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Quantum-state protection in cavities
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We show how an initially prepared quantum state of a radiation mode in a cavity can be preserved for a long
time using a feedback scheme based on the injection of appropriately prepared atoms. We present a feedback
scheme both for optical cavities, which can be continuously monitored by a photodetector, and for microwave
cavities, which can be monitored only indirectly via the detection of atoms that have interacted with the cavity
field. We also discuss the possibility of applying these methods for decoherence control in quantum informa-
tion processingfS1050-2947®8)11206-4

PACS numbdss): 42.50.Lc, 03.65.Bz

I. INTRODUCTION superposition of macroscopically distinguishable states, the
states involved in the famous Schinger cat paradok7],

Quantum optics is usually concerned with the generatiorare never observed and how the classical macroscopic world
of nonclassical states of the electromagnetic field and theiemerges from the quantum of8]. In the case of macro-
experimental detection. However, with the recent rapidscopic systems, the interaction with the environment can
progress in the theory of quantum information processing th@ever be escaped; since the decoherence rate is proportional
protection of quantum states and their quantum dynamicgo the “macroscopic separation” between the two states
also is becoming a very important issue. In fact what make$§3,8,9, a linear superposition of macroscopically distin-
guantum information processing much more attractive thaguishable states is immediately changed into the correspond-
its classical counterpart is its capability to use entangledng statistical mixture, with no quantum coherence left.
states and of processing generic linear superpositions of ifNonetheless, a full comprehension of the fuzzy boundary
put states. The entanglement between a pair of systems gtween classical and quantum world is not yet reached
capable of connecting two observers separated by a spacelik&0,11], and therefore the study of “Schdimger cat” states
interval, it can neither be copied nor eavesdropped on within mesoscopisystems where one can hope to observe the
out disturbance, nor can it be used by itself to send a classidlecoherence is important. A first achievement has been ob-
cal messaggl]. The possibility of using linear superposition tained by Monroeet al. [12], who have prepared a trapped
states has given rise to quantum computation, which is es?Be* ion in a superposition of spatially separated coherent
sentially equivalent to having massive parallel computatiorstates and detected the quantum coherence between the two
[2]. However, all these applications crucially rely on the pos-localized states. However, in this experiment the decoher-
sibility of maintaining quantum coherence, that is, a definecence of the superposition state has not been studied. The
phase relationship between the different components of linprogressive decoherence of a mesoscopic Slihger cat
ear superposition states, over long distances and for lonlgas been observed for the first time in the experiment of
times. This means that one has to minimize as much as po8runeet al [13], where the linear superposition of two co-
sible the effects of the interaction of the quantum systenherent states of the electromagnetic field in a cavity with
with its environment and, in particuladecoherence.e., the  classically distinct phases has been generated and detected.
rapid destruction of the phase relation between two quantum In this paper we propose a simple physical way to control
states of a system caused by the entanglement of these twlecoherence and protect a given quantum state against the
states with two different states of the environmg]. destructive effects of the interaction with the environment:

Quantum optics is a natural candidate for the experimenapplying an appropriate feedback. We shall consider a radia-
tal implementation of quantum information processing systion mode in a cavity as the quantum system to protect and
tems, thanks to the recent achievements in the manipulatiowe shall show that the “lifetime” of an initial quantum state
of single atoms, ions, and single cavity modes. In fact twocan be significantly increased and its quantum coherence
guantum gates have been already demonstrffel in properties preserved for quite a long time. The feedback
guantum optical systems and it would be very important tasscheme considered here has a quantum nature, since it is
develop strategies capable adntrolling the decoherenda based on the injection of an appropriately prepared atom in
experimental situations such as those described in Refthe cavity and some preliminary aspects of the scheme, and
[5,6]. its performance, have been described in REf4,15. The

The possibility of an experimental control of decoherencepresent paper is a much more detailed description of our
is important also from a more fundamental point of view. Inapproach to quantum state protection and is organized as
fact decoherence is the practical explanation of why lineafollows. In Sec. II, the main idea is presented and a continu-
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ous feedback scheme for optical cavities is studied. In Sec¢herefore it is more realistic to generalize this feedback mas-
lll, a possible application of this continuous feedbackter equation to the situation where only a fractigrc1 of
scheme to quantum information processing systems as thibe photons leaking out of the cavity is actually detected and
guantum phase gate of Rgb] is presented. In the remaining switches on the atomic injector. It is immediate to see that
sections, the stroboscopic version of the continuous feedbadkq. (1) generalizes to

scheme, more suited for the microwave cavity of the Brune
et al. experimen{13], and introduced if14], is discussed in .
detail. P 3 4] p=ny®(apa’)+(1- 7)yapa'— Zalap— 2 pa'a.

2 2
@)

Now, we have to determine the action of the feedback
Applying a feedback loop to a quantum system meanstom on the cavity fieldb(p); this atom has to release ex-
subjecting it to a series of measurements and then using ttectly one photon in the cavity, possibly regardless of the field
result of these measurements to modify the dynamics of thetate in the cavity. In the optical domain this could be real-
system. Very often the system is continuously monitored andzed usingadiabatic transfer of Zeeman coherer@?].
the associated feedback scheme provides a continuous con-
trol of the quantum dynamics. An example is the measure- A. Adiabatic passage in a three-level atom
ment of an optical field mode, such as photodetection and ) i i
homodyne measurements, and for these cases, Wiseman and® Scheme based on the adiabatic passage of an atom with
Milburn have developed a quantum theory of continuousz,eema” substructure through overlapping cavity and laser
feedback 16]. This theory has been applied in REL7] to fields has”been proposd@2] fqr the 'generatllt.)n of I|.near
show that homodyne-mediated feedback can be used to sloRyiPerpositions of Fock states in op_tl_cal cavities. _Thls tech-
down the decoherence of a Sctliger cat state in an optical N'dUe allows for coherent superpositions pf atomic ground-
cavity. state Zeeman.s.ublevels to pe “mapped” directly onto coher-
Here we propose a different feedback scheme, based &t .super'posmons qf cawty-mode number states. If one
direct photodetection rather than homodyne detection. Th@PPlies this scheme in the simplest case of a three-lavel
idea is very simple: whenever the cavity loses a photon, &10M one obtains just the feedback superoperator we are
feedback loop supplies the cavity mode with another photon/@0KIng for, that is,
through the injection of an appropriately prepared atom. This —atianty—1/2 Ty =172
kind of feedback is naturally suggested by the quantum tra- P(p)=ai(aa) p(aa)) Ta, ®

jectory picture of a decaying cavity fie[d 8], in which time corresponding to the feedback atom releasing exactly one
evolution is driven by the nonunitary evolution operator photon into the cavity, regardless the state of the field.
exp{—yta'a/2} interrupted at random times by an instanta-' 1 see this, let us consider a three-letietom with two
neous jump describing the loss of a photon. The proposeground state$g;) and|gy), coupled to the excited state)

feedback almost instantaneously “cures” the effect of ayis “respectively, a classical laser fiefd(t) of frequency
quantum jump qnd_ is able therefore to minimize the destrqczoL, and a cavity field mode of frequenay. The corre-
m/ct)adeeffects of dissipation on the quantum state of the Cav'tysponding Hamiltonian is

