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Quantum-state protection in cavities
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We show how an initially prepared quantum state of a radiation mode in a cavity can be preserved for a long
time using a feedback scheme based on the injection of appropriately prepared atoms. We present a feedback
scheme both for optical cavities, which can be continuously monitored by a photodetector, and for microwave
cavities, which can be monitored only indirectly via the detection of atoms that have interacted with the cavity
field. We also discuss the possibility of applying these methods for decoherence control in quantum informa-
tion processing.@S1050-2947~98!11206-4#

PACS number~s!: 42.50.Lc, 03.65.Bz
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I. INTRODUCTION

Quantum optics is usually concerned with the genera
of nonclassical states of the electromagnetic field and t
experimental detection. However, with the recent ra
progress in the theory of quantum information processing
protection of quantum states and their quantum dynam
also is becoming a very important issue. In fact what ma
quantum information processing much more attractive t
its classical counterpart is its capability to use entang
states and of processing generic linear superpositions o
put states. The entanglement between a pair of system
capable of connecting two observers separated by a spac
interval, it can neither be copied nor eavesdropped on w
out disturbance, nor can it be used by itself to send a cla
cal message@1#. The possibility of using linear superpositio
states has given rise to quantum computation, which is
sentially equivalent to having massive parallel computat
@2#. However, all these applications crucially rely on the po
sibility of maintaining quantum coherence, that is, a defin
phase relationship between the different components of
ear superposition states, over long distances and for
times. This means that one has to minimize as much as
sible the effects of the interaction of the quantum syst
with its environment and, in particular,decoherence, i.e., the
rapid destruction of the phase relation between two quan
states of a system caused by the entanglement of these
states with two different states of the environment@3,4#.

Quantum optics is a natural candidate for the experim
tal implementation of quantum information processing s
tems, thanks to the recent achievements in the manipula
of single atoms, ions, and single cavity modes. In fact t
quantum gates have been already demonstrated@5,6# in
quantum optical systems and it would be very important
develop strategies capable ofcontrolling the decoherencein
experimental situations such as those described in R
@5,6#.

The possibility of an experimental control of decoheren
is important also from a more fundamental point of view.
fact decoherence is the practical explanation of why lin
571050-2947/98/57~6!/4930~15!/$15.00
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superposition of macroscopically distinguishable states,
states involved in the famous Schro¨dinger cat paradox@7#,
are never observed and how the classical macroscopic w
emerges from the quantum one@3#. In the case of macro-
scopic systems, the interaction with the environment c
never be escaped; since the decoherence rate is proport
to the ‘‘macroscopic separation’’ between the two sta
@3,8,9#, a linear superposition of macroscopically disti
guishable states is immediately changed into the corresp
ing statistical mixture, with no quantum coherence le
Nonetheless, a full comprehension of the fuzzy bound
between classical and quantum world is not yet reac
@10,11#, and therefore the study of ‘‘Schro¨dinger cat’’ states
in mesoscopicsystems where one can hope to observe
decoherence is important. A first achievement has been
tained by Monroeet al. @12#, who have prepared a trappe
9Be1 ion in a superposition of spatially separated coher
states and detected the quantum coherence between th
localized states. However, in this experiment the decoh
ence of the superposition state has not been studied.
progressive decoherence of a mesoscopic Schro¨dinger cat
has been observed for the first time in the experiment
Bruneet al. @13#, where the linear superposition of two co
herent states of the electromagnetic field in a cavity w
classically distinct phases has been generated and detec

In this paper we propose a simple physical way to con
decoherence and protect a given quantum state agains
destructive effects of the interaction with the environme
applying an appropriate feedback. We shall consider a ra
tion mode in a cavity as the quantum system to protect
we shall show that the ‘‘lifetime’’ of an initial quantum stat
can be significantly increased and its quantum cohere
properties preserved for quite a long time. The feedb
scheme considered here has a quantum nature, since
based on the injection of an appropriately prepared atom
the cavity and some preliminary aspects of the scheme,
its performance, have been described in Refs.@14,15#. The
present paper is a much more detailed description of
approach to quantum state protection and is organized
follows. In Sec. II, the main idea is presented and a conti
4930 © 1998 The American Physical Society
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57 4931QUANTUM-STATE PROTECTION IN CAVITIES
ous feedback scheme for optical cavities is studied. In S
III, a possible application of this continuous feedba
scheme to quantum information processing systems as
quantum phase gate of Ref.@5# is presented. In the remainin
sections, the stroboscopic version of the continuous feedb
scheme, more suited for the microwave cavity of the Bru
et al.experiment@13#, and introduced in@14#, is discussed in
detail.

II. A FEEDBACK LOOP FOR OPTICAL CAVITIES

Applying a feedback loop to a quantum system me
subjecting it to a series of measurements and then using
result of these measurements to modify the dynamics of
system. Very often the system is continuously monitored
the associated feedback scheme provides a continuous
trol of the quantum dynamics. An example is the measu
ment of an optical field mode, such as photodetection
homodyne measurements, and for these cases, Wisema
Milburn have developed a quantum theory of continuo
feedback@16#. This theory has been applied in Ref.@17# to
show that homodyne-mediated feedback can be used to
down the decoherence of a Schro¨dinger cat state in an optica
cavity.

Here we propose a different feedback scheme, base
direct photodetection rather than homodyne detection.
idea is very simple: whenever the cavity loses a photon
feedback loop supplies the cavity mode with another pho
through the injection of an appropriately prepared atom. T
kind of feedback is naturally suggested by the quantum
jectory picture of a decaying cavity field@18#, in which time
evolution is driven by the nonunitary evolution operat
exp$2gta†a/2% interrupted at random times by an instan
neous jump describing the loss of a photon. The propo
feedback almost instantaneously ‘‘cures’’ the effect of
quantum jump and is able therefore to minimize the destr
tive effects of dissipation on the quantum state of the ca
mode.

In more general terms, the application of a feedback lo
modifies the master equation of the system and therefore
equivalent to an effective modification of the dissipative e
vironment of the cavity field. For example, Ref.@19# shows
that a squeezed bath@20# can be simulated by the applicatio
of a feedback loop based on a quantum nondemoli
~QND! measurement of a quadrature of a cavity mode.
other words, feedback is the main tool for realizing, in t
optical domain, the so-called ‘‘quantum reservoir engine
ing’’ @21#.

The master equation for continuous feedback has b
derived by Wiseman and Milburn@16#, and, in the case o
perfect detection via a single loss source, is given by

ṙ5gF~ara†!2
g

2
a†ar2

g

2
ra†a, ~1!

whereg is the cavity decay rate andF(r) is a generic su-
peroperator describing the effect of the feedback atom on
cavity stater. Equation~1! assumes perfect detection, i.e
all the photons leaving the cavity are absorbed by a u
efficiency photodetector and trigger the cavity loop. It
practically impossible to realize such an ideal situation a
c.
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therefore it is more realistic to generalize this feedback m
ter equation to the situation where only a fractionh,1 of
the photons leaking out of the cavity is actually detected
switches on the atomic injector. It is immediate to see t
Eq. ~1! generalizes to

ṙ5hgF~ara†!1~12h!gara†2
g

2
a†ar2

g

2
ra†a.

~2!

Now, we have to determine the action of the feedba
atom on the cavity fieldF(r); this atom has to release ex
actly one photon in the cavity, possibly regardless of the fi
state in the cavity. In the optical domain this could be re
ized usingadiabatic transfer of Zeeman coherence@22#.

