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Homodyne measurements on a Bose-Einstein condensate

J. F. Corney and G. J. Milburn
Department of Physics, The University of Queensland, Queensland 4072, Australia

~Received 24 December 1997!

We investigate a nondestructive measurement technique to monitor Josephson-like oscillations between two
spatially separated neutral atom Bose-Einstein condensates. One condensate is placed in an optical cavity,
which is strongly driven by a coherent optical field. The cavity output field is monitored using a homodyne
detection scheme. The cavity field is well detuned from an atomic resonance, and experiences a dispersive
phase shift proportional to the number of atoms in the cavity. The detected current is modulated by the
coherent tunneling oscillations of the condensate. Even when there is an equal number of atoms in each well
initially, a phase is established by the measurement process and Josephson-like oscillations develop due to
measurement backaction noise alone.@S1050-2947~98!03509-4#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

The experimental observation of Bose-Einstein conden
tion ~BEC! in dilute systems of trapped neutral atoms@1–4#
has stimulated a large research program on Bose-Eins
condensation of dilute neutral atom gases in confining po
tials. One aspect of BECs that has attracted much theore
work is the idea of phase. Several papers@5–7,10,11# have
discussed the role of measurements in establishing the ph
in the form of interference between two condensates
Josephson-like coherent tunneling between the condens
The latter situation is discussed in this paper, where we
vestigate homodyne detection of the output of an optical c
ity containing one condensate in a double well system. T
measurement process induces tunneling oscillations tho
backaction noise and thus induces a phase difference
tween the two separated parts of the condensate. In a
consistent manner, the tunneling imposes a phase modul
on the light field, which is detected in the homodyne curre

II. CONDENSATE MODEL

The model of the condensate used here, namely, the B
in a double-well potential, has been presented in previ
papers@12#, and so we only present a brief overview of th
system here. The potential is symmetric with barrier hei
and well separation chosen so that only two single-part
states are below the barrier separating the two wells. T
enables a treatment of the many-body problem with a tw
mode approximation. The resulting model is sufficien
simple to enable an analytic solution to be found for t
semiclassical equations, and to permit a tractable nume
comparison of the semiclassical description with the f
quantum dynamics.

Consider a dilute gas of atoms moving in the double-w
potentialV(r ) with

V~r !5bS x22
d

2bD 2

1
1

2
mv t

2~y21z2!, ~1!

where the interwell coupling occurs alongx, and v t is the
trap frequency in they-z plane. This potential has elliptic
PRA 581050-2947/98/58~3!/2399~8!/$15.00
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fixed points atr151q0x,r252q0x, where q0
25d/2b, at

which the linearized motion is harmonic with frequencyv0
5(4d/m)1/2. We setv t5v0 for simplicity. It is convenient
to scale the length in units of the position uncertainty in
harmonic oscillator ground state,r 0 where r 05A\/2mv0.
The barrier height is then given byB5(\v0/8)(q0 /r 0)2.

The many-body Hamiltonian describing an atomic BE
in a confining potential is@13#

Ĥ~ t !5E d3r F \2

2m
¹ĉ†¹ĉ1Vĉ†ĉ1

U0

2
ĉ†ĉ†ĉĉ G , ~2!

wherem is the atomic mass,U054p\2a/m measures the
strength of the two-body interaction, anda is the s-wave
scattering length.ĉ(r ,t) andĉ†(r ,t) are the Heisenberg pic
ture field operators, which annihilate and create atoms
position r , and normal ordering has been used.

For a suitable choice ofB, only two energy eigenstates li
beneath the barrier, which enables a many-body treatme
terms of only two single-particle states. For details we re
to @12#. We now define the stateu0(r ) as the normalized
ground-state mode of the local potentialṼ(2)(r ), around the
bottom of each well, with energyE0, and define the loca
mode solutions of the individual wellsu1,2(r )5u0(r2r1,2).
These local modes are approximately orthogonal with a fi
order correction (e1) to orthogonality given by the overlap
between the modes of opposite wells. The energy eigens
of the global double-well potential may then be appro
mated as the symmetric (1) and asymmetric (2) combina-
tions

u6~r !'
1

A2
@u1~r !6u2~r !#, ~3!

with corresponding eigenvaluesE65E06R, and

R5E d3ru1* ~r !@V~r !2Ṽ~2!~r2r1!#u2~r !. ~4!