In more general terms, the application of a feedback Iopp,.l(t):ﬁwaTa+hweg| e)(e|—ihg(t)(|e)(g.la—|g.)(elah
modifies the master equation of the system and therefore it is ) _
equivalent to an effective modification of the dissipative en- +inQ(t)(le)(gsle” '~ [gy)(ele' ). 4
vironment of the cavity field. For example, R¢L9] shows
that a squeezed bafa0] can be simulated by the application The time dependence @i(t) and g(t) is provided by the
of a feedback loop based on a quantum nondemolitiofinotion of the atom across the laser and cavity profiles. This
(QND) measurement of a quadrature of a cavity mode. InHamiltonian couples only states within the three-dimensional
other words, feedback is the main tool for realizing, in themanifold spanned bjg,,n), [e,n), |g,,n+ 1), wheren de-
optical domain, the so-called “quantum reservoir engineerhotes a Fock state of the cavity mode. Of particular interest
ing” [21]. within this manifold is the eigenstate corresponding to the

The master equation for continuous feedback has beeddiabatic energy eigenvaldi the frame rotating at the fre-
derived by Wiseman and Milburfil6], and, in the case of duencyw) E,=nfiw,
perfect detection via a single loss source, is given by
g(t)vn+1|gy,n)+Q(t)[gz,n+1)

E = , 5
IEn(t) VOO +(n+1)g(1) ©

Il. A FEEDBACK LOOP FOR OPTICAL CAVITIES

p=vb(apa’) - Jalap-, pa'a, (D)

which does not contain any contribution from the excited
where y is the cavity decay rate ardi(p) is a generic su- state and for this reason is called the “dark state.” This
peroperator describing the effect of the feedback atom on theigenstate exhibits the following asymptotic behavior as a
cavity statep. Equation(1) assumes perfect detection, i.e., function of time
all the photons leaving the cavity are absorbed by a unit-
efficiency photodetector and trigger the cavity loop. It is lg1,n)  for Q(t)/g(t)—0,
practically impossible to realize such an ideal situation and |En)— lgo,n+1) for g(t)/Q(t)—0. (6)
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A classical laser field lg1,n), |e,n), |g,,n+1) with those with a smaller number
of photons. Since ideal adiabatic transfer occurs when the

photodetector passage involves a single manifold, optimization is obtained
when the photon leakage through the cavity is negligible

D during the atomic crossing, that is,

Taos®NY, ©

wheren is mean number of photons in the cavity. On the
contrary, the technique of adiabatic passage is robust against
the effects of spontaneous emission as, in principle, the ex-
cited atomic statée) is never populated. Of course, in prac-
tice some fraction of the population does reach the excited
state and hence large valuesgpf,, and(Q .« relative to the
spontaneous emission rajg are desirable. To summarize,
the quantitative conditions for a practical realization of the
adiabatic transformatiofv) are

Q max: Ima™ Tc_rgs?ﬁ'ya Yes (10)

FIG. 1. Schematic diagram of the photodetection-mediated feedWhiCh' as pointed out ii22], could be realized in optical

back scheme proposed for optical cavities, together with the approqavIty QED experiments. . . .
priate atomic configuration for the adiabatic transfer. We note that when the adiabaticity conditiofi) are
satisfied, then also the Markovian assumptions at the basis of
Now, according to the adiabatic theoréag], when the evo-  the feedback master equati@@®) are automatically justified.
lution from timet, to timet, is sufficiently slow, a system In fact, the continuous feedback theory of RE6] is a
starting from an eigenstate bf(t,) will pass into the corre- Markovian theory derived assuming that the delay time as-
sponding eigenstate ¢i(t,) that derives from it by conti- Sociated to the feedback loop can be neglected with respect
nuity. This means that if the atom crossing is such that adial the typical time scale of the cavity mode dynamics. In the
baticity is satisfied, when the atom enters the interactiofPresent scheme the feedback delay time is due to the elec-
region in the ground staie,), the following adiabatic trans- f[ronlc transmlssmn-tlme of the. detection signal and,_ most
formation of the atom-cavity system state takes place: ~ importantly, by the interaction tim&ssof the atoms with
the field, while the typical time scale of the cavity field dy-
namics is 1¢n. Therefore, the inequality on the right of Eq.
|91><91|®nzm pnmimy(m| (10) is essentially the condition fgr theyvalidity ofgthe Ma?—
kovian approximation and thia posteriorijustifies our use
of the Markovian feedback master equati@ from the be-
ginning.

atom injector

H|92><92| ® nEm Pn,m| n+ 1><m+ 1|

_ traaty =120 ( 5oty —1/2
=[g2)(g2/®a'(aa’) " **p(aa’)""a.  (7) B. Properties of the adiabatic transfer feedback model

Roughly speaking, this transformation amounts to a single- When we insert the explicit expressi) of the feedback

photon transfer from the classical laser field to the quantizeguperoperator into Eq2), the feedback master equation can

cavity mode realized by the crossing atom, provided that #e rewritten in the more transparent form

counterintuitive pulse sequence in which the classical laser (1= )

field Q(t) is time delayed with respect tg(t) is applied. - _ Ty ot ot Y [~ 2

Figure 1 shows a simple diagram of the feedback scheme,p_ 2 (2apa’—a‘ap—pa‘a) 2 [\/ﬁ’[\/ﬁ’p]]

together with the appropriate atomic configuration, cavity, (13)

and laser field profiles needed for the adiabatic transforma- | ) .

tion considered. that is, a standard vacuum bath master equation with effec-
The quantitative conditions under which adiabaticity istive damping coefficient (% 7)y plus an unconventional

satisfied are obtained from the requirement that the transitioRh@se diffusion term, in which the photon number operator is

from the dark stat¢E,(t)) to the other states be very small. replaced by its square root and which can be called “square

One obtaing 22,24 root of phase diffusion.”
In the ideal casep=1, vacuum damping vanishes and
Qmax,gma)g>TC’r§SS (8) only the unconventional phase diffusion survives. As shown

in Ref. [25], this is equivalent to say that ideal photodetec-
whereT .,ssiS the cavity crossing time arfd,,..,gmaxare the  tion feedback is able to transform standard photodetection
two peak intensities. into a quantum nondemolitiofQND) measurement of the
The above arguments completely neglect dissipative efphoton number. In this ideal case, a generic Fock $tgtés
fects due to cavity losses and atomic spontaneous emissioobviously preserved for an infinite time, since each photon
For example, cavity dissipation couples a given manifoldiost by the cavity triggers the feedback loop, which, in a