A. Adiabatic passage in a three-levelL atom

A scheme based on the adiabatic passage of an atom
Zeeman substructure through overlapping cavity and la
fields has been proposed@22# for the generation of linea
superpositions of Fock states in optical cavities. This te
nique allows for coherent superpositions of atomic grou
state Zeeman sublevels to be ‘‘mapped’’ directly onto coh
ent superpositions of cavity-mode number states. If
applies this scheme in the simplest case of a three-leveL
atom one obtains just the feedback superoperator we
looking for, that is,

F~r!5a†~aa†!21/2r~aa†!21/2a, ~3!

corresponding to the feedback atom releasing exactly
photon into the cavity, regardless the state of the field.

To see this, let us consider a three-levelL atom with two
ground statesug1& and ug2&, coupled to the excited stateue&
via, respectively, a classical laser fieldV(t) of frequency
vL , and a cavity field mode of frequencyv. The corre-
sponding Hamiltonian is

H~ t !5\va†a1\vegue&^eu2 i\g~ t !~ ue&^g2ua2ug2&^eua†!

1 i\V~ t !~ ue&^g1ue2 ivLt2ug1&^eueivLt!. ~4!

The time dependence ofV(t) and g(t) is provided by the
motion of the atom across the laser and cavity profiles. T
Hamiltonian couples only states within the three-dimensio
manifold spanned byug1 ,n&, ue,n&, ug2 ,n11&, wheren de-
notes a Fock state of the cavity mode. Of particular inte
within this manifold is the eigenstate corresponding to
adiabatic energy eigenvalue~in the frame rotating at the fre
quencyv) En5n\v,

uEn~ t !&5
g~ t !An11ug1 ,n&1V~ t !ug2 ,n11&

AV2~ t !1~n11!g2~ t !
, ~5!

which does not contain any contribution from the excit
state and for this reason is called the ‘‘dark state.’’ T
eigenstate exhibits the following asymptotic behavior a
function of time

uEn&→H ug1 ,n& for V~ t !/g~ t !→0,

ug2 ,n11& for g~ t !/V~ t !→0. ~6!
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Now, according to the adiabatic theorem@23#, when the evo-
lution from time t0 to time t1 is sufficiently slow, a system
starting from an eigenstate ofH(t0) will pass into the corre-
sponding eigenstate ofH(t1) that derives from it by conti-
nuity. This means that if the atom crossing is such that a
baticity is satisfied, when the atom enters the interact
region in the ground stateug1&, the following adiabatic trans
formation of the atom-cavity system state takes place:

ug1&^g1u ^ (
n,m

rn,mun&^mu

→ug2&^g2u ^ (
n,m

rn,mun11&^m11u

5ug2&^g2u ^ a†~aa†!21/2r~aa†!21/2a. ~7!

Roughly speaking, this transformation amounts to a sing
photon transfer from the classical laser field to the quanti
cavity mode realized by the crossing atom, provided tha
counterintuitive pulse sequence in which the classical la
field V(t) is time delayed with respect tog(t) is applied.
Figure 1 shows a simple diagram of the feedback sche
together with the appropriate atomic configuration, cav
and laser field profiles needed for the adiabatic transfor
tion considered.

The quantitative conditions under which adiabaticity
satisfied are obtained from the requirement that the trans
from the dark stateuEn(t)& to the other states be very sma
One obtains@22,24#

Vmax,gmax@Tcross
21 , ~8!

whereTcrossis the cavity crossing time andVmax,gmax are the
two peak intensities.

The above arguments completely neglect dissipative
fects due to cavity losses and atomic spontaneous emis
For example, cavity dissipation couples a given manif

FIG. 1. Schematic diagram of the photodetection-mediated fe
back scheme proposed for optical cavities, together with the ap
priate atomic configuration for the adiabatic transfer.
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ug1 ,n&, ue,n&, ug2 ,n11& with those with a smaller numbe
of photons. Since ideal adiabatic transfer occurs when
passage involves a single manifold, optimization is obtain
when the photon leakage through the cavity is negligi
during the atomic crossing, that is,

Tcross
21 @n̄g, ~9!

where n̄ is mean number of photons in the cavity. On t
contrary, the technique of adiabatic passage is robust ag
the effects of spontaneous emission as, in principle, the
cited atomic stateue& is never populated. Of course, in pra
tice some fraction of the population does reach the exc
state and hence large values ofgmax andVmax relative to the
spontaneous emission ratege are desirable. To summarize
the quantitative conditions for a practical realization of t
adiabatic transformation~7! are

Vmax,gmax@Tcross
21 @n̄g,ge , ~10!

which, as pointed out in@22#, could be realized in optica
cavity QED experiments.

We note that when the adiabaticity conditions~10! are
satisfied, then also the Markovian assumptions at the bas
the feedback master equation~2! are automatically justified.
In fact, the continuous feedback theory of Ref.@16# is a
Markovian theory derived assuming that the delay time
sociated to the feedback loop can be neglected with res
to the typical time scale of the cavity mode dynamics. In t
present scheme the feedback delay time is due to the e
tronic transmission time of the detection signal and, m
importantly, by the interaction timeTcrossof the atoms with
the field, while the typical time scale of the cavity field d
namics is 1/gn̄. Therefore, the inequality on the right of Eq
~10! is essentially the condition for the validity of the Ma
kovian approximation and thisa posteriori justifies our use
of the Markovian feedback master equation~2! from the be-
ginning.

B. Properties of the adiabatic transfer feedback model

When we insert the explicit expression~3! of the feedback
superoperator into Eq.~2!, the feedback master equation ca
be rewritten in the more transparent form

ṙ5
~12h!g

2
~2ara†2a†ar2ra†a!2

hg

2
†
An̂,@An̂,r#‡

~11!

that is, a standard vacuum bath master equation with ef
tive damping coefficient (12h)g plus an unconventiona
phase diffusion term, in which the photon number operato
replaced by its square root and which can be called ‘‘squ
root of phase diffusion.’’

In the ideal caseh51, vacuum damping vanishes an
only the unconventional phase diffusion survives. As sho
in Ref. @25#, this is equivalent to say that ideal photodete
tion feedback is able to transform standard photodetec
into a quantum nondemolition~QND! measurement of the
photon number. In this ideal case, a generic Fock stateun& is
obviously preserved for an infinite time, since each pho
lost by the cavity triggers the feedback loop, which, in

d-
o-
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57 4933QUANTUM-STATE PROTECTION IN CAVITIES
negligible time, is able to give the photon back through ad
batic transfer. However, the photon injected by feedback
no phase relationship with the photons already present in
cavity and, as shown by Eq.~11!, this results in phase diffu
sion. An alternative description of this phenomenon is t
the photon injection process is essentially a nonlinear n
ber amplifier that is necessarily accompanied by diffusion
the conjugate variable@26#. This means that feedback doe
not guarantee perfect state protection for a genericsuperpo-
sition of number states, even in the ideal conditionh51. In
fact in this case, only the diagonal matrix elements in
Fock basis of the initial pure state are perfectly conserv
while the off-diagonal ones always decay to zero, ultimat
leading to a phase-invariant state. However, this does
mean that the proposed feedback scheme is good for pre
ing number states only, because the unconventional ‘‘squ
root of phase diffusion’’ is much slower than the conve
tional one ~described by a double commutator with th
number operator!.

In fact the time evolution of a generic density matrix e
ement in the case of feedback with ideal photodetectionh
51 is

rn,m~ t !5expH 2
gt

2
~An2Am!2J rn,m~0!, ~12!
q.
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while the corresponding evolution in the presence of st
dard phase diffusion is

rn,m~ t !5expH 2
gt

2
~n2m!2J rn,m~0!. ~13!

Since

~n2m!2>~An2Am!25
~n2m!2

~An1Am!2
;n,m ~14!

each off-diagonal matrix element decays slower in
square-root case and this means that the feedback-ind
unconventional phase diffusion is slower than the conv
tional one.

