E
0

`dv

2p
r~v!n̄~v!uTE~v!u2E

0

t

dt ei ~v2v0!t,

~13!

where we have changed the variable of time integration. T
dominant term in the frequency integration will com
from frequencies nearv0 as the time integration is signifi
cant at that point. We assume that the bias is such
the quasibound state is well below the Fermi level in t
emitter. This implies that nearv5v0, the average occupa
tion of the reservoir state is very close to unity. This is
effective low temperature approximation. Now we ma
the first Markov approximation. We assume that the funct
r(v)n̄(v)uTE(v)u2 is slowly varying aroundv5v0, and
thus the frequency integration will lead to a function whi
is a rapidly decaying function of time compared to dynam
cal time scales for the quasibound state. This implies tha
time scales of interest in an experiment we can extend
upper limit of the time integration to infinity as a good a
proximation. In that caseI E1 becomes time independent an
may be approximated by

I E1~ t !'E
0

`dv

2
r~v!uTEu2d~v0!5gL~v0!, ~14!

which defines the effective rategL of injection of electrons
from the left reservoir~the emitter! into the quasibound stat
of the well. This rate will have a complicated dependence
the bias voltage through bothv0 and the coupling coeffi-
cients uTE(v)u. In this paper we do not address this issu
We simply seek the noise properties as a function of the
constants.

Evaluating all the other correlation functions under sim
lar assumptions we find that the quantum master equation
the density operator representing the well-state in the in
action picture is given by
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10 750 PRB 59HE BI SUN AND G. J. MILBURN
dr

dt
5Lr5

gL

2
~2c†rc2cc†r2rcc†!

1
gR

2
~2crc†2c†cr2rc†c!. ~15!

gL andgR are constants determining the rate of injection
electrons from emitter into the well and from the well in
the collector, respectively. The rate constants can be de
mined by a self-consistent band calculation involving t
bias voltage. The two Poisson processes shown in the m
equations, namely the injection of electrons into the w
described by the first term in the right-hand side and
emission of electrons out of the well by the second term,
conditioned by the ratesgL^cc†&(t) andgR^c†c&(t):

E„dNE~ t !…5gL^cc†&dt;E„dNC~ t !…5gR^c†c&dt, ~16!

where the average is taken with respect to the well stat
any time t. The master equation~15! is diagonal in the oc-
cupation number representation. The mean occupation n
ber n̄5Tr „c†cr(t)… can therefore be determined easily fro
the rate equation

dn̄

dt
5gL~12n̄!2gRn̄. ~17!

However the occupation number of the well states is
directly measured in current experiments although the cha
distribution in the devices can be measured in ot
experiments.19

The current noise is a fluctuation in classical stocha
processes. It is measured in the relatively high tempera
reservoirs of the leads, well away from the well state, and
strong, fast electron-electron interactions in the reservoir
tablish the classical level of the observed variable. It is, ho
ever, conditioned on the underlying quantum stochastic p
cess in the well, which is described by the master equat
We thus have the familiar problem of connecting the o
served classical stochastic process to the quantum sour
information in an open quantum system. In this problem
proceed as follows. The current pulse in the emitter and
lector may be determined from the Ramo-Shock
theorem.20 For a symmetric geometry this takes the form

i ~ t !dt5
e

2
@dNE~ t !1dNC~ t !#. ~18!

The connection to the quantum source is then made by
~16!. Using Eq. ~16!, the average current is given b
E„i (t)…5gL(12n̄)2gRn̄. In the steady state this isi `

5egLgR /g, whereg5gL1gR and the subscript̀ indicates
the steady state.

The fluctuations in the observed current,i (t), are quanti-
fied by the two-time correlation function:

G~t!5
e

2
i `d~t!1^I ~ t !,I ~ t1t!&`

tÞ0 . ~19!

To relate these classical averages to the fundamental q
tum processes occurring in the well, we apply the theory
open quantum system21 to the present system and calcula
the following correlation components witht.0:22
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E„dNE~ t1t!dNE~ t !…5gL
2 Tr~cc†eLtc†r`c!dt2, ~20!