57 QUANTUM-STATE PROTECTION IN CAVITIES 4933

negligible time, is able to give the photon back through adiawhile the corresponding evolution in the presence of stan-
batic transfer. However, the photon injected by feedback hadard phase diffusion is

no phase relationship with the photons already present in the

cavity and, as sh_own by E.q1_1), this rgsults in phase d!ffu— . m(t)=exp[ _ l(n—m)z]pn (0).
sion. An alternative description of this phenomenon is that : 2 :

the photon injection process is essentially a nonlinear num-

ber amplifier that is necessarily accompanied by diffusion in ~ Since

the conjugate variablf26]. This means that feedback does (n—m)?

not guarantee perfect state protection for a gersirjperpo- 2= _ 2_

sition of number state®ven in the ideal conditiop=1. In (n=m)?>(n~ ym) (\/‘+ Jm)2 vnm (14

fact in this case, only the diagonal matrix elements in the

Fock basis of the initial pure state are perfectly conservedeach off-diagonal matrix element decays slower in the
while the off-diagonal ones always decay to zero, ultimatelysquare-root case and this means that the feedback-induced
leading to a phase-invariant state. However, this does natnconventional phase diffusion is slower than the conven-
mean that the proposed feedback scheme is good for presemienal one.

ing number states only, because the unconventional “square- A semiclassical estimation of the diffusion constant can
root of phase diffusion” is much slower than the conven-be obtained from the representation of the master equation in
tional one (described by a double commutator with theterms of the Wigner function. When a generic state is ex-

(13

number operator panded in the Fock basis as
In fact the time evolution of a generic density matrix el-
ement in the case of feedback with ideal photodetectjon
emen P i p=> pomin)(m (15

_ - _ 2 the corresponding Wigner function is given [&7] (in polar
pn,m<t>—exp{ > (Vn—1m) ]pn,mw), A2 Coordinates , 6)

W(r,6) = Z pnn—< 1)"e 2L (4r2)+2 RefE Prm— 1)”\/”' om=m (op)m-ng=2r° M=N(4r2)4 - (16)

whereL'" " are the generalized Laguerre polynomials and using this expression it is easy to see that

32
—[n,[n,p]]l< a—ezw(r.a)- 17

In the case of the square root of phase diffusion, one has instead

—[Vn,[Vn,pl]-2 Re[ > pn,m%(—l)"\/r?]—!,(ﬁ— Jm) 26! M 2™ ng” 2 R (4r2) (18)
n#m .

using Eq. (14) and con5|der|ng the semiclassical limifm  of ordinary phase diffusion the amplitude decays at the rate

>1,n~m~n>1, wheren is the mean photon number, Eq. ¥/2; in fact,
(18) can be simplified to

<a<t>>=Tr{ap(t>}=n§0 n+1pnian(t), (20

—[Vn,[Vn,p]l= —_W(r 0), (19 and using Eq(13) one gets

: . (a(t))=e""Xa(0)).
showing that(at least at large photon numpén the case of
the feedback-induced unconventional phase diffusion, the, the case of the square root of phase diffusion, Ef2)

diffusion constant is scaled by a facton1. and (20) instead yield
A complementary description of the feedback-induced
phase diffusion can be given by the time evolution of the (a(t))=Tr{a(t)p(0)}, (21

mean coherent amplitudéa(t)). In fact, phase diffusion
causes a decay of this amplitude as the phase spreads arowadere the Heisenberg-like time evolved amplitude operator
24, even if the photon number is conserved. In the presenca(t) is given by
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FIG. 2. Time evolution of the fidelity(t) for an initial odd cat
state with|a|?=5; full line, »=1; dotted line, »=0.75; small -
dashes=0.5; big dashesy=0.25; dot-dashed line, evolution in W o 3
the absence of feedbacly€0). 0.2 y
0.1
0
7t 0.1 e
a(t)=ex;{ - 7(\/aa —ya a)z] a. (22 S o
R
&
In the semiclassical limit it is reasonable to assume a
complete factorization of averagé®l), so to get X
yt
<a(t)>=exp{ — - (Vn+1- \/ﬁ)z] (a(0)), (23
0.4 \\\‘\
which, in the limit of large mean photon numberyields a wo-? o
result analogous to that of E¢L9): 0.1 - y
0 o
0.1 S
<a(t)>: expy — — <a(0)> (24) 5 ‘%,,gg%iv: 73 ,: 7
8n -
This slowing down of phase diffusiofsimilar to that taking X

place in a laser well above threshpliieans that, when the
feedback efficiencyy is not too low, the “lifetime” of ge- N 7 225- (b) Wi function of th (
neric pure quantum states of the cavity field can be signifi_ N~ (1) =1~ a)). [a|*=5; (b) Wigner function of the same ca

. . ; tate evolved for a timé=0.2/y (t=2ty9, in the presence of
cantly increased with respect to the standard case with n?ee dback 7= 1): (c) Wigner function of the same state after a time
feedbacl{see Eq.(11)].

t=0.2/y, but evolved in the absence of feedback.

FIG. 3. (a) Wigner function of the initial odd cat statéy)

C. Description of the dynamics in the presence of feedback _
p y p Nt2:2(1ie—2|af|2), (27)

For a quantitative characterization of how the feedback
scheme is able to protect an initial pure state we study théhe corresponding fidelity=(t) in the absence of feedback

fidelity F(t), [7=0 in Eq.(11)] is given by
= —2]a|?(1-e" "
F(H)=Tr{p(0)p(t)}, (25 . 1+e 2eli1e o-lal2(1-e" 722
i.e., the overlap between the final and the initial stat@) - 2
after a timet. In general G=F(t)<1. For an initially pure 1+ o 2laf%e 72\ 2
state| #(0)), F(t) is in fact the probability to find the system N d [ (28)
in the initial state at a later time. A decay to an asymptotic 1+ 2l

limit is given by the overlag ¢(0)|p()|#(0)). _ , ,
A clear demonstration of the protection capabilities of the ~ 1he corresponding functiofi(t) in the presence of feed-

proposed feedback scheme is given when considering tH&Ck can be easily obtained from the numerical solution of
preservation of initial Schidinger cat state, i.e., the typical (€ master equatiofil) and using the general expression

example of nonclassical state whose oscillating and nonposi-
tive definite Wigner function is a clear signature of quantum F(t)= E P m(0)pnm(t). (29
coherencd3]. In fact, if the initial state is an evenH) or n.m

odd (~) Schralinger cat state The numerical resultg-ig. 2) show that~(t) in the presence

las)=N.(|a)*|—a)) (26)  of feedback is, at any time, significantly larger than the cor-
B B responding function in the absence of feedback, even when
where the photodetection efficiency is far from the ideal value
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Wigner function both in the presencey€ 1) (a) and in the
absence of feedbadk) of the initial odd cat state of Fig. 3
evolved after one relaxation time=y~! is shown. In the
presence of feedback the oscillating part between the two
x peaks is still visible, even if the state begins to be distorted
FIG. 4. Wigner function of the odd cat state of Fig. 3, evolved With respect to the initial one because of the action of the
for a timet= 1/y in the presence of ideal feedbagk=1 (a), and in  unconventional phase diffusion which makes it more

the absence of feedbach). “rounded.”
Another clear example of how the quantum coherence