A semiclassical estimation of the diffusion constant c
be obtained from the representation of the master equatio
terms of the Wigner function. When a generic state is
panded in the Fock basis as

r5(
n,m

rn,mun&^mu, ~15!

the corresponding Wigner function is given by@27# ~in polar
coordinatesr ,u)
W~r ,u!5(
n

rn,n

2

p
~21!ne22r 2

Ln~4r 2!12 ReH (
nÞm

rn,m

2

p
~21!nAn!

m!
eiu~m2n!~2r !m2ne22r 2

Ln
m2n~4r 2!J , ~16!

whereLn
m2n are the generalized Laguerre polynomials and using this expression it is easy to see that

2†n,@n,r#‡↔
]2

]u2
W~r ,u!. ~17!

In the case of the square root of phase diffusion, one has instead

2†An,@An,r#‡↔2 ReH (
nÞm

rn,m

2

p
~21!nAn!

m!
~An2Am!2eiu~m2n!~2r !m2ne22r 2

Ln
m2n~4r 2!J ; ~18!
ate

tor
using Eq.~14! and considering the semiclassical limitn,m
@1, n;m;n̄@1, wheren̄ is the mean photon number, E
~18! can be simplified to

2†An,@An,r#‡↔
1

4n̄

]2

]u2
W~r ,u!, ~19!

showing that~at least at large photon number! in the case of
the feedback-induced unconventional phase diffusion,
diffusion constant is scaled by a factor 4n̄@1.

A complementary description of the feedback-induc
phase diffusion can be given by the time evolution of t
mean coherent amplitudêa(t)&. In fact, phase diffusion
causes a decay of this amplitude as the phase spreads a
2p, even if the photon number is conserved. In the prese
e

d

und
ce

of ordinary phase diffusion the amplitude decays at the r
g/2; in fact,

^a~ t !&5Tr$ar~ t !%5 (
n50

`

An11rn11,n~ t !, ~20!

and using Eq.~13! one gets

^a~ t !&5e2gt/2^a~0!&.

In the case of the square root of phase diffusion, Eqs.~12!
and ~20! instead yield

^a~ t !&5Tr$a~ t !r~0!%, ~21!

where the Heisenberg-like time evolved amplitude opera
a(t) is given by
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4934 57D. VITALI, P. TOMBESI, AND G. J. MILBURN
a~ t !5expH 2
gt

2
~Aaa†2Aa†a!2J a. ~22!

In the semiclassical limit it is reasonable to assume
complete factorization of averages~21!, so to get

^a~ t !&5expH 2
gt

2
~An̄112An̄!2J ^a~0!&, ~23!

which, in the limit of large mean photon numbern̄, yields a
result analogous to that of Eq.~19!:

^a~ t !&5expH 2
gt

8n̄
J ^a~0!&. ~24!

This slowing down of phase diffusion~similar to that taking
place in a laser well above threshold! means that, when the
feedback efficiencyh is not too low, the ‘‘lifetime’’ of ge-
neric pure quantum states of the cavity field can be sign
cantly increased with respect to the standard case with
feedback@see Eq.~11!#.

C. Description of the dynamics in the presence of feedback

For a quantitative characterization of how the feedba
scheme is able to protect an initial pure state we study
fidelity F(t),

F~ t !5Tr$r~0!r~ t !%, ~25!

i.e., the overlap between the final and the initial stater(0)
after a timet. In general 0<F(t)<1. For an initially pure
stateuc(0)&, F(t) is in fact the probability to find the system
in the initial state at a later time. A decay to an asympto
limit is given by the overlap̂c(0)ur(`)uc(0)&.

A clear demonstration of the protection capabilities of t
proposed feedback scheme is given when considering
preservation of initial Schro¨dinger cat state, i.e., the typica
example of nonclassical state whose oscillating and nonp
tive definite Wigner function is a clear signature of quantu
coherence@3#. In fact, if the initial state is an even (1) or
odd (2) Schrödinger cat state

ua6&5N6~ ua&6u2a&) ~26!

where

FIG. 2. Time evolution of the fidelityF(t) for an initial odd cat
state with uau255; full line, h51; dotted line,h50.75; small
dashes,h50.5; big dashes,h50.25; dot-dashed line, evolution i
the absence of feedback (h50).
a

-
o

k
e

c

he

si-

N6
2252~16e22uau2!, ~27!

the corresponding fidelityF(t) in the absence of feedbac
@h50 in Eq. ~11!# is given by

F6~ t !5
11e22uau2~12e2gt!

2
e2uau2~12e2gt/2!2

3S 16e22uau2e2gt/2

16e22uau2 D 2

. ~28!

The corresponding functionF(t) in the presence of feed
back can be easily obtained from the numerical solution
the master equation~11! and using the general expression

F~ t !5(
n,m

rn,m* ~0!rn,m~ t !. ~29!

The numerical results~Fig. 2! show thatF(t) in the presence
of feedback is, at any time, significantly larger than the c
responding function in the absence of feedback, even w
the photodetection efficiencyh is far from the ideal value

FIG. 3. ~a! Wigner function of the initial odd cat state,uc&
5N2(ua&2u2a&), uau255; ~b! Wigner function of the same ca
state evolved for a timet50.2/g (t52tdec), in the presence of
feedback (h51); ~c! Wigner function of the same state after a tim
t50.2/g, but evolved in the absence of feedback.
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57 4935QUANTUM-STATE PROTECTION IN CAVITIES
h51. Figure 2 refers to an initial odd cat state witha
5A5; the full line refers to the feedback model in the ide
case h51; the dotted line to the feedback case withh
50.75, small dashes refer to the caseh50.5; big dashes
refer toh50.25 and the dot-dashed line to the evolution
the absence of feedback (h50). As expected, the preserva
tion properties of the proposed scheme worsen as the ph
detection efficiencyh is decreased. Nonetheless, Fig.
clearly shows how this photodetection-mediated feedback
creases the ‘‘lifetime’’ of a generic pure state in the cavity,
the sense that the probability of finding the initial state at a
time t is larger than the corresponding probability in absen
of feedback.

A qualitative confirmation of how well an initial odd ca
state witha5A5 is protected by feedback is given by Fig.
~a! shows the Wigner function of the initial cat state,~b! the
Wigner function of the same cat state evolved for a timt
50.2/g in the presence of feedback (h51), and ~c! the
Wigner function of the same state again after a timet
50.2/g, but evolved in the absence of feedback. T
elapsed time is twice the decoherence time of the Sc¨-
dinger cat state,tdec5(2guau2)21 @8,9#, i.e., the lifetime of
the interference terms in the cat state density matrix in
presence of the usual vacuum damping. As shown by~c!,
this means that after this short time the cat state has alre
lost the oscillating part of the Wigner function associat
with quantum interference and has become a statistical m
ture of two coherent states. This is no longer true in
presence of our feedback scheme:~b! shows that, aftert
;2tdec, the state is almost indistinguishable from the init
one and that the quantum wiggles of the Wigner function
still well visible. The capability of the feedback scheme
preserving the quantum coherence of the initial cat state
quite a long time is shown also by Fig. 4, in which th

FIG. 4. Wigner function of the odd cat state of Fig. 3, evolv
for a timet51/g in the presence of ideal feedbackh51 ~a!, and in
the absence of feedback~b!.
l

to-

n-

y
e

o

e

dy

x-
e

l
e
f
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Wigner function both in the presence (h51) ~a! and in the
absence of feedback~b! of the initial odd cat state of Fig. 3
evolved after one relaxation timet5g21 is shown. In the
presence of feedback the oscillating part between the
peaks is still visible, even if the state begins to be distor
with respect to the initial one because of the action of
unconventional phase diffusion which makes it mo
‘‘rounded.’’