E„dNC~ t1t!dNC~ t !…5gR
2 Tr~c†ceLtcr`c†!dt2, ~21!

E„dNE~ t1t!dNC~ t !…5gLgR Tr~cc†eLtcr`c†!dt2,
~22!

E„dNC~ t1t!dNE~ t !…5gRgL Tr~c†ceLtc†r`c!dt2.
~23!

Calculating the above correlation components using
master equation with corresponding initial conditions, a
substituting them together with the shot-noise compon
into Eq. ~19!, yields

G~t!5
ei`
2

d~t!1
ei`
4 S 12

4gLgR

g2 D ge2gutu.

Thus the spectral density of current fluctuation in the f
quency domain is given by

S~v!52E
0

`

G~t!~eivt1e2 ivt!dt

5ei`F11S 12
4gLgR

g2 D g2

g21v2G . ~24!

The current Fano factorF(v) is defined as the ratio of cur
rent noise density over the full shot noise density, and
low frequencies (g@v)

F~0!5
S~0!

2ei`
512

2gLgR

g2
. ~25!

The shot noise is suppressed and reaches the minimum
50% in a symmetric structure withgL5gR . The result is the
same as those derived by Chen and Ting9 using the nonequi-
librium Green’s function method. The result can also be o
tained by a classical master equation calculation.10 However,
the classical master equation cannot be used to treat the
of coherent coupling in a double well system discussed
low.

The suppression of fluctuations at low frequency is due
the exclusion principle in the well state, reflected in the m
ter equation by the appearance of the anticommuting fi
operators. No electron can tunnel onto the well if an elect
is already there. We need to wait a time of the order ofg21

for the electron to tunnel back out into the collector. Th
strong anticorrelations are established in the two fundam
tal Poisson processes,dNi(t). If the tunneling particles were
bosons, the well could accumulate a large number of p
ticles, enhancing the probability for emission into the colle
tor. This would lead to a rapid bunching of emission eve
into the collector and a supershot noise current would res
At high frequencies, we are looking at fast processes
which an electron tunnels into the well and immediately tu
nels out. The Fano factor at high frequencies is 0.5 due to
assumed form of Ramo-Shockley theorem.
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III. NOISE PROPERTIES OF A COHERENTLY COUPLED
DOUBLE WELL STRUCTURE

We now apply our approach to a triple barrier and dou
quantum well involving elastic scattering within the we
and coherent coupling between the wells. The main pro
dures are parallel to those in the single well case but n
involve off-diagonal elements of the density matrix. T
master equation is

dr

dt
5

gL

2
~2c1

†rc12c1c1
†r2rc1c1

†!

1
gR

2
~2c2rc2

†2c2
†c2r2rc2

†c2!2h1†c1
†c1 ,@c1

†c1 ,r#‡

2h2†c2
†c2 ,@c2

†c2 ,r#‡2 iV@~c1
†c21c2

†c1!,r#, ~26!

where c1 (c1
†) and c2 (c2

†) are annihilation~creation! op-
erators of electrons in the left and right quantum well,
spectively,h i is the rate of elastic scattering in thei th well,
and V is the coherent coupling rate between the two w
states. The irreversible term describing the elastic scatte
is derived in much the same way as the inelastic tunne
terms that describe electrons entering and leaving the de
with one additional assumption. To get a Markov mas
equation for number conserving scattering events, we m
assume that the temperature of the bath describing such
cesses is high enough that the bath states are well away
the ground states. This is not a very restrictive assump
for realistic devices at milliKelvin temperatures. The dev
tions that can result for very low temperatures are descri
in Gardiner.14 The derivation of the scattering term in th
master equation~27! is detailed in the Appendix.