The matrix elementR, which is of ordere1, describes the
coupling between the local modes. The tunneling freque
2399 © 1998 The American Physical Society
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2400 PRA 58J. F. CORNEY AND G. J. MILBURN
V between the two minima is then given by the energy le
splitting of these two lowest states:

V52R/\5v0

q0
2

2r 0
2

eq0
2/2r 0

2
. ~5!

In the two-mode approximation we expand the field ope
tors in terms of the local modes and introduce the Heis
berg picture annihilation and creation operators

cj~ t !5E d3ruj* ~r !ĉ~r ,t ! ~6!

so that@cj ,ck
†#'d jk . The validity of this expansion if en

sured when the overlap is small:

R
E0

5
V

v0
!1. ~7!

The ratio of the separation of the minima of the global p
tentialV(r ) to the position uncertainty in the stateu0(r ) can
be as small as 2q0 /r 056 ~as in the simulations presented
this paper!, and this condition is still satisfied. The man
body Hamiltonian then reduces to the following two-mo
approximation:

Ĥ2~ t !5E0~c1
†c11c2

†c2!1
\V

2
~c1c2

†1c1
†c2!

1\k@~c1
†!2c1

21~c2
†!2c2

2#, ~8!

wherek5U0/2\Veff , and Veff
215*d3r uu0(r )u4 is the effec-

tive mode volume of each well.
The two-mode approximation is valid when many-bo

interactions produce only small modifications of the groun
state properties of the individual potentials. This is true wh

\v05
\2

2mr0
2
@

NuU0u
Veff

. ~9!

Using Veff'8p3/2r 0
3 for this case, we obtain the following

condition on the number of atoms:

N!
r 0

uau
. ~10!

The values used in our simulations, namely,r 055 mm, a
55 nm, andN5100 satisfy this criterion. Thus the two
mode approximation is valid for small number of atom
compared to current experiments withN51032106 .

The first term in Eq.~8! may be removed by transformin
to an interaction picture, resulting in the Hamiltonian

Ĥ25
\V

2
~c1c2

†1c1
†c2!1\k@~c1

†!2c1
21~c2

†!2c2
2#. ~11!

A full quantum analysis of the quantum dynamics resu
ing from the many-body Hamiltonian Eq.~2! is not tractable,
however, considerable insight can be gained within the tw
mode approximation. In@12# an angular momentum mode
was defined, which is equivalent to the Hamiltonian Eq.~11!.
Using the transformations
l

-
-

-

-
n

-

-

Ĵz5
1

2
~c1

†c21c2
†c1!, ~12!

Ĵx5
1

2
~c2

†c22c1
†c1!, ~13!

Ĵy5
i

2
~c2

†c12c1
†c2! ~14!

and settingc1
†c11c2

†c25N̂5N ~as the total number is con
served!, the Hamiltonian becomes

Ĥ25\V Ĵz12\k Ĵx
2 . ~15!

Here we have neglected terms proportional toN and N2

since they merely correspond to a shift in the energy sc
The Casimir invariant is

Ĵ25
N̂

2
S N̂

2
11D . ~16!

This is analogous to an angular momentum model with to
angular momentum given byj 5N/2.

The angular momentum operators have a simple phys
interpretation. The operatorĴz corresponds to the particl
occupation number difference between the single-particle
ergy eigenstates. For example, the maximal weight eig
state u j , j &z corresponds to all the particles occupying t
highest single-particle energy eigenstate,c2(x). The opera-
tor Ĵx gives the particle number difference between the
calized states of each well. In fact thex component of the
position operator in the field representation is

x̂5
2q0

N
Ĵx . ~17!

Thus the maximal and minimal weight eigenstates ofĴx cor-
respond to the localization of all the particles in one well
the other.