Another clear example of how the quantum coheren
associated to nonclassical superposition states of the ra
tion field inside the cavity is well preserved by the feedba
scheme based on the adiabatic passage, is given by the
of the evolution of linear superpositions of two Fock numb
states

uc~0!&5aun&1bum&. ~30!

These states have not been experimentally generated in
tical cavities yet, but there are now a number of proposals
their generation@28,29#. In this caseF(t) can be easily
evaluated analytically (m.n)

F~ t !5uau4e2n~12h!gt1ubu4e2m~12h!gt

12uau2ubu2e2gt[ ~m1n!/22hAnm]

1uau2ubu2e2n~12h!gt~12e2~12h!gt!m2n
m!

~m2n!!n!

~31!

and when this expression is plotted for different values oh
and compared with that in the absence of feedback (h50),
we see, as in Fig. 2, a significant increase of the ‘‘lifetime
of the state~30!. This comparison is shown in Fig. 5, whic
refers to the initial state (u2&1A2u4&)/A3 and where the
notation is as in Fig. 2: the full line refers to the feedba
model in the ideal caseh51; the dotted line refers to the
feedback case withh50.75, small dashes refer to the ca
h50.5; big dashes refer toh50.25 and the dot-dashed lin
refers to the evolution in absence of feedback (h50).

FIG. 5. Time evolution of the fidelityF(t) for the initial super-
position state of two Fock states (u2&121/2u4&)/31/2; full line, h
51; dotted line,h50.75; small dashes,h50.5; big dashes,h
50.25; dot-dashed line, evolution in the absence of feedbackh
50).
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III. OPTICAL FEEDBACK SCHEME
FOR THE PROTECTION OF QUANTUM BITS

Photon states are known to retain their phase cohere
over considerable distances and for long times and for
reason high-Q optical cavities have been proposed as
promising example for the realization of simple quantum c
cuits for quantum information processing. To act as an inf
mation carrying quantum state, the electromagnetic fie
must consist of a superposition of few distinguishable sta
The most straightforward choice is to consider the super
sition of the vacuum and the one photon stateau0&1bu1&.
However, it is easy to understand that this is not conven
because any interaction couplingu0& and u1& also couples
u1& with states with more photons and this leads to inform
tion losses. Moreover the vacuum state is not easy to obs
because it cannot be distinguished from a failed detectio
the one photon state. A more convenient and natural ch
is polarization coding, i.e., using two degenerate polarize
modes and quantum bits~qubits! of the following form:

uc&5~aa1
† 1ba2

† !u0&5au0,1&1bu1,0&, ~32!

in which one photon is shared by the two modes@30#. In fact,
this is a ‘‘natural’’ two-state system, in which the two bas
states can be easily distinguished with polarization meas
ments; moreover they can be easily transformed into e
other using polarizers. Polarization coding has been alre
employed in one of the few experimental realization o
quantum gate, the quantum phase gate realized by Turc
et al. @5#. This experiment has demonstrated conditio
quantum dynamics between two frequency-distinct fields
high-finesse optical cavity. The implementation of this g
employs two single-photon pulses with frequency separa
large compared to the individual bandwidth, and whose
ternal state is specified by the circular polarization basis a
Eq. ~32!. The conditional dynamics between the two fields
obtained through an effective strong Kerr-type nonlinea
provided by a beam of cesium atoms.

In the preceding section we have shown that the propo
feedback scheme is able to increase the ‘‘lifetime’’ of line
superpositions of Fock states. Therefore it is quite natura
look if our scheme can be used to protect qubits like thos
Turchetteet al.’s experiment, against the destructive effec
of cavity damping. To be more specific, here we shall not
concerned with the protection of the quantum gate dynam
but we shall focus on a simpler but still important proble
protecting an unknown input state for the longest poss
time against decoherence. For this reason we shall not
sider the two interacting fields, but a single frequency mo
with a generic polarization, i.e., a single qubit. We shall co
sider a class of initial states more general than those of
~32!, i.e.,

uc&5aun,m&1bum,n&, ~33!

wherem1n photons are shared by the two polarized mod
If we want to apply the adiabatic transfer feedba

scheme described above for protecting qubits as those o
~33!, one has to consider a feedback loop as that of Fig. 1
each polarized mode. This can be done using polarizat
sensitive detectors that electronically control the polarizat
ce
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of the classical laser field and the initial state of the injec
atoms. In fact one has to release in the cavity a left or ri
circularly polarized photon depending on which detector h
fired and this can be easily achieved when theug1&→ue& and
ug2&→ue& transitions are characterized by opposite angu
momentum differenceDmJ561. In this case a left polar-
ized photon, for example, is given back to the cavity with t
adiabatic transitionug1&→ug2& of Fig. 1, while the right po-
larized one is released into the cavity through the rever
adiabatic transitionug2&→ug1& and the two possibilities are
controlled by the polarization-sensitive detectors.

Since the input state we seek to protect is unknown,
protection capabilities of the feedback scheme are be
characterized by the minimum fidelity, i.e., the fidelity of E
~25! minimized over all possible initial states. This minimu
fidelity can be easily evaluated by solving the master eq
tion ~11! for each polarized mode and one gets the followi
expression:

Fmin~ t !5 1
2 ~e2~12h!gt~n1m!1e2gt~n1m22hAnm!!. ~34!

In the absence of feedback (h50), this expression be
comesFmin(t)5exp$2gt(n1m)% showing that in this case
the states most robust against cavity damping are those
the smallest number of photons,m1n51, i.e., the states o
the form of Eq.~32!. Moreover, in a typical quantum infor
mation processing situation, one has to consider small q
‘‘storage’’ times t with respect tog21 so as to have reason
ably small error probabilities in quantum information sto
age. Therefore the protection capability of an optical cav
with no feedback applied is described by

Fmin~ t !512gt. ~35!

If we now consider the situation in the presence of fee
back@Eq. ~34!#, the best protected states for a given nonz
efficiencyh may be different from the states with only on
photon,au0,1&1bu1,0&, and they depend upon the explic
value of the feedback efficiencyh. For the determination of
the optimal qubit of the form of~33! ~i.e., the optimal values
for m and n), one has to minimize the deviation from th
perfect protection conditionF(t)51. Forgt!1 one gets

min
mÞn

@~22h!~n1m!22hAnm#

5min
mÞn

@~Am2An!21~12h!~Am1An!2#

5 min
n>0, p>1

F p2

~An1p1An!2
1~12h!~An1p1An!2G ,

~36!

wherep5m2n. From these expression it can be easily se
that one has to choosep51, and therefore the optimal qubit
are those of the form

uc&5aunopt,nopt11&1bunopt11,nopt&, ~37!

wherenopt is determined by the minimization condition
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min
n>0

F 1

~An111An!2
1~12h!~An111An!2G . ~38!

As long as

h<2/~11A2!.0.83, ~39!

one hasnopt50 and therefore the situation is similar to th
of the no-feedback case: the states of the form~32! are the
best protected states and the corresponding minimum fid
is given by

Fmin~ t !5
1

2
~e2~12h!gt1e2gt!.12gtS 12

h

2 D . ~40!

In this case, feedback leads to a very poor qubit protec
with respect to the no-feedback case and therefore
scheme proves to be practically useless for the protectio
single photon qubits of Eq.~32! employed in the Caltech
experiment of Ref.@5#.

However, when the feedback efficiencyh becomes larger
than 0.83, the situation can improve considerably. In factnopt
becomes nonzero and can become very large in the limh
→1, and in this case the minimum fidelity decays ve
slowly. To be more specific,nopt is approximately given by
the condition

~Anopt111Anopt!
25~12h!21/2 ~41!

and the corresponding small time behavior ofFmin(t) is given
by

Fmin~ t !.12
gt

~Anopt111Anopt!
2

.12gtA12h. ~42!