The last term in this equation represents a coherent c
pling between the two wells and causes a single electro
periodically tunnel backward and forward between the t
wells, until it is eventually lost through the final barrier. R
cently Blick et al.15 have made measurements on a struct
that can be roughly approximated by our model. As th
point out, this device exhibits a new feature, in that a sin
electron can be in a superposition state between the
wells and is thus like an artificial molecule. We first deri
the noise features in the presence of this coherent coup
We will then show that, in the limit of strong elastic scatte
ing, h i@V, the system can be described in terms of popu
tion rate equations that have been extensively used in
past.

The steady-state current is easily found to be given b

i `5
2eV2ge

ge
212gehe14V2

~27!

for a symmetric system,gL5gR[ge; h15h2[he . The ap-
propriate correlation functions may be evaluated to give

^I ~ t !,I ~ t1t!&`

5S egeV

l1l2
D 2H 4V21

1

4D
@ f 1el1t1 f 2el2t#J ,

~28!
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where

f 65~ge2he6D!~D6he!~ge1he1D! ~29!

and D[Ahe
224V2; l652ge2he6D. The noise spectra

are derived in two cases. In case 1,he
2.4V2, when the

elastic scattering rate,h i , is higher than the coherent cou
pling rate between the well states, the current noise spect
is

S~v!52ei`H 1

2
1

ge

4D F ~he1D!~ge2he1D!

~2ge2he1D!21v2

1
~2he1D!~ge2he2D!

~2ge2he2D!21v2 G J . ~30!

The current Fano factor against normalized frequency
plotted in Fig. 1 where the spectrum shows a Lorentz
feature. In case 2,he

2,4V2, the opposite situation, whe
coherent coupling is much stronger than elastic scatter
the noise spectrum

S~v!52ei`H 1

2
1

ge

D̃
ImF ~ge2he1 i D̃ !~he1 i D̃ !

~2ge2he1 i D̃ !21v2 G J ,

~31!

whereD̃5A4V22he
2, the peak position shifted to the non

zero frequency as shown in Fig. 2. A comparison of the
two quantum processes is shown in Fig. 3. When ela
scattering increases, the Fano factor increases. Increasin
coherent coupling results in noise suppression and the n

FIG. 1. The current Fano factorS(v)/2ei` versus normalized
frequencyv/ge in rapid incoherent scattering,he

2.4V2. All pa-
rameters are normalized byge . The corresponding paramete
(he /ge , V/ge) for the curves are, from the top, dotted:~0.5, 0.1!;
dot-dash:~0.5, 0.2!; solid: ~0.5, 0.24!.
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10 752 PRB 59HE BI SUN AND G. J. MILBURN
zero frequency peak feature are more significant as the
well coupling and the quantum correlations are stronger. F
ther, when elastic scattering is extremely weak,he→0, and
coherent coupling is strong,V@ge , the steady-state curren
i `→ege /2 approaches the single well case as expecte
this limit. A significant outcome is that the best noise redu
tion at low frequency whenhe50 reaches 0.22.

The coherent tunneling between the two wells has
strong effect on the noise characteristics. Electrons are p
odically transferred between the two wells at the tunnel
frequency. If an electron from the emitter is injected into t
first well, no further electrons can enter this well until th
electron is removed, which takes place on a time scale
termined byV21. Thus at frequencies smaller thanV, noise
is suppressed by the exclusion principle, just as for the sin
well case. At the tunnel frequency, however, we expect

FIG. 2. The current Fano factor versus normalized freque
v/ge in strong coherent coupling,he

2,4V2. All parameters are
normalized byge . The corresponding parameters (he /ge , V/ge)
for the curves are, from the top, dotted:~0, 0.2!; dot-dash:~0.4, 0.4!;
solid: ~0.5, 0.5!.