III. HOMODYNE DETECTION SCHEME

Figure 1 illustrates the system under investigation he
One of the wells of the double-well system is placed in o
arm of an optical cavity. The cavity is strongly driven by
coherent field at the cavity frequency. We assume that on
time scale of tunneling oscillations, the cavity is heav
damped. The cavity field thus relaxes to the steady state
much faster time scale than the BEC dynamics. This ena
us to make an adiabatic elimination of the cavity dynami
The cavity field is assumed to be far off resonance w
respect to a dipole transition in the atomic species. The ef
of the atoms is then entirely dispersive and shifts the ph
of the cavity field by an amount proportional to the numb
of atoms in the cavity at any particular time. If the atom
number in the cavity oscillates, so will the phase shift. Th
any tunneling of the condensate will be manifest in a mo
lated phase shift of the optical field exiting the cavity. T
detect this phase shift we consider a homodyne detec
scheme. The light leaving the cavity is combined with t
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FIG. 1. Schematic representation of the h
modyne detection scheme to monitor the tunn
ing between two spatially separated condensa
One part of the condensate is contained in an
tical cavity. The light in the cavity is well de-
tuned from the atomic resonance. The outp
light from the cavity is detected by balanced h
modyne detection.
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reference beam and allowed to fall on a photodetector, wh
records the photocurrent. If there is a difference in at
number of the two condensates, then coherent tunneling
occur and the homodyne current will be modulated at
tunneling frequency.

Assuming that the incoming light is detuned from a
atomic resonance, the interaction Hamiltonian density is

ĤI5Ĉ†~r !@Ĥc.m.2\mg~r !a†a#Ĉ~r !, ~18!

wherea, a† are the cavity field operators,g(r ) is the inten-
sity mode function, andm5VR

2/4D, with Rabi frequencyVR

and optical detuningD. Ĉ(r ) and Ĉ†(r ) are the atomic
many-body operators, andĤc.m. describes the center-of-mas
motion.

Introducing the condensate field operatorsc, c† and aver-
aging over the optical mode function gives the interact
energy:

ĤI52\xa†ac1
†c1

52\
N

2
xa†a2\xa†aĴx , ~19!

wherex is the interaction strength. If the optical mode ha
beam waistw, then the interaction strength can be written

x5
A2m

A2~r 0 /w!211
. ~20!

For N5100 atoms,x.1023 s21 should give detectable
phase shifts (0.1 rad), and should be experimentally
sible. For example, withr 0 as above,w530 mm, D/2p
5100 MHz, saturation intensityI s517 W/m2, optical fre-
quency v/2p53.831014 Hz, atomic linewidth ga/2p
5107 Hz and incident powerP56 mW, in a cavity 10 cm
long, thenx'1022 s21. Larger values ofx may then be
achieved by reducing the detuning or the incident intens

The cavity is assumed to be driven by a strong cohe
field of strengthe and strongly damped at the rateg. Hence
the master equation for the whole system is, with\51,
h

an
e

n

a
s

a-

.
nt

ṙ tot52 iV@ Ĵz ,r tot#2 i2k@ Ĵx
2 ,r tot#

2 i S d2
Nx

2 D @a†a,r tot#1 ix@a†aĴx ,r tot#2 i e@a†

1a,r tot#1
g

2
~2ar tota

†2a†ar tot2r tota
†a!, ~21!

where the initial cavity detuningd5Nx/2 is chosen to re-

FIG. 2. Evolution of ^Ĵx&c in the monitored system, forN

5100 atoms all initially in one well andx̄50.01. In ~a!, k̄

50.005 and in~b!, k̄50.02.
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move theN-dependent linear dispersion. The optical fie
may now be adiabatically eliminated from the master eq
tion @14#:

ṙ52 iV@ Ĵz ,r#2 i2k@ Ĵx
2 ,r#1 ixuau2@ Ĵx ,r#

2D†Ĵx ,@ Ĵx ,r#‡, ~22!

where the coherent amplitude isa522i e/g and D
58x2e2/g3. The double commutator represents a decoh
ence produced by photon-number fluctuations in the opt
fields. It is a quantum measurement backaction term con
tent with the interpretation that the optical field makes
measurement on the condensate. In fact this last term
stroys coherence in the eigenbasis ofĴx and thus should
inhibit tunneling oscillations. This is indeed true for the e
semble of measured systems described by the master e
tion. However, as we show below, it is not true for a partic
lar realization of a single measurement run. The ensem
averaged effect of the measurement can be seen in
operator moment equations~for k50):

^ J̇̂x&52V^Ĵy&, ~23!

^ J̇̂y&5xuau2^Ĵz&1V^Ĵx&2D^Ĵy&, ~24!