This means that in the limit of a feedback efficiency ve
close to one, it becomes convenient to work with a la
number of photons per mode, since in this limit the proba
ity of errors in the storage of quantum information can
made very small. This can be easily understood from
~11!, because in this limit the square-root of the phase dif
sion term prevails in the master equation and its quan
state protection capabilities improve for increasing pho
number@see Eq.~24!#. In the ideal caseh51, nopt becomes
infinite and therefore the minimum fidelity can remain ar
trarily close to one. It is convenient to work with the large
possible number of photons, that is,

uc&5aun,n11&1bun11,n&, n@1 ~43!

and the corresponding minimum fidelity is

Fmin~ t !.
1

2
~11e2gt/4n!.12

gt

8n
.

The feedback method proposed here to deal with deco
ence in quantum information processing is different fro
most of the proposals made in this research field, which
based on the so-called quantum error correction codes@31#,
which are a way to usesoftwareto preserve linear superpo
ity
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sition states. In our case, feedback allows a physical con
of decoherence, through a continuous monitoring and ev
tual correction of the dynamics and in this sense our
proach is similar in spirit to the approach of Refs.@32,33#.
The present feedback scheme is not very useful in the cas
one-photon qubits~32! of the quantum phase gate expe
ment of Ref.@5#; however, it predicts a very good decohe
ence control in the case of high feedback efficien
h.0.83 and for larger photon numbers@see Eq.~37!#. It is
very difficult to achieve these experimental conditions w
the present technology, but our scheme could become
promising in the future.

IV. A FEEDBACK SCHEME FOR MICROWAVE
CAVITIES

In the case of measurements of an optical field mo
such as photodetection and homodyne measurements
system iscontinuouslymeasured and in these cases apply
a feedback loop can be quite effective in controlling the d
coherence of an optical Schro¨dinger cat. It is therefore quite
natural to see if a similar control of decoherence can
achieved in the only~up to now! experimental generation
and detection of Schro¨dinger cat states of a radiation mod
the experiment of Bruneet al. @13#. However, in this experi-
ment, it is not possible to monitor continuously the state
the radiation in the cavity, since the involved field is in th
microwave range and there are not good enough detecto
this wavelength region. The detection of the cat state is
tained through measurements performed on a second p
atom crossing the cavity after a delay timeT and that pro-
vides a sort of impulsive measurements of the cavity fi
state.

This suggests that in this microwave case, continu
measurement can be replaced at best by a series ofrepeated
measurements, performed by off-resonance atoms cros
the high-Q microwave cavity one by one with a time interv
T. As a consequence, one could try to apply a sort of ‘‘d
crete’’ feedback scheme modifying in a ‘‘stroboscopic’’ wa
the cavity field dynamics according to the result of t
atomic detection.

A. Simplified description of the experiment of Bruneet al.

In Ref. @13#, a Schro¨dinger cat state for the microwav
field in a superconducting cavityC has been generated usin
circular Rydberg atoms crossing the cavity in which a coh
ent state has been previously injected. All the atoms have
appropriately selected velocity and the relevant levels
two adjacent circular Rydberg states with principal quant
numbersn550 andn551, which we denote asug& and ue&,
respectively. These two states have a very long lifetime
ms! and a very strong coupling to the radiation and the ato
are initially prepared in the stateue&. The high-Q supercon-
ducting cavity is sandwiched between two low-Q cavitiesR1
and R2, in which classical microwave fields can be appli
and that are resonant with the transition between the stateue&
and the nearby lower circular stateug&. The intensity of the
field in the first cavityR1 is then chosen so that, for th
selected atom velocity, ap/2 pulse is applied to the atom a
it crossesR1. As a consequence, the atomic state before
tering the cavityC is
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4938 57D. VITALI, P. TOMBESI, AND G. J. MILBURN
ucatom&5
1

A2
~ ue&1ug&). ~44!

The high-Q cavity C is slightly off-resonant with respec
to thee→ g transition, with detuning

d5v2veg , ~45!

where v is the cavity mode frequency andveg5(Ee
2Eg)/\. The Hamiltonian of the atom-microwave cavi
mode system is the usual Jaynes-Cummings Hamilton
given by

HJC5Eeue&^eu1Egug&^gu1\va†a

1\V~ ue&^gua1ug&^eua†!, ~46!

whereV is the vacuum Rabi coupling between the atom
dipole on thee→ g transition and the cavity mode. In th
off-resonant case and perturbative limitV!d, the atom and
the field essentially do not exchange energy but only unde
dispersive frequency shifts depending on the atomic le
@34,35#, and the Hamiltonian~46! becomes equivalent to

Hdisp5Eeue&^eu1Egug&^gu1\va†a

1\
V2

d
~ ug&^gua†a2ue&^euaa†!

5S Ee2\
V2

d D ue&^eu1Egug&^gu

1\S v1
V2

d Da†a22\
V2

d
ue&^eua†a. ~47!

This means that in this dispersive limit, besides a negligi
shift of the cavity frequency and of thee level energy, the
atom-field interaction induces a phase shiftf52V2t int /d
when the atom is in the statee, while there is no shift when
the atom is in the stateg (t int is the interaction time!. There-
fore, using Eq.~44!, the state of the atom-field system whe
the atom has just exited the cavityC is the entangled state

ucatom1field&5
1

A2
~ ue,aeif&1ug,a&), ~48!

where a denotes the coherent state initially present with
the cavity. In the experiment of Ref.@13#, different values of
the phase shiftf have been considered; however, we sh
restrict from now on to the casef5p, which corresponds to
the generation of a linear superposition of two coher
states withoppositephases.

In the state~48!, each atomic state is correlated to a d
ferent field phase; for the generation of a cat state, howe
one has to correlate each atomic state to asuperpositionof
coherent states with different phases, and this is achieve
submitting the atom to a secondp/2 pulse in the second
microwave cavityR2. The p/2 pulse yields the following
transformation:
n,

o
el

e

ll

t

r,

by

ue&→
1

A2
~ ue&1ug&),

~49!

ug&→
1

A2
~2ue&1ug&),

so that the state~48! becomes

ucatom1field8 &5
1

A2
~N2

21ue&ua2&1N1
21ug&ua1&), ~50!

where ua6& are the even (1) or odd (2) Schrödinger cat
states defined in Eq.~26! and N6 are defined in Eq.~27!.
Equation~50! shows that an even or an odd coherent stat
conditionally generated in the cavity according to whether
not the atom is detected in the levelug& or ue&, respectively.

After generation, the Schro¨dinger cat state undergoes
vary fast decoherence process@8,9#, that is, a fast decay o
interference terms, caused by the inevitable presence of
sipation in the superconducting cavity. In fact the dissipat
time evolution of the generated cat state is described by
following density matrix:

r~ t !5
1

N6
2 @ uae2gt/2&^ae2gt/2u1u2ae2gt/2&^2ae2gt/2u

6e22uau2~12e2gt!~ u2ae2gt/2&^ae2gt/2u

1uae2gt/2&^2ae2gt/2u!#, ~51!

whereg is the cavity decay rate and where the plus~minus!
sign corresponds to the even~odd! coherent state. Decoher
ence is governed by the factor exp@22uau2(12e2gt)#, which
for gt!1 becomes exp@22uau2gt#, implying therefore that
the interference terms decay to zero with a lifetimetdec
5(2guau2)21.