FIG. 3. The comparison of the influences of the elastic scat
ing and the coherent tunneling. The corresponding parame
(he /ge , V/ge) for the curves are, from the top,~a! ~0.2, 0.0!; ~b!
~0.2, 0.3!; ~c! ~0.2, 0.5!; ~d! ~0, 0.645!.
o
r-

in
-

a
ri-
g

e-

le
e

noise to increase, as electrons injected into the first well
quickly cycled to the second well, where they can incoh
ently escape to the collector. This explains the nonzero
quency peaked structure of the noise power spectrum. In
case of largeV, however, coherent coupling dominates.
that case if an electron tunnels into the first well it perio
cally returns to that well at a frequency of 2V. To see this, it
is sufficient to note that the two levels which are degener
in the absence of tunneling become split into symmetric a
antisymmetric combinations, separated in energy by 2\V. A
state initially localized in one well can then be written as
linear combination of the two new eigenstates. The ph
difference in the superposition rotates throughp at the fre-
quencyV which leads to a state localized in the other we
This is just the standard description of tunneling in a tw
state system. The periodic return of the electron to the fi
well suppresses another electron from entering the w
Thus at large values ofV we expect noise suppression
occur atv52V. This behavior is indeed seen in Fig. 4.

We now show that in the limit of strong elastic scatteri
h i@V ~case 1 above!, a population master equation can b
derived that describes a classical sequential tunneling st
ture. The sequential model is traditionally formulated
terms of a classical master equation for the occupation p
abilities of each well. In our case, we have restricted
discussion to a single bound state in each well and thus
maximum population in each well is unity. However, we c
derive an equivalent classical master equation to desc
sequential tunneling even in this case.

Our method is an extension of adiabatic methods use
quantum optics to obtain rate equations. We assume tha
off-diagonal elements of the double well density operator
rapidly damped due to the elastic scattering ratesh i . The
off-diagonal elements are then assumed to relax almos
stantaneously to their steady-state values and adiabati
follow the more slowly changing diagonal matrix element

From Eq.~27! we find the following equations of motion
for the matrix elements in the occupation number basis
each well:

y

r-
rs

FIG. 4. The current Fano factors versus normalized freque
for double well structures whenhe50. The normalized paramete
V/ge for the curves are, from the top, 0.2~dash line!, 0.645~dot-
dash line!, 5.0 ~solid line!.
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d

dt
^n1n2urum1m2&55 2

gL

2
@~n111!dn1,01~m111!dm1,0#2

gR

2
~n2dn2,11m2dm2,1!

2h1~n1
2dn1,122n1m1dn1,1dm1,11m1

2dm1,1!

2h2~n2
2dn2,122n2m2dn2,1dm2,11m2

2dm2,1!
6 ^n1n2urum1m2&

1gLdn1,1dm1,1An1m1^n121,n2urum121,m2&1gRdn2,0dm2,0~21!n11m1A~n211!~m211!

3^n1 ,n211urum1 ,m211&2 iV$dn1,1dn2,0~21!n121An1~n211!^n121,n211urum1m2&

1dn1,0dn2,1~21!n1A~n111!n2^n111,n221urum1m2&2dm1,0dm2,1~21!m1A~m111!m2

3^n1 ,n2urum111,m221&2dm1,1dm2,0~21!m121A~m211!m1^n1 ,n2urum121,m211&%,

wheren1 ,n2 refer to the occupation number of the first and second wells, respectively.
Note that the diagonal matrix elements represent the occupation probabilities of each well,

P~n1 ,n2 ,t !5^n1 ,n2ur~ t !un1 ,n2&. ~32!

The diagonal matrix elements then obey the equation

d

dt
^n1n2urun1n2&5@2gL~n111!dn1,02gRn2dn2,1#^n1n2urun1n2&1dn1,1gLn1^n121,n2urun121,n2&

1dn2,0gR~n211!^n1 ,n211urun1 ,n211&1 i ~21!n1V$dn1,1dn2,0An1~n211!

3@^n121,n211urun1n2&2^n1 ,n2urun121,n211&#1dn1,0dn2,1A~n111!n2@^n1 ,n2urun111,n221&

2^n111,n221urun1n2&#%. ~33!