^ J̇̂z&52xuau2^Ĵy&2D^Ĵz&. ~25!

The terms with coefficientxuau2 produce a precessio
around thex axis, which tends to inhibit coherent tunnelin
The effect of these terms can be negated by adding a li
ramp, or tilt, to the double-well potential. TheD terms cause
a decay toward the origin, indicating decoherence, as
pected. If the system is started in a number state with
equal number of atoms in each well, then no tunneling w
occur at all—these moments remain identically zero.

When the wells are tilted, so that the precession aro
the x axis is suppressed, we can obtain equations for
second order moments:

^ J̇̂x
2&52V^L̂&, ~26!

^ J̇̂y
25V^L̂&12D~^Ĵz

2&2^Ĵy
2&!, ~27!

^ J̇̂z
2&52D~^Ĵy

2&2^Ĵz
2&!, ~28!

^L̂
˙

&52V~^Ĵx
2&2^Ĵy

2&!2D^L̂&, ~29!

whereL̂5 ĴxĴy1 ĴyĴx .
Thus even when the system is started with an equal n

ber of atoms in each well, the unconditional evolution

^Ĵx
2& and ^Ĵy

2& exhibit oscillations initially. For long times
the amplitude of these oscillations decays due toD and the
system approaches the fixed point^Ĵx

2&5^Ĵy
2&5^Ĵz

2&. From
this we see that the condensate has on average a de
initial phase~which is clearly seen in the second-order m
ments, but not the first-order moments!, which is determined
by the initial state. In our simulations the initial state w
chosen to be a eigenstate ofĴx , which is not the only state
-
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that gives an equal number of atoms in each well. Pres
ably in a real experiment, the initial state would be

uc~t!&5e2 i t Ĵzu j ,0&x , ~30!

where t is a random variable uniformly distributed on th
interval @0,2p#. This then implies a random initial phase.

A common technique for dealing with master equatio
describing open systems in quantum optics is to numeric
simulate stochastic realisations of quantum trajectories. T
method has already been used by several authors inves
ing the effect of measurement on the relative phase of BE
@7–9#, but these differ from the approach used here in t
we monitor the homodyne detection current. The result
stochastic process is a diffusive evolution rather than
jump processes that occur in the direct detection of atom
individual photons. The quantum trajectory method is a v
appropriate one for the situation considered in this paper.
have one two-part condensate system continuously m
tored by the homodyne detection scheme. If there is
phase difference between the two parts of the condensa
will be established in each run of the experiment. The qu
tum trajectory method enables us to simulate each run o
experiment. The master equation, however, correspond
an average over many runs of the experiment and many
modyne current records. For this reason moments calcul
directly from the master equation will show no evidence
quantum tunneling if there is no initial phase difference b
tween the condensates. In contrast, as we show, a single
of the experiment can establish a self-consistent phase
ference even if no phase difference is present initially. Su
a ‘‘measurement induced’’ phase difference is manifest i
measurement induced tunneling current.

The conditional master equation~that is the evolution
conditioned on the measurement result! for the optical field
undergoing homodyne detection is@15,16#

S drc

dt D
field

5gD@a#rc1Ag
dW~ t !

dt
H@a#rc , ~31!

wheredW(t) is the infinitesimal Weiner increment. In thi
equation,rc is the density matrix that is conditioned on
particular realization of the homodyne current up to timet.
Wiseman’s superoperators are defined as

D@a#r5ara†2 1
2 ~a†ar1ra†a!, ~32!

H@a#r5ar1ra†2tr ~ar1ra†!r. ~33!

The stochastic Shro¨dinger equation, which describes th
conditional evolution of the system is

duC̃c~ t !&5dt@2 iĤ 22 iĤ I
1
2 ga†a1I ~ t !a#uC̃c~ t !&,

~34!

whereĤ25V Ĵz12k Ĵx
2 anduC̃c(t)& is theunnormalizedket

describing the conditional state of the system. The measu
current isI (t)5g^a1a†&(t)1Agj(t), where the stochastic
term j(t) has the correlations

^j~ t !&50, ~35!

^j~ t !,j~ t8!&5d~ t2t8!. ~36!
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FIG. 3. Evolution of^Ĵx&c in the monitored system, forN5100 atoms andk̄50. In ~a!, x̄50.0001, in~b!, x̄50.001,~c!, x̄50.01, and

in ~d!, x̄50.1.
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Thus we can see how the system evolution is conditio
upon the measured current.