The relevance of the experiment of Bruneet al. @13# lies
in the fact that this progressive decoherence of the cat s
has been observed for the first time and the theoretical
diction checked with no fitting parameters. This monitori
of decoherence has been obtained by sending a second
through the same arrangements of cavities. The atom
exactly the same velocity of the first atom generating the
and is sent through the cavities after a time delayT, which is
much larger than the time of flight of the atom through t
whole system~which is of the order of 1025 s in the experi-
ment!. The state of the system composed by the second a
and the microwave field undergoes the same transforma
described above for the first Rydberg atom, i.e.,

ratom1field5Up/2e
ipa†aue&^euUp/2„r~T! ^ ue&^eu…

3Up/2
† e2 ipa†aue&^euUp/2

† , ~52!

whereUp/2 describes thep/2 pulse andr(T) is the cavity
field at a timeT after the passage of the first atom and it
given by Eq.~51!.
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57 4939QUANTUM-STATE PROTECTION IN CAVITIES
Using Eq. ~49! one finally gets the state of the prob
atom1field system just before the field ionization detecto
for the measurement of thee or g atomic state, that is,

ratom1field5ue&^eu ^ re1ug&^gu ^ rg1ue&^gu ^ r1

1ug&^eu ^ r2 , ~53!

where

rg
e
5 1

4 @PrP1r6Pr6rP#, ~54!

r65 1
4 @PrP2r6Pr7rP#, ~55!

and

P5e6 ipa†a ~56!

is the parity operator of the microwave cavity mode. Fro
these expressions, the probability of detecting the sec
atom in thee or g state is readily obtained:

Pg/e5 1
2 ~16^P&!, ~57!

where^P& is the mean value of the parity of the cavity mo
stater(T). If one inserts in~57! the explicit expression o
r(T) given by ~51!, one gets the four conditional probabil
ties Pi j ( i , j 5e or g), of detecting the second atom in th
statej after detecting the first atom in the statei and which
give a satisfactory description of the decoherence proces
the cat state in the cavity@36#. Let us consider, for example
the case of two successive detections of the circular Rydb
statee: in this case the detection of the first atom projects
microwave field in the superconducting cavity in an odd c
herent state and the corresponding conditional probabilit
given by

Pee~T!5
1

2F12
e22uau2e2gT

2e22uau2~12e2gT!

12e22uau2 G . ~58!

The dependence of this conditional probability upon
time delay between the two atom crossings gives a c
description of the cat state decoherence. In fact, if there is
dissipation in the cavity, i.e.,gT50, it is Pee51 and this
perfect correlation between the atomic state and the ca
state is the experimental signature of the presence of an
coherent state in the high-Q cavity. As long asgÞ0, the
conditional probability decreases for increasing delay timeT.
At a first stage one has a decay to the valuePee51/2 in the
decoherence timetdec51/2guau2; this is the decoherenc
process itself, that is, the fast transition from the quant
linear superposition state to the statistical mixture

rmixt5
1
2 @ ua&^au1u2a&^2au# ~59!

describing aclassical superposition of fields with opposit
phases. At larger delaysT, the plateauPee51/2 turns to a
slow decay to zero because the two coherent states o
mixture both tend to the vacuum state and start to over
due to field energy dissipation@36#.

This conditional probability decay can be experimenta
reconstructed by sending a large number of atom pairs
each delay timeT, obtaining therefore a clear observation
nd

of
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the decoherence phenomenon in its time development. A
ally, in Ref. @13#, the experimental demonstration of dec
herence has been given by considering not simplyPee but
the difference between conditional probabilitiesh5Pee
2Pge .

V. THE STROBOSCOPIC FEEDBACK MODEL

We now propose a modification of the experiment
Bruneet al. @13# in which the cat decoherence is not simp
monitored but also controlled in an active way. The idea is
apply the same feedback scheme described above for op
cavities, which gives a photon back to the cavity whene
the photodetector clicks. However, in this microwave ca
one has to find a different way to determine if the cav
mode has lost a photon or not, because there are no g
photodetectors available in this wavelength region. Re
ence@13# suggests using off-resonant atoms crossing the c
ity to measure the cavity field and therefore in this case
could replace continuous photodetection with a strobosco
measurement performed by a sequence of off-resonant p
atoms, separated by a time intervalT. A sort of indirect
microwave photodetection can be obtained by using the
that, as suggested by Eq.~57!, the detection of thee or g
atomic level is equivalent to the measurement of the parity
the cavity mode state. In fact, Eq.~54! for the conditioned
cavity mode density matricesrg/e can be rewritten in the
following way

re5PoddrPodd ~60!

rg5PevenrPeven, ~61!

wherePodd (Peven) is the projector onto the subspace with
odd~even! number of photons and therefore finding the ato
in the statee (g) means measuring a parityP521 (P5
11) for the state of the microwave mode within the cav
C.

To fix the ideas, let us consider from now on the ca
when the cat state generated by the first off-resonant ato
an odd coherent state~first atom detected ine). When a
second probe atom crosses the cavities arrangement af
time intervalT and is detected ine, it means that the cavity
mode state has remained in the odd subspace, or, eq
lently, that the cavity has lost anevennumber of photons. If
the time intervalT is much smaller than the cavity deca
time g21, gT!1, then the probability of losing two or mor
photons is negligible and one can say that finding the stae
means that no photon has leaked out from the high-Q cavity
C. On the contrary, when the probe atom is detected ing, the
cavity mode state is projected into the even subspace and
is equivalent to saying that the cavity has lost anoddnumber
of photons. Again, in the limit of a sufficiently closel
spaced sequence of probe atoms,gT!1, the probability of
losing three or more photons is negligible and therefore fi
ing the levelg means that one photon has exited the cav

Therefore, for achieving a good protection of the initi
odd cat state, the feedback loop has to supply the super
ducting cavity with a photon whenever the probe atom
detected ing, while feedback must not act when the atom
detected in thee state. This feedback loop can be realiz
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4940 57D. VITALI, P. TOMBESI, AND G. J. MILBURN
with a switch connecting theg state field-ionization detecto
with another atom injector, sending an atom in the exci
statee into the high-Q cavity. This feedback atom has to b
resonant with the radiation mode in the superconducti
cavity and this can be obtained with another switch turn
on an electric field in the cavityC when the atom enters it, s
that the levele is Stark shifted into resonance with the cav
mode. A schematic representation of the experimental ap
ratus of Ref.@13# together with the feedback loop is given
Fig. 6.

The time evolution of the microwave field in the high-Q
cavity can be described stroboscopically by the transfor
tion from the state just before the crossing ofnth nonreso-
nant probe atomr(nT), to the state of the radiation mod
before the next nonresonant atom crossingr(nT1T). This
transformation is given by the composition of two success
mappings:

r~nT1T!5F„r~nT!…5Fdiss@F fb„r~nT!…#, ~62!

where F fb describes the effect of the interaction with th
nonresonant atom followed by the effect of the reson
feedback atom, which interacts with the cavity field or n
according to the result of the measurement performed on
off-resonant atoms. The operationFdiss describes instead th
dissipative evolution of the field mode during the time inte
val T between two successive atom injections and it is ch
acterized by the energy relaxation rateg.

FIG. 6. Schematic diagram of the stroboscopic feedback sch
for the experiment of Bruneet al. R1 andR2 are the two cavities in
which classical microwave pulses can be applied. The feedb
loop acts whenever theg-state detector clicks and it switches o
both the atomic injector and the electric field in the high-Q cavity to
Stark shift the levele into resonance.
d

g

a-

a-

e

t
t
he

-
r-

The feedback mechanism acts only on the density ma
rg , conditioned to the detection of levelg and is described
by the resonant interaction part of the Hamiltonian~46!:

Hr5\V~ ue&^gua1ug&^eua†!; ~63!

the effect on the cavity mode density matrixr is then given
by ~the feedback atoms are not detected after exiting
microwave cavityC)

r85TratHexpH 2
i

\
HrtJ ~ ue&^eu ^ r!expH i

\
HrtJ J,

~64!

wheret is the interaction time of the feedback atom. Pe
forming the trace, one gets

r85cos~mAaa†!r cos~mAaa†!