We now define the off-diagonal matrix elements as

Y1[^n1 ,n2urun111,n221&,

Y2[^n1 ,n2urun121,n211&,

Y3[^n121,n211urun111,n221&.

Therefore, the population equation that we are interested in is

d

dt
P~n1 ,n2 ,t !5@2gL~n111!dn1,02gRn2dn2,1!] P~n1 ,n2 ,t !1dn1,1gLn1P~n121,n2 ,t !1dn2,0gR~n211!P~n1 ,n211,t !

22V~21!n1@dn1,0dn2,1A~n111!n2 Im Y12dn1,1dn2,0An1~n211! Im Y2#. ~34!

Note that the elastic scattering ratesh1 ,h2 do not directly enter this equation. This is because elastic scattering does
change the occupation of the well states but does disrupt the phase coherence between the wave functions in the w
will lead to a decay of the relevant off-diagonal matrix elements, which obey the equations

d

dt
Y1~ t !5

d

dt
^n1n2urun111,n221&5H 2

gL

2
~n111!dn1,02

gR

2
n2dn2,12h1@n1

2dn1,11~n111!2dn111,1!] 2h2n2
2dn2,1J

3Y1~ t !2 i ~21!n121Vdn1,1dn2,0An1~n211!Y3~ t !

2 i ~21!n1Vdn1,0dn2,1A~n111!n2P~n111,n221,t !

1 i ~21!n1Vdn111,1dn221,0A~n111!n2P~n1 ,n2 ,t ! ,
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d

dt
Y2~ t !5

d

dt
^n1n2urun121,n211&5H 2

gL

2
@~n111!dn1,01n1dn121,0#2

gR

2
@n2dn2,11~n211!dn211,1#2h1n1

2dn1,1

2h2@n2
2dn2,11~n211!2dn211,1#J Y2~ t !2 i ~21!n1Vdn1,0dn2,1A~n111!n2Y3* ~ t !

2 i ~21!n121Vdn1,1dn2,0An1~n211!P~n121,n211,t !

1 i ~21!n121Vdn121,0dn211,1An1~n211!P~n1 ,n2 ,t !,

d

dt
Y3~ t !5

d

dt
^n121,n211urun111,n221&

5F2
gL

2
n1dn121,02

gR

2
~n211!dn211,12h1~n111!2dn111,12h2~n211!2dn211,1GY3~ t !

2 i ~21!n1Vdn121,0dn211,1An1~n211!Y1~ t !1 i ~21!n1Vdn111,1dn221,0A~n111!n2Y2* ~ t !.

To proceed, we solve the equations forY1 ,Y2 ,Y3 in the steady state, assuming that the diagonal matrix element
constant in time over the lifetime of the off-diagonal matrix elements. This is the adiabatic approximation. These stea
values are then substituted back into the equation for the diagonal matrix elements to obtain a classical jump proce
equation to describe sequential tunneling. The algebra is tedious, so we will not give details. The result is

d

dt
P~n1 ,n2 ,t !52gL@~n111!dn1,02gRn2dn2,1!] P~n1 ,n2 ,t !1dn1,1gLn1P~n121,n2 ,t !1dn2,0gR~n211!P~n1 ,n211,t !

22V2H dn1,0dn2,1~n111!n2

~a22a332a23a32!

D
@P~n111,n221,0!2P~n1 ,n2,0!#

1dn1,1dn2,0n1~n211!
~a11a332a13a31!

D
@P~n121,n211,0!2P~n1 ,n2,0!#J , ~35!
e-
ave
t

ob-

ring
de-

he

the
for

ms,
cur-

nel-
ise
tive
whereD is given by

D5a11~a22a332a23a32!2a13a22a31

with

a1152
gL

2
~n111!dn1,02

gR

2
n2dn2,1

2h1@n1
2dn1,11~n111!2dn1,0#2h2n2

2dn2,1 ,

a135~21!n1Vdn1,1dn2,0An1~n211!52a31,

a2252
gL

2
@~n111!dn1,01n1dn1,1#

2
gR

2
@n2dn2,11~n211!dn2,0#2h1n1

2dn1,1

2h2@n2
2dn2,11~n211!2dn2,0#,

a2352~21!n1Vdn1,0dn2,1A~n111!n252a32,
a3352
gL

2
n1dn1,1

2
gR

2
~n211!dn2,0

2h1~n111!2dn1,02h2~n211!2dn2,0 .