associated to nonclassical superposition states of the radia-

tion field inside the cavity is well preserved by the feedback

scheme based on the adiabatic passage, is given by the study

of the evolution of linear superpositions of two Fock number
ates
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n=1. Figure 2 refers to an initial odd cat state with
=/5; the full line refers to the feedback model in the ideal
case n=1; the dotted line to the feedback case wiih
=0.75, small dashes refer to the case0.5; big dashes
refer to »=0.25 and the dot-dashed line to the evolution in
the absence of feedbacly€0). As expected, the preserva-
tion properties of the proposed scheme worsen as the photo- |4(0))=a|n)+ B|m). (30)
detection efficiencyn is decreased. Nonetheless, Fig. 2
clearly shows how this photodetection-mediated feedback in-
creases the “lifetime” of a generic pure state in the cavity, inThese states have not been experimentally generated in op-
the sense that the probability of finding the initial state at anytical cavities yet, but there are now a number of proposals for
timet is larger than the corresponding probability in absenceheir generation[28,29. In this caseF(t) can be easily
of feedback. evaluated analyticallyrg>n)

A gualitative confirmation of how well an initial odd cat
state witha= /5 is protected by feedback is given by Fig. 3:
(a) shows the Wigner function of the initial cat statb) the ~ F(t)=|a|*e "1~ M4 |g|4e MI-m7
Wigner function of the same cat state evolved for a time

2 2,— 12—
=0.2/y in the presence of feedbacky€1), and(c) the +2|al|?| g7 MMy nm

Wigner function of the same state again after a time ml

=0.2/y, but evolved in the absence of feedback. This +]al?pl?e "M (1—e BTN
elapsed time is twice the decoherence time of the Schro (m—n)int
dinger cat statetg.=(27v|a|?) 1 [8,9], i.e., the lifetime of (31)

the interference terms in the cat state density matrix in the

presence of the usual vacuum damping. As showndyy

this means that after this short time the cat state has alreadnd when this expression is plotted for different values;of
lost the oscillating part of the Wigner function associatedand compared with that in the absence of feedbagk @),
with quantum interference and has become a statistical mixwe see, as in Fig. 2, a significant increase of the “lifetime”
ture of two coherent states. This is no longer true in theof the state(30). This comparison is shown in Fig. 5, which
presence of our feedback schentb) shows that, aftet refers to the initial state|R)+ \/§|4>)/\/§ and where the
~2t4ec: the state is almost indistinguishable from the initial notation is as in Fig. 2: the full line refers to the feedback
one and that the quantum wiggles of the Wigner function arenodel in the ideal casgy=1; the dotted line refers to the
still well visible. The capability of the feedback scheme of feedback case witly=0.75, small dashes refer to the case
preserving the quantum coherence of the initial cat state fo=0.5; big dashes refer tg=0.25 and the dot-dashed line
quite a long time is shown also by Fig. 4, in which the refers to the evolution in absence of feedbagk=0).
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Ill. OPTICAL FEEDBACK SCHEME of the classical laser field and the initial state of the injected
FOR THE PROTECTION OF QUANTUM BITS atoms. In fact one has to release in the cavity a left or right

Photon states are known to retain their phase coheren Cércularly polarized photon depending on which detector has

. ; . fifed and this can be easily achieved when|the —|e) and
over considerable distances and for long times and for thi " . .
: . i g,)—|e) transitions are characterized by opposite angular
reason highQ optical cavities have been proposed as a . _ .
- e : . “‘momentum differencém;=*1. In this case a left polar-
promising example for the realization of simple quantum cir-. L . !
cuits for guantum information processing. To act as an im‘orIzed photon, for example, is given back to the cavity with the
q b 9. diabatic transitiong,)—|g,) of Fig. 1, while the right po-

mation carrying quantum state, the electromagnetic field arized one is released into the cavity through the reversed
must consist of a superposition of few distinguishable states.d. . o y gn the
The most straightforward choice is to consider the superpo"Zl labatic tranS|t|orjg2>.—>|g.1> and thg two possibilities are
sition of the vacuum and the one photon stat6)+ 8|1). controlled by the polarization-sensitive detectors.

However, it is easy to understand that this is not convenient Smc.e the mpu.t_s'tate we seek to protect is unknown, the
because any interaction couplin@) and|1) also couples protection capabilities of the feedback scheme are better

: : ; . characterized by the minimum fidelity, i.e., the fidelity of Eq.
|1) with states with more photons and this leads to informas 25) minimized over all possible initial states. This minimum

tion losses. Moreover the vacuum state is not easy to obserye

because it cannot be distinguished from a failed detection ofde“ty can be easily evaluated by solving the master equa-

the one photon state. A more convenient and natural choic'%l20n (11) for each polarized mode and one gets the following

. L o ; : expression:
is polarization codingi.e., using two degenerate polarized
modes and quantum bitgubits of the following form: F. ()= (e~ (- WA+ 4 o= M(+m-20iT0) (34
=(aa’ +Ba’)|0)=a|0,1)+3|1 2
[4)=(aa; +pa-)|0)=al0.h+AILO), 523 In the absence of feedbacky€0), this expression be-

in which one photon is shared by the two mofe@]. In fact, ~ comesFyn(t)=exp{—y(n+m)} showing that in this case,
this is a “natural” two-state system, in which the two basis the states most robust against cavity damping are those with
states can be easily distinguished with polarization measurdhe smallest number of photons;+n=1, i.e., the states of
ments; moreover they can be easily transformed into eacthe form of Eq.(32). Moreover, in a typical quantum infor-
other using polarizers. Polarization coding has been alreadjation processing situation, one has to consider small qubit
employed in one of the few experimental realization of a’Storage” timest with respect toy™* so as to have reason-
guantum gate, the quantum phase gate realized by Turchef@®ly small error probabilities in quantum information stor-
etal. [5]. This experiment has demonstrated conditional2ge. Therefore the protection capability of an optical cavity
guantum dynamics between two frequency-distinct fields in &vith no feedback applied is described by
high-finesse optical cavity. The implementation of this gate
employs two single-photon pulses with frequency separation Frin(t)=1—t. (395
large compared to the individual bandwidth, and whose in-
ternal state is specified by the circular polarization basis as in If we now consider the situation in the presence of feed-
Eqg. (32). The conditional dynamics between the two fields isback[Eq. (34)], the best protected states for a given nonzero
obtained through an effective strong Kerr-type nonlinearityefficiency » may be different from the states with only one
provided by a beam of cesium atoms. photon, «|0,1)+ B|1,0), and they depend upon the explicit

In the preceding section we have shown that the proposeghalue of the feedback efficiency. For the determination of
feedback scheme is able to increase the “lifetime” of linearthe optimal qubit of the form of33) (i.e., the optimal values
superpositions of Fock states. Therefore it is quite natural tfor m andn), one has to minimize the deviation from the
look if our scheme can be used to protect qubits like those ofperfect protection conditioff (t)=1. For yt<1 one gets
Turchetteet al’s experiment, against the destructive effects
of cavity damping. To be more specific, here we shall not .be min[ (2— 7)(n+m)— Zﬂ\/FTﬂ
concerned with the protection of the quantum gate dynamics, m-n
but we shall focus on a simpler but still important problem:
protecting an unknown input state for the longest possible = min[(ym—n)?+(1—7)(Vm+n)?]

time against decoherence. For this reason we shall not con- m#n

sider the two interacting fields, but a single frequency mode p2

with a generic polarization, i.e., a single qubit. We shallcon- - min | —= 4 (1— 5)(Jn+p+/n)?

sider a class of initial states more general than those of Eq. n=0,p=1| (Yn+p+ Jn)? S P

(32, i.e., (36
|4) = aln,m)+g[m,n), (33

wherep=m-—n. From these expression it can be easily seen

wherem+ n photons are shared by the two polarized modesthat one has to chooge=1, and therefore the optimal qubits
If we want to apply the adiabatic transfer feedbackare those of the form

scheme described above for protecting qubits as those of Eq.