1a†~aa†!21/2 sin~mAaa†!r sin~mAaa†!~aa†!21/2a,

~65!

wherem5Vt. Then, we have to take into account the effe
of the nonunit efficiency of the atomic detectorsh, which is
of the order ofh50.4 in the actual experiment. This mea
that the off-resonant atoms are not detected with probab
12h and when this happens, the feedback loop does not
Using both Eqs.~54! and~65!, we derive the explicit expres
sion of the feedback operatorF fb :

F fb~r!5hre1h cos~mAaa†!rg cos~mAaa†!

1ha†
sin~mAaa†!

~aa†!1/2
rg

sin~mAaa†!

~aa†!1/2
a

1~12h!@re1rg#. ~66!

In writing this expression we have implicitly assumed th
not only the off-resonant atom time of flight, but also th
feedback loop delay time are much smaller than the typ
time scales of the system and that they can be neglec
This assumption is essentially equivalent to the Markov
assumption made for the continuous photodetection feedb
described above and it simplifies considerably the disc
sion.

The operatorFdiss describing the dissipative time evolu
tion between two successive atom crossings can be obta
from the exact evolution of a cavity in a standard vacuu
bath @37# and it can be written as

Fdiss~r!5 (
k50

`

AkrAk
† , ~67!

where

Ak5 (
n50

` A~n1k!!

n!k!
e2ngT~12e2gT!kun&^n1ku. ~68!

If we now use the explicit expressions~66! and ~67!, we
get the general expression of the transformationF of Eq.
~62!, which can be written for the density matrix elements
the following way@^nuF(r)un1p&5rn,n1p8 #:

e
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rn,n1p8 5 (
k50

` H cn,kcn1p,k

4
@hs2~n,k!214~12h!

1hs1~n,k!2 cos~mAn1k11!

3cos~mAn1p1k11!#

1h
cn,k11cn1p,k11

4
s1~n,k!2 sin~mAn1k11!

3sin~mAn1p1k11!J rn1k,n1p1k

1h
cn,0cn1p,0

4
sin~mAn!

3sin~mAn1p!s2~n,0!2rn21,n1p21 , ~69!

where

cn,k5A~n1k!!

n!k!
e2ngT~12e2gT!k,

s6~n,k!516~21!n1k.

An important aspect of the above equation is that the t
evolution of a given density matrix element depends o
upon the matrix elements with the same ‘‘off-diagonal’’ i
dex p. This implies in particular that only even values ofp
can be considered in Eq.~69!, because one starts from an od
coherent state and the matrix elements withp odd, being
zero initially, remain zero at any subsequent time. To sta
in other words, if the initial state has a definite parity, t
dynamical evolution is such that the cavity mode st
evolves within the two subspaces with given parity and
projection into the space with no definite parity always
mains zero. We have already used this fact in Eq.~66! where
we have writtenr5re1rg , since, as showed by Eqs.~60!
and~61!, these two matrices are just the odd and even co
ponents of the density matrix.

Generally speaking, the parity of the cavity mode st
plays such a fundamental role that our stroboscopic feedb
scheme is able to protect only even and odd coherent s
~we have considered an initial odd cat state only, but
scheme can be simply adapted to the even case!. In fact one
could generalize the scheme described above and con
the generation of more general cat states. For example,
can consider generic phase shiftsfÞp ~as it is done in@13#!
and generic microwave pulses in the two cavitiesR1 andR2

ue&→ceue&1cgug&,
~70!

ug&→2cg* ue&1ce* ug&,

wherece and cg depend on the intensity and phase of t
microwave pulses inR1 andR2 and on the interaction time
This allows one to generate a large class of linear supe
sitions of coherent states with different phases, but only
the case of cat states with a given parity our strobosco
scheme can be implemented. In fact the essential cond
for the stroboscopic protection scheme to be applied is
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existence of relations such as~60! and ~61! in which the
cavity mode states conditioned to the detection of the t
atomic levels are expressed as projections into given,
thogonal subspaces. Only in this case in fact is it possibl
correlate with no ambiguity one atomic detection with a st
or property of the cavity mode and then consequently ap
a feedback scheme. It is then easy to prove that the
microwave pulses inR1 and R2 and the dispersive interac
tion in C @see Eq.~52!# determine two projection operator
only for the situation considered here, (f5p and twop/2
pulses! and these projectors are just the projectors into
even and odd subspace.

VI. DYNAMICS IN THE PRESENCE OF STROBOSCOPIC
FEEDBACK

The experimental study of this stroboscopic feedba
scheme can be done by performing a series of atomic de
tions of the state of the off-resonant probe atoms separ
by a given time intervalT and repeating this series of me
surements many times, always starting from a first detec
in the statee. This allows one to reconstruct the time evol
tion of the probability of finding the statee, Pe(nT) @see Eq.
~57!# in the presence of feedback. The time evolution of t
probability is plotted in Fig. 7 where an initial odd cohere
state withuau253.3 ~just the value corresponding to that o
the actual experiment! is considered. The full line refers to
the no feedback case (m50), that is, the theoretical predic
tion of Eq. ~58!; the dashed line refers tom5p/6 andgT
50.02; the dotted line tom5p/2 andgT50.02; horizontal
crosses tom5p/2 andgT50.2 and diagonal crosses tom

FIG. 7. Time evolution of the probability of detecting the of
resonant atoms in the statee in the case whenuau253.3. Full line,
m50 ~no feedback case!; dashed line,m5p/6 andgT50.02; dot-
ted line, m5p/2 and gT50.02; horizontal crosses,m5p/2 and
gT50.2; diagonal crosses,m5p/6 andgT50.2. In ~a! the ideal
case of perfect atomic detection is considered, while~b! refers to
the caseh50.4.
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5p/6 andgT50.2. In ~a! the ideal case of perfect atom
detection is considered, while~b! refers to the caseh50.4,
which is the actual efficiency of the detector employed
@13#. These two figures show the dependence on the th
feedback parametersgT, m, and h and, as expected, th
most relevant one is the time between two successive m
surementsT. This time has to be as small as possible,
cause decoherence can be best inhibited if one can ‘‘che
the cavity state, and try to restore it, as soon as poss
Moreover we have seen that the indirect measurement o
cavity with the atoms becomes optimal only in the contin
ous limit gT!1 and only in this limit~and for ideal detec-
tion efficiencyh51) the initial photon number distribution
is perfectly preserved.

The coupling parameterm5Vt is instead connected t
the probability of releasing the photon within the high-Q
cavity. We have assumed that the feedback atoms come
an independent source just to have the possibility of vary
their velocity and therefore the parameterm. This probability
of releasing the photon in the cavity is maximized when
sine term in Eq.~66! is maximum, i.e., when

mAn5p~m11/2! m integer. ~71!

This resonance condition depends on the photon numbn
which however is not determined in general and moreo
decreases as time evolves~whengTÞ0). In the case of the
Schrödinger cat state studied here, Eq.~71! roughly corre-
sponds to the conditionmuau5p(m11/2) and this explains
why at small times the casem5p/6 gives a good resul
(uau253.3 in the figures!. At longer times the valuem
5p/2 gives the better result and this is due to the fact t
the cavity mean photon number has become approxima
one. A complete explanation of the asymptotic behavior
the curves of Fig. 7 is given by the fact that, as long asT
Þ0, the stationary state of the cavity field is a mixture of t
vacuum and the one-photon state, given by

rstat5
egT21

egT211h sin2 m
u0&^0u1

h sin2m

egT211h sin2 m
u1&^1u.