In addition to the incoherent tunneling of electrons b
tween the wells and the external reservoirs, we now h
incoherent~sequential! tunneling between the two wells a
rates determined byV2/h i . The form of this equation cor-
responds to the sequential tunneling master equation
tained by Carlos Egueset al.17 We have thus shown that, in
the limit of strong decoherence induced by elastic scatte
of the bound states, a population master equation may
scribe sequential tunneling in the device. This will be t
appropriate limit in the case thath i@V. However, future
quantum nanostructure devices are likely to operate in
opposite limit. In that case our method is ideally suited
determining the device characteristics.

IV. SUMMARY

We have shown how the quantum theory of open syste
formulated as a quantum stochastic process, enables the
rent noise spectrum to be calculated for mesoscopic tun
ing devices. Our approach explicitly treats quantum no
properties of the charge carriers, and gives a simple intui
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picture to understand the results. As fabrication technol
develops, quantum noise limited networks ofcoherenttun-
neling devices, such as quantum dots and quantum p
contacts, will become increasingly important. Such coh
ently coupled devices are essential for the implementatio
a quantum computer, which must operate reversibly.23 In
such device. The full operator master equation methods
have demonstrated here provide a powerful description,
cluding both diagonal and off-diagonal matrix elements
the same equation.

Our model does not treat the transverse unbound mode
the well of a realistic resonant tunneling device. These
easily be incorporated by additional states in the well a
additional jump process channels in the master equation.
have not done that here as we sought to derive the irreduc
level of current noise in tunneling devices. Our model may
fact apply to very tightly confined quantum dot structur
which could conceivably be fabricated with a single bou
well state at donor impurities. Further extensions of
model are also needed to treat the case where the well sta
just below the Fermi level in the collector, in which case t
current noise acquires an additional temperature-depen
classical component. These more general cases will
treated in a larger publication.
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APPENDIX

In this appendix we derive the master equation describ
elastic scattering of the quasibound states of the well wh
cause a dephasing of the electron quasibound states b
not change their populations. The Hamiltonian for t
double-well system in the Schro¨dinger picture is

H5H01HT1Hscat, ~A1!

H05 (
n51

2

«ncn
†cn1(

k
«k

Eak
†ak1(

p
«p

Cbp
†bp

1(
q

vqaq
†aq1V~c1

†c21c2
†c1!, ~A2!

HT5(
k

~TEkc
†ak1TEk* ak

†c!1(
p

~TCpbp
†c1TCp* c†bp!,

~A3!

Hscat5 (
n51

2

cn
†cnGn , ~A4!

where

G15(
q

Mq~aq
†1aq!, ~A5!

G25(
q

Mq~bq
†1bq!, ~A6!
y

int
r-
of

e
n-

in
n
d
e
le

n

e
e is

ent
be

g
h
do

whereaq ,bq are Bose destruction operators describing in
pendent reservoir oscillators. Note that each bound stat
the well is coupled to an independent reservoir. This assu
that there are no correlations between well states due to
dephasing that takes place through elastic collisions.

We will only consider here the derivation of the mast
equation arising from the elastic scattering of bound sta
and the harmonic oscillator reservoirs. The relevant par
the master equation is14

dr~ t !

dt
52

1

\2E0

t

dt TrB@Hscat~ t !,@Hscat~t!,r~t! ^ rB##,

~A7!

whererB is the equilibrium state of the bath, and where TB
means to trace over the bath variables. This equation is b
on a second-order expansion in the interaction energy
tween the reservoir states and the bound states of the w
We have also assumed that the system and bath state
decorrelated very rapidly on the time scale of interest in
system, so that the bath remains close to its equilibrium st
The bath Hamiltonian is

HB5(
q

vqaq
†aq . ~A8!