(33), one has to consider a feedback loop as that of Fig. 1 for | )= @|Nopt Noptt 1) + BINoprt LiNgpr), (37

each polarized mode. This can be done using polarization-

sensitive detectors that electronically control the polarizatiorwheren,y, is determined by the minimization condition
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sition states. In our case, feedback allows a physical control

1
min ———=——7=5 + (1= 7)(yn+1+ Jn)2|. (38  of decoherence, through a continuous monitoring and even-
n=o[ (Vn+1+ V) tual correction of the dynamics and in this sense our ap-
proach is similar in spirit to the approach of Ref32,33.
As long as The present feedback scheme is not very useful in the case of
7}$2/(1+\/§)20.83’ (39) one-photon qubitg32) of the quantum phase gate experi-

ment of Ref.[5]; however, it predicts a very good decoher-

one hasn,,=0 and therefore the situation is similar to that €€ control in the case of high feedback efficiency
of the no-feedback case: the states of the f¢82) are the 7> 0.83 and for larger photon numbeisee Eq.(37)]. It is

best protected states and the corresponding minimum fidelityery difficult to achieve these experimental conditions with
is given by he present technology, but our scheme could become very

promising in the future.

1 _ U
Frin(D)=5(e” 77"+ e ) ~1- Vt( 1- 5)- (40) IV. A FEEDBACK SCHEME FOR MICROWAVE
CAVITIES
In this case, feedback leads to a very poor qubit protection . '
with respect to the no-feedback case and therefore our In the case of measurements of an optical field mode,

scheme proves to be practically useless for the protection oSfUCh as phoFodetection and homoqune measurements, the
single photon qubits of Eq(32) employed in the Caltech system iscontinuouslymeasured and in these cases applying
experiment of Ref[5] a feedback loop can be quite effective in controlling the de-

However, when the feedback efficiengypbecomes larger co?erelntce of anfoptlgal _ISc}uhog;ar fatf' I(; IS tEerefore qwteb
than 0.83, the situation can improve considerably. In fagt gihlijer:?/e doir?etﬁel oilihml f["‘or ﬁgc\) rgx Oerin?gr?taelrezﬁirgtailgn €
becomes nonzero and can become very large in the hmit and detection of Scﬁdinp er cat statgs of a radigtion mode
—1, and in this case the minimum fidelity decays V€Y the experiment of Brune?al [13]. However, in this experi- ’
slowly. To be more specifia),y, is approximately given by pe . L S P

. ment, it is not possible to monitor continuously the state of
the condition L . : . SR
the radiation in the cavity, since the involved field is in the
1+ Vn)2=(1— m) 12 41 microwave range ar_ld there are not good enough detec_tors in
(VMop op)”=(1=) “D this wavelength region. The detection of the cat state is ob-

and the corresponding small time behavioFgf,(t) is given ~ tained through measurements performed on a second probe

by atom crossing the cavity after a delay tireand that pro-
vides a sort of impulsive measurements of the cavity field
yt state.
Fmin(t)=1— > This suggests that in this microwave case, continuous
(VNopit 1+ VNgp measurement can be replaced at best by a seriespehted
:1—ytm- (42) measurements, performed by off-resonance atoms crossing

the high€Q microwave cavity one by one with a time interval

This means that in the limit of a feedback efficiency very T. As a consequence, one could try to apply a sort of “dis-
close to one, it becomes convenient to work with a largecrete” feedback scheme modifying in a “stroboscopic” way
number of photons per mode, since in this limit the probabilthe cavity field dynamics according to the result of the
ity of errors in the storage of quantum information can beatomic detection.

made very small. This can be easily understood from Eq.

(12), because in this limit the square-root of the phase diffu- A. Simplified description of the experiment of Bruneet al.

sion term prevails in the master equation and its quantum In Ref. [13], a Schidinger cat state for the microwave
state protection capabilities' improve for increasing photorhe|d in a superconducting cavi has been generated using
number[see Eq(24)]. In the ideal case;=1, noy becomes v 1ar Rydberg atoms crossing the cavity in which a coher-
infinite and therefore the minimum fidelity can remain arbi- oyt giate has been previously injected. All the atoms have an
trarlly close to one. ltis convemen_t to work with the IargeStappropriater selected velocity and the relevant levels are
possible number of photons, that is, two adjacent circular Rydberg states with principal quantum
numbersn=50 andn=51, which we denote dg) and|e),

[4)=aln.n+1)+pin+1n), n>1 “3) respectively. These two states have a very long lifetime (30
and the corresponding minimum fidelity is m9) and a very strong coupling to the radiation and the atoms
are initially prepared in the state). The highQ supercon-
1 . vt ducting cavity is sandwiched between two I@veavitiesR;
Frin()=5(1+e )=1-oo. andR,, in which classical microwave fields can be applied

and that are resonant with the transition between the [&ate
The feedback method proposed here to deal with decoheand the nearby lower circular staig). The intensity of the
ence in quantum information processing is different fromfield in the first cavityR; is then chosen so that, for the
most of the proposals made in this research field, which areelected atom velocity, &/2 pulse is applied to the atom as
based on the so-called quantum error correction cp8Els it crossesR;. As a consequence, the atomic state before en-
which are a way to useoftwareto preserve linear superpo- tering the cavityC is
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1 1
=—(le)+]|g)). 44 e)——=(e)+19)),
|'paton'> \/§(| > |g>) ( ) | > \/E(l > |g>)
49
The highQ cavity C is slightly off-resonant with respect 49
to thee — g transition, with detuning 1
l9)——=(=le)+]g)),
5= 0~ weg, (45) V2
where » is the cavity mode frequency ande,=(E. S° that the staté48) becomes
—Eg)/h. The Hamiltonian of the atom-microwave cavity
mode system is the usual Jaynes-Cummings Hamiltonian, , 1 _
given by |lr//atom+fie|d>:7(N—l|e>|a*>+N+l|g>|a+>)r (50)
2
Hac=Ede)(el+Eglg)(g|+7wa'a where|a. ) are the even <) or odd (—) Schralinger cat
+ﬁQ(|e><g|a+|g>(e|aT) (46) states defined in Eq26) and N.. are defined in Eq(27).