~72!

It is immediate to see that this means

Pe~`!5r11
stat5

h sin2 m

egT211h sin2 m
, ~73!

which is verified by the plots shown in Fig. 7.
The form of the stationary state can be obtained from

general expression of the mapping~69!. In fact, since the
time evolution of a given matrix element is coupled only
those with the same off-diagonal indexp, this mapping can
be written in the simpler form

VW p85ApVW p , ~74!

wherern,n1p is thenth component of the vectorVW p andAp
is a matrix whose expression can be obtained from Eq.~69!.
The state of the cavity field afterK measurements~and even-
tual feedback corrections! is therefore obtained applying th
matrix Ap K times. Since the evolution of the cavity field
ee
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dissipative, one can easily check that all the eigenvaluesl of
the family Ap are such thatulu<1. The stationary state wil
correspond to the eigenvectors associated to the eigenv
l51. It is possible to see that there is only one eigenva
l51, for the matrix determining the evolution of the diag
nal elementsA0, and that the associated eigenvector is
one corresponding to the diagonal stationary state of
~72!.

At first sight, the comparison between the curves in
presence of feedback, withPe remaining close to one, an
that in the absence of feedback, seems to suggest tha
initial odd cat state can be preserved almost perfectly. Ho
ever, this is an incorrect interpretation because the quan
Pe gives only partial information on the state of the radiati
mode within the cavity: it is a measurement of its parity@see
Eq. ~57!# and Fig. 7 only shows that our feedback scheme
able to preserve almost perfectly the initial parity. Perfect
state ‘‘freezing’’ can be realized only in cavities with a
infinite Q; the proposed feedback scheme inevitably modifi
the initial state, even in the ideal conditions of perfect det
tion efficiencyh51 and continuous feedbackgT'0. In fact
the stroboscopic feedback model shows the same behavi
the continuous feedback model discussed above for op
cavities, which~when restricting to initial states with give
parity! represents its continuous measurement limitgT→0.
It is characterized by phase diffusion, because the photon
in the cavity by the resonant atom has no phase relation
with those in the cavity. However, this phase diffusio
proves to be slower than the usual phase diffusion, so
also in this stroboscopic case, the protection of the initial
state is extremely good. This is clearly shown by Fig.
where the Wigner function of the same initial odd cohere
state considered in Fig. 7, is plotted in~a! and compared with
the Wigner function of the cavity state after a timet
50.44/g (t;3tdec) in the presence of feedback~b!. The two
states are almost indistinguishable, even if in Fig. 8~b! the
actual experimental valueh50.4 is considered~the other
parameters arem5p/6, gT50.02). The comparison with
Fig. 8~c!, where the Wigner function evolved for the sam
time interval in theabsenceof feedback is plotted, clearly
shows the effectiveness of our scheme. Sincet;3tdec, the
state in the absence of feedback has become a mixture of
coherent states with opposite phases, and the oscillation
sociated to quantum coherence have essentially disappe
On the contrary, the state evolved in the presence of fe
back is almost indistinguishable from the initial one and t
interference oscillations are still very visible. Figure 8~b!
also shows that the unconventional, feedback-induced ph
diffusion is actually very slow, since its effects are not y
visible aftert;3tdec.

The effects of phase diffusion begin to be visible after o
relaxation time t5g21, as shown by Fig. 9, where th
Wigner functions at this time, both in the presence~a! and in
the absence~b! of feedback are compared~other parameter
values are the same as in Fig. 8!. Quantum coherence is quit
visible in ~a!, while it has completely disappeared in~b!;
however, the state in the presence of feedback begins to
tort with respect to the initial state, as the two peaks ass
ated with the two coherent states become broader and m
rounded due to phase diffusion.
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VII. CONCLUDING REMARKS

In this paper we have presented a way for protectin
generic initial quantum state of a radiation mode in a cav
against decoherence. The initial quantum state is not
fectly preserved for an infinite time~this is possible only in a
cavity with an infiniteQ); nonetheless its quantum cohe
ence properties can be preserved for a long time and
‘‘lifetime’’ of the state significantly increased. The mod
presented here is a ‘‘physical’’ way to control decoheren
based on feedback, that is, measuring the system and m
fying its dynamics according to the result of the measu
ment. In this sense it is very similar in spirit to the propos
of Ref. @32#. Our approach is complementary to those ba
on quantum error correction codes@31#, using software to
deal with decoherence. The present feedback acts in a
simple way: one checks if the cavity has lost a photon, a
when this happens, one gives the photon back through
injection of an appropriately prepared atom. In the case
continuous monitoring of the system and in the ideal limit
unit detector efficiency, the model preserves perfectly

FIG. 8. ~a! Wigner function of the initial odd cat state,uc&
5N2(ua&2u2a&), uau253.3; ~b! Wigner function of the same ca
state evolved for a timet50.44/g (t;3tdec), in the presence of
feedback (m5p/6, gT50.02,h50.4); ~c! Wigner function of the
same state after a timet50.44/g, but evolved in the absence o
feedback.
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photon number distribution of the initial quantum state of t
cavity. This is obtained at the price of introducing an unco
ventional phase diffusion, slower than the usual phase di
sion @see Eqs.~11! and ~19!# that modifies the state at suffi
ciently long times. To be more specific, feedback prote
very well the relative phase of the coefficients of the co
ponents of the initial state, generating at the same time
diffusion of the phase of the field.

The above description of the feedback scheme explic
considers all the experimental limitations~nonunit efficiency
of the detectors, comparison between the various time sca!
except one: here we have assumed that one has an extre
good control of the atomic injection and that it is possible
sendexactly one atom at a time in the cavity. This is no
experimentally possible at the moment; for example, in@13#
sending an ‘‘atom’’ explicitly means sending an atom
pulse with an average numbern̄;0.2, so that the probability
of having two atoms simultaneously in the cavity is neg
gible. This fact makes the proposed feedback scheme m
less effective; in fact, this is essentially equivalent to havi
in the stroboscopic case, an effective quantum efficie
heff5hn̄2, because one has a probabilityn̄2;0.04 of having
one probe atom and one feedback atom in each feedb
loop. As a consequence, the dynamics in the presenc
feedback becomes hardly distinguishable from the stand
dissipative evolution.

In the continuous feedback scheme for optical cavit
one has the feedback atomic beam only and the effec
efficiency ishn̄. Anyway in the optical case, the problem o
having exactlyone feedback atom at a time with certain
could be overcome, at least in principle, by replacing
beam of feedback atoms with a single fixed feedback at
optically trapped by the cavity~for a similar configuration,
see, for example,@32#!. The trapped atom must have th

FIG. 9. Wigner function of the odd cat state of Fig. 8, evolv
for a timet51/g in the presence of feedback with the same para
eters as Fig. 8~b! ~a!, and in the absence of feedback~b!.
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sameL configuration described in Fig. 1 and the adiaba
photon transfer between the classical laser field and
quantized optical mode could be obtained with an appro
ate shaping of the laser pulseV(t). The possibility of simu-
lating the adiabatic transfer with an appropriately design
laser pulse has been recently discussed by Kimble and
@38# in a proposal for the realization of a ‘‘photon pistol,
able to release exactly one photon on demand~see also@29#!.
In this case, the feedback loop would be simply activated
turning on the appropriately shaped laser pulse focused
the trapped atom. During the time interval between two p
d
.

s
nn
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.
et
c
e
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d
w

y
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todetections, the atom has to remain in the ‘‘ready’’ sta
ug1&, which is decoupled from the cavity mode, and th
could be obtained with an appropriate recycling proce
driven, for example, by supplementary laser pulses@38#.
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