Adiabatic elimination of the optical field, using Eq.~19!
gives

duC̃c~ t !&5dtF2 iĤ 22
8x2e2

g3
Ĵx

21I ~ t !ĴxG uC̃c~ t !&,

~37!

I ~ t !5
32x2e2

g3
^Ĵx&c1

4xe

Ag3

dW

dt
~ t !. ~38!

Hence the oscillations in the occupation number between
two wells can be determined from the measured current

It is helpful to consider the Shro¨dinger equation for the
normalizedket, which does not explicitly mention the dete
tion current:

duCc~ t !&5F2 iĤ 2dt2
8x2e2

g3
~ Ĵx2^ Ĵx&c!

2dt

1
4xe

Ag3
~ Ĵx2^Ĵx&c!dWG uCc~ t !&. ~39!
d

e

The terms in the equation due to the measurement dep
on the quantityĴx2^Ĵx&c . This is minimal in semiclassica
type trajectories for whicĥĴx

2&c factorizes tô Ĵx&c
2 . Thus it

may be expected that for some range of values ofx, the
stochastic measurement terms would drive the system
wards an oscillating trajectory for whicĥĴx

2&c.^ Ĵx&c
2 .

IV. SIMULATIONS

The results of the simulations are shown in Figs. 2–
Time is plotted along thex axis in dimensionless units~nor-
malized by the inverse of the tunneling frequencyV). The
strengths of the atom-atom collisions and the atom-field
teraction were controlled by varying the normalized va
ablesk̄5k/V andx̄5xe/AVg3. The parameters stated pre
viously give the range of measurement strengths used in
simulations (1024,x̄,0.1) when the power of the optica
field is varied from 0.06 to 6 mW. The mass of the partic
is taken to bem51.5310225 kg.

The measured current gives the conditional dynamics
the the system. However, in the conditional results sho
we plot ^Ĵx&c , which is proportional to the current withou
the noise@Eq. ~38!#. For clarity, the other moments, namel
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^Ĵy&c and ^Ĵz&c , are not plotted in the figures. Except whe
k̄ is very large,^ Ĵy&c follows ^Ĵx&c , but with a p/2 phase
difference, and̂ Ĵz&c remains at or close to zero.

The dynamics of the unmonitored system when star
with all the condensate in one well has been discusse
previous work@12#. Basically when there are no atom-ato
interactions~i.e., k̄50), ^Ĵx& oscillates from2N/2 to 1N/2.
When the interactions are present but only weak, tunne
still occurs, but the amplitude quickly collapses due to no
linear dephasing. The collapse is followed some time late
small revivals. There is a critical strength of collisions (k̄N
51) at which the tunneling is suppressed. Above this va
of k̄, the condensate is trapped in the well in which it start
with only very small oscillations occurring in̂Ĵx&.

We expect to see similar behavior in the current of
monitored system@Eq. ~39!#. Whenk̄50, ^Ĵx&c oscillates as
before, for weak atom-light coupling~i.e., x̄N.,1). For
stronger measurements, the resulting backaction can be
in the current. For long times, the amplitude of the tunnel
oscillations starts to fluctuate and a slow phase chang
evident. In the case when atom collisions are present,
effect of the measurements is to halt the collapse of the
cillations seen in the unmonitored system. The ph

FIG. 4. Unconditional evolution of second-order moments,

N5100 atoms andk̄50. In ~a!, x̄50.01, in ~b!, x̄50.1
d
in

g
-
y

e
,

e

een
g
is
e

s-
e

changes are also more pronounced. The effect of the cri
value (k̄N51) is seen in the suppression of the oscillatio
in the current above this value. Figure 2 shows the evolut
of ^Ĵx&c for values ofk̄ above and below the critical value