Equation(50) shows that an even or an odd coherent state is
. . . ._conditionally generated in the cavity according to whether or
\(/jvih(e;:g %nlsthtgee_\/)acutl:;nngt?:r: Z?]lép,:'r?g Cg?/ti\;v eemrl)éi;e |?1t(::; Cnot the atom is detected in the levg) or |e), respectively.

P 9 Y ' After generation, the Schdinger cat state undergoes a

off-r_esonant case and perturbative lirfitg 8, the atom and vary fast decoherence procdsd), that is, a fast decay of
the field essentially do nat exchange energy but only unOIerg91terference terms, caused by the inevitable presence of dis-

dispersive frequency shifts depending on the atomic Ieveé. A . . o
Lo ) ipation in the superconducting cavity. In fact the dissipative
[34,39, and the Hamiltoniar{46) becomes equivalent to time evolution of the generated cat state is described by the
t following density matrix:
Haisp= Eele)(el + Eqg)(g| +hwa'a
Qz 1 —yt/2 —yt/2 —yt/2 —yti2
+h—(lg){gla’a—|e)(elaa’) p(t)= N—z[lae 7 (e + |~ aem N~ ae™Y

02 i
[ lexe +Eqlaxl

2

+_
T

+ e—2|a|2(1—e* 7‘)(| —ae yt/2><ae— yt/2|

, +ae™ "~ ae” )], (51

Q
+ aTa—2ﬁ7|e><e|aTa. (47)

wherey is the cavity decay rate and where the plosnus
sign corresponds to the evéodd coherent state. Decoher-

This means that in this dispersive limit, besides a negligibléNce i governed by the factor éxi2|al*(1—e" )], which

shift of the cavity frequency and of the level energy, the for yt<1 becomes exp-2/a/*yt], implying therefore that
atom-field interaction induces a phase shift=20%,,/5 the mtergerence terms decay to zero with a lifetimg,
when the atom is in the stags while there is no shift when =(2yla|?) " ) ]

the atom is in the statg (t;, is the interaction time There-  1he relevance of the experiment of Brueeal. [13] lies

fore, using Eq(44), the state of the atom-field system when I the fact that this progressive decoherence of the cat state

the atom has just exited the cavifyis the entangled state has been observed for the first time and the theoretical pre-
diction checked with no fitting parameters. This monitoring

of decoherence has been obtained by sending a second atom
|</fatom+fie|d>:i(|e,aei¢>+|9,a>), (48) through the same arrangements of cavities. The_ atom has
V2 exactly the same velocity of the first atom generating the cat
and is sent through the cavities after a time ddlawhich is
where o« denotes the coherent state initially present withinmuch larger than the time of flight of the atom through the
the cavity. In the experiment of RefL3], different values of ~Whole systemwhich is of the order of 10° s in the experi-
the phase shifgy have been considered; however, we shallmend. The state of the system composed by the second atom
restrict from now on to the casg= 1, which corresponds to and the microwave field undergoes the same transformation
the generation of a linear superposition of two coherenflescribed above for the first Rydberg atom, i.e.,
states withoppositephases.

In the state(48), each atomic state is correlated to a dif- Patomsfield=U 26 ™ AU _(p(T)®|e)(el)
ferent field phase; for the generation of a cat state, however, b imataleel 1t
one has to correlate each atomic state wuperpositionof XUz e '™ aleie Uz, (52

coherent states with different phases, and this is achieved by

submitting the atom to a second/2 pulse in the second whereU ., describes ther/2 pulse ando(T) is the cavity
microwave cavityR,. The 7/2 pulse yields the following field at a timeT after the passage of the first atom and it is
transformation: given by Eq.(51).
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Using Eq. (49) one finally gets the state of the probe the decoherence phenomenon in its time development. Actu-
atomt-field system just before the field ionization detectorsally, in Ref.[13], the experimental demonstration of deco-

for the measurement of theor g atomic state, that is, herence has been given by considering not simily but
the difference between conditional probabilitieg= P,
Patom+field ™ |e><e| ®pet |g><g| ®pg+ |e><g| p+ — Pge-
+[g)el@p_, (53
V. THE STROBOSCOPIC FEEDBACK MODEL
where
We now propose a modification of the experiment of
p%= [PpP+p*Pp+pP], (54) Bruneet al.[13] in which the cat decoherence is not simply
monitored but also controlled in an active way. The idea is to
ps=3[PpP—pxPpTpP], (55  apply the same feedback scheme described above for optical
cavities, which gives a photon back to the cavity whenever
and the photodetector clicks. However, in this microwave case
oy one has to find a different way to determine if the cavity
p=e*'ma (56) mode has lost a photon or not, because there are no good

. ] ] ) photodetectors available in this wavelength region. Refer-
is the parity operator of the microwave cavity mode. Fromence[13] suggests using off-resonant atoms crossing the cav-
these expressions, the probability of detecting the secongy, 1o measure the cavity field and therefore in this case one
atom in thee or g state is readily obtained: could replace continuous photodetection with a stroboscopic
Pye= L(1+(P)), 57 measurement performed by a sequence of off-resonant probe

atoms, separated by a time intervBl A sort of indirect
where(P) is the mean value of the parity of the cavity mode microwave photodetection can be obtained by using the fact

statep(T). If one inserts in(57) the explicit expression of that, as suggested by E(57), the detection of the or g
p(T) given by (51), one gets the four conditional probabili- atomic I_evel is equivalent to the measurement of th_g parity of
ties P;; (i,j=e or g), of detecting the second atom in the the cavity mode state. In fact, E¢p4) for the conditioned

statej after detecting the first atom in the statand which cal;/lty_ mode density matricesye can be rewritten in the
give a satisfactory description of the decoherence process (f)? owing way
the cat state in the cavif6]. Let us consider, for example,

the case of two successive detections of the circular Rydberg Pe=PoddPPodd (60)
statee: in this case the detection of the first atom projects the

microwave field in the superconducting cavity in an odd co- Pg= Pever?Peven (61)
herent state and the corresponding conditional probability is ] ) .
given by whereP 44 (Peven IS the projector onto the subspace with an

odd (even number of photons and therefore finding the atom
in the statee (g) means measuring a parig=—1 (P=
. (58 +1) for the state of the microwave mode within the cavity
C.
The dependence of his conditional probabily upon the, 0 % (288 I8 T ERE LT Ot atom i
time delay between the two atom crossings gives a clearn odd coherent sgt]atéirst atorr): detected ire). When a
description of the cat state decoherence. In fact, if there is N9 cond probe atom crosses the cavities arrar;gement after a
dissipation in the cavity, i.eyT=0, it is Pec=1 and this ime intervalT and is detected ie, it means that the cavity