It will only be necessary to consider one of the bath-w
state coupling terms in the scattering Hamiltonian. The r
evant part of the master equation in the interaction pictur

dr~ t !

dt
52

1

\2E0

t

dt TrBH Fcn
†cn(

q8
Mq8~aq8

† eivq8t

1aq8e
2 ivq8t! , Fcn

†cn(
q

Mq~aq
†eivqt

1aqe2 ivqt!,r~t! ^ rBG G J . ~A9!

We now define

E[cn
†cn(

q8
Mq8~aq8

† eivq8t1aq8e
2 ivq8t!, ~A10!

F[cn
†cn(

q
Mq~aq

†eivq~ t2t!1aqe2 ivq~ t2t!!. ~A11!

Therefore

dr~ t !

dt
52

1

\2E0

t

dt TrB$EFr~t! ^ rB2Er~t! ^ rBF

2Fr~t! ^ rBE1r~t! ^ rBFE%. ~A12!

The state of the reservoirs is taken to be a thermal sta
temperatureT, thus

TrB@aqaq8rB#5TrB@aq
†aq8

† rB#50, ~A13!

TrB@aq
†aq8rB#5dqq8

1

eEq /kBT21
. ~A14!
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The first term on the right-hand side of Eq.~A12!,

E
0

t

dt TrBEFr~ t ! ^ rB

5E
0

t

dt(
qq8

MqMq8dqq8F 1

eEq /kBT21
ei [ ~vq82vq!t1vqt]

1S 11
1

eEq /kBT21
D ei [ ~vq2vq8!t2vqt] G ~cn

†cn!2r

5E
0

t

dt(
q

uMqu2F 1

eEq /kBT21
eivqt

1S 11
1

eEq /kBT21
D e2 ivqtG ~cn

†cn!2r

5(
q

uMqu2Fsin~vqt !

vq
S 11

2

eEq /kBT21
D

1 i
cos~vqt !21

vq
G ~cn

†cn!2r5~hn1 i jn!~cn
†cn!2r,

~A15!

where

hn[(
q

uMqu2
sin~vqt !

vq
S 11

2

eEq /kBT21
D , ~A16!

jn[(
q

uMqu2
cos~vqt !21

vq
. ~A17!

Similarly,
et

an

te

.R

y

d

v

2E
0

t

dt TrBEr~t! ^ rBF52~hn2 i jn!cn
†cnrcn

†cn ,

~A18!

2E
0

t

dt TrBFr~t! ^ rBE52~hn1 i jn!cn
†cnrcn

†cn ,

~A19!

E
0

t

dt TrBr~t! ^ rBFE5~hn2 i jn!r~cn
†cn!2. ~A20!

The coefficientshn ,jn appear to be time dependent, b
under reasonable physical assumptions are t
independent.14 These assumptions are, first, thatt is assumed
to be a time scale over which the system operators v
significantly. On this time scale, bath correlation functio
decay rapidly. Second, the bath is at finite temperature
there is significant excitation above the reservoir grou
state. Finally, the coupling constantsMq are independent o
q up to some large cutoff wave number. Under these assu
tions these coefficients can be evaluated in the limit ot
→`. We refer the reader to Ref. 14 for more details.

The total contribution from the scattering term to the ma
ter equation is therefore by substituting Eqs.~A15! and
~A18!–~A20! and coresponding terms for the second w
into Eq. ~A12!:

dr~ t !

dt
5 (

n51

2

hn†cn
†cn ,@cn

†cn ,r#‡1
i j

\2 (
n51

2

@cn
†cn ,r# .

~A21!

The effect of the termi j is to add a small perturbation t
the energy of each quasibound well state and is equivalen
the Lamb shift term in atomic physics.
.
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