If the system is started with an equal number of atoms
each well, then we expect no coherent tunneling in the
sence of any detection apparatus. However, the presenc

r

FIG. 5. Evolution of ^Ĵx&c in the monitored system, forN

5100 atoms, andx̄50.001. In ~a!, k̄50.0001, in~b!, k̄50.005,

and in ~c! k̄50.02.
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the field effects a measurement on the condensate sys
This should establish a phase, which can be detected by m
suring the output currentI (t). The simulations of Eq.~39!
show an oscillation in the current and, for the optimum
teraction strength, this can be established in a few tunne
periods, for a small number of atoms. The results for the c
where there are no atom collision, i.e.,k̄50, are shown in
Fig. 3, for various measurement strengthsx̄. The growth in
oscillations occurs because, for large enoughx̄, ^Ĵx&c

2 is

driven to matcĥ Ĵx
2&c , which typically has large oscillations

If, as in Figs. 3~a! and 3~b!, the interaction strength is to
small (x̄N<0.1), then generally the fluctuations are n
large enough to drive full tunneling and the current suff
small, rather irregular oscillations. However, even for lar
x̄, when the oscillations in the current are established, s
as in Fig. 3~c!, they are not guaranteed to stay large in a
plitude. This is becausêĴz

2&c undergoes what appears to be
random walk, which, because of the Casimir invariant,
rectly affects the amplitude of the oscillations in^Ĵx

2&c and

^Ĵy
2&c . Consequently, since the measurement locks^Ĵx&c

2

onto the orbit of^Ĵx
2&c , this changes the amplitude of th

oscillations in the current. Because of the random nature
the orbit of ^Ĵz

2&c , the tunneling oscillations in the curren
over a certain time frame in a ‘‘good’’ run may be large, b
in another with the same parameters the oscillations ma
small and irregular in amplitude.

When the measurement is quite strong (x̄N.10), as in
Fig. 3~d!, the tunneling oscillations appear to be quite irreg
lar. However, a Fourier transform of the current picks out
tunneling frequencyV very strongly, so the fluctuations ar
mainly in the amplitude of oscillations, not so much in t
phase. When the measurement strength is very largex̄N

540), ^Ĵx&c still indicates a tunneling from one well to an
other, but the oscillations are no longer harmonic and app
quite random, both in frequency and amplitude.

The equations for theunconditionaldynamics@Eqs.~23!–
~29!# show a decay in the oscillations of^Ĵx

2& and ^Ĵy
2& for

long times, which increases with the measurement stren
x̄. Figure 4 shows the unconditional dynamics for two d
ferent measurement strengths. No such decay is seen i
individual trajectories, but rather there is a diffusion in t
phase of the oscillation over long times that accounts for
decay in the mean evolution. This change in phase appea
be most rapid over the periods when the oscillations
an
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e

small in amplitude and most likely to suffer random fluctu
tions.

The presence of atom-atom interactions increases
phase diffusion, even for quite weak collisions (k̄N<0.1).
Figure 5 shows the evolution of^Ĵx&c for various atom-atom
interaction strengthsk̄, above and below the critical value
The amplitude is also more irregular, and the Fourier tra
form of the oscillations no longer shows a clear peak at
expected tunneling frequency, but a group of random spi
centered on the the tunneling frequency. In Fig. 5~b!, k̄

50.005, which is close to the value ofk̄ calculated from the
parameters given in previous sections. Above the criti
value of k̄N51, ^Ĵx&c suffers small, very irregular oscilla
tions around the origin@Fig. 5~c!#. This is quite different
from the behavior of̂ Ĵx&c when the condensate was initiall
placed entirely in one well@Fig. 2~b!#, in which case the
condensate was trapped in the well it started in and the c
cal value ofk̄ marked quite a sharp boundary~or bifurcation!
between two different types of behavior. In this case wh
the condensate is distributed equally between the wells,
condensate is trapped in neither well, but remains acr
both, and the change in behavior as the critical point
crossed is more continuous. Ask̄ increases past the critica
point, we see a decrease in the overall amplitude of the
neling and in its regularity. However, the critical value ofk̄
is still quite meaningful in this case an indication of when t
strength of the atom collisions significantly suppresses
tunneling.

V. CONCLUDING REMARKS

We have shown that this homodyne detection scheme
an appropriate choice of measurement strengthx, could well
be suitable to detect the relative phase, in the form
Josephson-like tunneling, between two condensates i
double-well potential. The dynamics of the measured curr
reflect the tunneling of the condensate as well as the s
trapping effect caused by atom collisions. It also demo
strates quite vividly how a measurement can establis
~relative! phase in a system which initially exhibits no pha
information.
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