. . -t
perfect correlation between the atomic state and the Cav'%ode state has remained in the odd subspace, or, equiva-

state is the experimental signature of the presence of an o Sntly, that the cavity has lost avennumber of photons. If
coherent state in the higQ-cavity. As long asy#0, the the time intervalT is much smaller than the cavity decay

conditional probability decreases for increasing delay fime . 1 Y .
' = : time y~+, yT<1, then the probability of losing two or more
Ata first stage one has a decay to the valyg=1/2 in the photons is negligible and one can say that finding the gtate

decoherence timeg.=1/2y|a|?; this is the decoherence .
process itself, that is, the fast transition from the quantu eans that no photon has leaked out from the I@gha\_/lty
linear superposition state to the statistical mixture ' Qn the contrary_, whe_n the probe atom is detectey] the .
cavity mode state is projected into the even subspace and this
pmixt= 2| @) a| +]|— a)—al] (59) Is equivalent to saying that the cavity has lostoakl number
of photons. Again, in the limit of a sufficiently closely
describing aclassical superposition of fields with opposite spaced sequence of probe atom$<1, the probability of
phases. At larger delayE, the plateauP..=1/2 turns to a losing three or more photons is negligible and therefore find-
slow decay to zero because the two coherent states of thieg the levelg means that one photon has exited the cavity.
mixture both tend to the vacuum state and start to overlap, Therefore, for achieving a good protection of the initial
due to field energy dissipatidi36). odd cat state, the feedback loop has to supply the supercon-
This conditional probability decay can be experimentallyducting cavity with a photon whenever the probe atom is
reconstructed by sending a large number of atom pairs fodletected irg, while feedback must not act when the atom is
each delay timd, obtaining therefore a clear observation of detected in thee state. This feedback loop can be realized

e 2lal’e™ T _ g-2falP(1-e77T)

1
Pee(T):E 1_ 1_672|a|2
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T o imjecor The feedback mechanism acts only on the density matrix
' pg., conditioned to the detection of levgland is described
by the resonant interaction part of the Hamiltoni{d6):

1 |
1 |
| | | H.=%Q(le)(gla+[g)(ela’); (63)
1 feedback [
‘—)< > e atom : the effect on the cavity mode density matpixs then given
R |
|
|

by (the feedback atoms are not detected after exiting the
microwave cavityC)

1
|
1 [
|
| |
| ! Y [ i i ]
! [ = —— —
’:5] | ]]igh_Q C‘«lVi[y | p Trat eXp{ ﬁ HFT] (|e><e| ®p)ex4 ﬁ HFT} ’
‘ | (64)
‘ !
: : where 7 is the interaction time of the feedback atom. Per-
| | forming the trace, one gets
! i
< : )m | p'=coguaa')p coguaa’)
' | +af(aa’) Y2 sin(uyaah)p sin(uaa')(aah) 2,
() . 5
¥

| wherep=Q 7. Then, we have to take into account the effect

E of the nonunit efficiency of the atomic detectagswhich is
of the order ofy=0.4 in the actual experiment. This means

that the off-resonant atoms are not detected with probability

FIG. 6. Schematic diagram of the stroboscopic feedback schemg— 7 @nd when this happens, the feedback loop does not act.
for the experiment of Brunet al. R, andR, are the two cavities in USing both Egs(54) and(65), we derive the explicit expres-
which classical microwave pulses can be applied. The feedbacgion of the feedback operatdry,:
loop acts whenever thg-state detector clicks and it switches on
both the atomic injector and the electric field in the hi@leavity to Ciy(p)=npet 7 COS{,U«\/Q)Pg COE(M\/Q)

Stark shift the levek into resonance.
ot sin(uvaa') sin(uvaa )a

AtoMIc injector

. . . . S n P
with a switch connecting thg state field-ionization detector (aah¥2 "% (aah?
with another atom injector, sending an atom in the excited 1 66
statee into the highQ cavity. This feedback atom has to be +(1=nlpetpgl- (66)

resqnantwnh. the radlatlon.mode' in the super(_:onductlpgln writing this expression we have implicitly assumed that
cavity and this can be obtained with another switch turning, . only the off-resonant atom time of flight, but also the

on an electric f|e|d in the pavngi when the atom entersit, SO foeqpack loop delay time are much smaller than the typical
that the levek is Stark shifted into resonance with the cavity time scales of the system and that they can be neglected

mode. f‘ scfhematic rehprese_rr]]tart]ior; of dtge ﬁ)iperir_nen_tal aPPFhis assumption is essentially equivalent to the Markovian
ratus of Ref[13] together with the feedback loop is given in 55q;mption made for the continuous photodetection feedback

Fig. 6. described ab d it simplifi iderably the discus-
The time evolution of the microwave field in the high- escribed ahove and It simpliiies considerably the discus

. . ; n.
cavity can be described stroboscopically by the transforma- The operatorb .. describing the dissipative time evolu-

tion from the state just before the crossingrah nonreso- i, peween two successive atom crossings can be obtained
nant probe atonp(nT), to the state of the radiation mode oy the exact evolution of a cavity in a standard vacuum
before the next nonresonant atom crossifgT+T). This .1 [37] and it can be written as

transformation is given by the composition of two successive
mappings: *
Paisd p)= 2, ApAL, (67)
p(NT+T)=D(p(nT))= Py Pi(p(nT))], (62
where

where @4, describes the effect of the interaction with the -
nonresonant atom followed by the effect of the resonant  , _ D (n+k)!
feedback atom, which interacts with the cavity field or not S n!k!
according to the result of the measurement performed on the

off-resonant atoms. The operatidn,,; describes instead the If we now use the explicit expressiori86) and (67), we
dissipative evolution of the field mode during the time inter-get the general expression of the transformatrof Eq.
val T between two successive atom injections and it is char¢62), which can be written for the density matrix elements in
acterized by the energy relaxation rate the following way[(n|®(p)[n+p)=p; o pl:

e "T(1—e "MK n)(n+k|. (68
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+ 7;%s+(n,k)2 sin(uyVn+k+1) 0.0
T

xsin(uyn+p+k+1) Pn+k,n+p+k

Cn,0Cn+p,0 .
7P osin )

><sin(,uVn+p)s,(n,0)2pn,1’n+p,l, (69
where
n+k)!
Cn,k: (n'kl) e—n)’T(l_e—'yT)k,

s.(n,k)= 1i(_1)n+k_ FIG. 7. Time evolution of the probability of detecting the off-
resonant atoms in the staten the case whehw|2=3.3. Full line,

An important aspect of the above equation is that the timg:=0 (no feedback cagedashed linex=7/6 andyT=0.02; dot-
evolution of a given density matrix element depends onlyted line, u=m/2 and yT=0.02; horizontal crosseg=w/2 and
upon the matrix elements with the same “off-diagonal” in- ¥T=0.2; diagonal crosseg= /6 and yT=0.2. In (a) the ideal
dex p. This implies in particular that only even valuesf case of perfect atomic detection is considered, wtherefers to
can be considered in E¢69), because one starts from an odd the caser=0.4.
coherent state and the matrix elements wittodd, being . _ . .
zero initially, remain zero at any subsequent time. To state igXiStence of relations such 460) and (61) in which the
in other words, if the initial state has a definite parity, theCavity mode states conditioned to the detection of the two
dynamical evolution is such that the cavity mode state®fomic levels are expressed as projections into given, or-

evolves within the two subspaces with given parity and théhogonal subspaces. Only in this case in fact is it possible to
projection into the space with no definite parity always re-correlate with no ambiguity one atomic detection with a state
mains zero. We have already used this fact in 6) where ~ ©F Property of the cavity mode and then consequently apply
we have writterp=p.+py, since, as showed by Eq0) a feedback scheme. It is then easy to prove that the two

and(61), these two matrices are just the odd and even comicrowave pulses iR; andR, and the dispersive interac-

ponents of the density matrix. tion in C [see. Eq.§52)] detgrmlne two projection operators
Generally speaking, the parity of the cavity mode statePnly for the situation considered hergj€ 7 and two /2

plays such a fundamental role that our stroboscopic feedbadi!!Se$ and these projectors are just the projectors into the

scheme is able to protect only even and odd coherent stat€¥en and odd subspace.

(we have considered an initial odd cat state only, but the

scheme can be simply adapted to the even)céisdact one  VI. DYNAMICS IN THE PRESENCE OF STROBOSCOPIC

could generalize the scheme described above and consider FEEDBACK

the generation of more general cat states. For example, one

can consider generic phase shift¢ 7 (as it is done if13])

and generic microwave pulses in the two cavifigsandR,

The experimental study of this stroboscopic feedback
scheme can be done by performing a series of atomic detec-
tions of the state of the off-resonant probe atoms separated
le)—cele)+cql), by a given time inj[ervaTI' and repeati_ng this serigs of mea-
(70 surements many times, always starting from a first detection
in the statee. This allows one to reconstruct the time evolu-
|g>_>—c; ley+ck|g), tion of the probability of finding the stai P,(nT) [see Eq.
(57)] in the presence of feedback. The time evolution of this
wherec, andc, depend on the intensity and phase of theprobability is plotted in Fig. 7 where an initial odd coherent
microwave pulses iflR; andR, and on the interaction time. state with|@|?=3.3 (just the value corresponding to that of
This allows one to generate a large class of linear superpdhe actual experimehis considered. The full line refers to
sitions of coherent states with different phases, but only ifhe no feedback casg.&0), that is, the theoretical predic-
the case of cat states with a given parity our stroboscopition of Eq. (58); the dashed line refers ta==/6 and yT
scheme can be implemented. In fact the essential conditiorr 0.02; the dotted line tw= 7/2 andyT=0.02; horizontal
for the stroboscopic protection scheme to be applied is therosses tqu= /2 and yT=0.2 and diagonal crosses }o
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=7/6 and yT=0.2. In (a) the ideal case of perfect atomic dissipative, one can easily check that all the eigenvaluek
detection is considered, while) refers to the casgy=0.4,  the family A, are such thaf\|<1. The stationary state will
which is the actual efficiency of the detector employed incorrespond to the eigenvectors associated to the eigenvalue
[13]. These two figures show the dependence on the threg=1. It is possible to see that there is only one eigenvalue
feedback parametersT, u«, and » and, as expected, the \ =1, for the matrix determining the evolution of the diago-
most relevant one is the time between two successive Me@y| elementsA,, and that the associated eigenvector is the

surementsT. This time has to be as small as possible, bene corresponding to the diagonal stationary state of Eq.
cause decoherence can be best inhibited if one can “checki;5

the cavity state, and try to restore it, as soon as possible. At first sight, the comparison between the curves in the

Moreover we have seen that the indirect measurement of ﬂ}?resence of feedback, with, remaining close to one, and

cawty W'th the atoms becp mes o_ptl_mal only n the Contlnu'that in the absence o,f feeoTback seems to suggest1 that the

ggﬁ Ielrf;gig-nrfl 2?‘; tohn(lyi:i]tiglus r:lgtlgéarr:gnz%relrdgizltr?t)elﬁgh initial odd cat state can be preserved almost perfectly. How-

is perfectly p)r/egerve d P ever, this is an incorrect interpretation because the quantity
’ P. gives only partial information on the state of the radiation

The coupling parametes =) 7 is instead connected to " L . .
the probability of releasing the photon within the high- mode within the cavity: it is a measurement of its pafdge

cavity. We have assumed that the feedback atoms come frofr@- (57)] and Fig. 7 only shows that our feedback scheme is
an independent source just to have the possibility of varyingP!e to preserve almost perfectly the initial parity. Perfect cat
their velocity and therefore the parameterThis probability ~ State “freezing” can be realized only in cavities with an

of releasing the photon in the cavity is maximized when thenfinite Q; the proposed feedback scheme inevitably modifies

sine term in Eq(66) is maximum, i.e., when the initial state, even in the ideal conditions of perfect detec-
tion efficiency»=1 and continuous feedbagkl ~0. In fact
un=m(m+1/2) m integer. (71)  the stroboscopic feedback model shows the same behavior of

) - the continuous feedback model discussed above for optical
This resonance condition depends on the photon number . ities, which(when restricting to initial states with given

which however. is not determined in general and moreovebarity) represents its continuous measurement ligit—0.
decreases as time evolveshen yT+0). In the case of the | characterized by phase diffusion, because the photon left
gcgrr]c(;isln%etrhgaéosr:gitt?ostrdlid here, 1/326{1) rgug_hly Colrr_e- in the cavity by the resonant atom has no phase relationship
P . Pla=m(m+1/2) and this explains -y “ihose” in’ the cavity. However, this phase diffusion
why at small times the casp=w/6 gives a good result proves to be slower than the usual phase diffusion, so that

2_ . . .
(lal®=3.3 in the figures At longer times the valugu also in this stroboscopic case, the protection of the initial cat

= m/2 gives the better result and this is due to the fact thaf, . s extremely good. This is clearly shown by Fig. 8
the cavity mean photon number has become approximate here the Wigner function of the same initial odd coherent

one. A completg exp.lana.tion of the asymptotic behavior Olyyaie considered in Fig. 7, is plotted(® and compared with

the curves qf Fig. 7 is given by the ff"‘Ct t.hat, as longTas o Wigner function of the cavity state after a tine

#0, the stationary state of the cavity field is a mixture of the_ 44}y (t~3tge) in the presence of feedbadh). The two
. e .

vacuum and the one-photon state, given by states are almost indistinguishable, even if in Fif)8he

eT_1 sir? actual experimental valuggy=0.4 is consideredthe othe_r
psta 10)(0| + TR |1y1.  parameters argu=/6, yT=0.02). The comparison with
e’T—1+ 7y sir? u e’"—1+ 7 sirt u Fig. 8(c), where the Wigner function evolved for the same
(72 time interval in theabsenceof feedback is plotted, clearly
o ) ) shows the effectiveness of our scheme. Sine8ty.., the
It is immediate to see that this means state in the absence of feedback has become a mixture of two
) coherent states with opposite phases, and the oscillations as-
_ stat_ 7 Sir? 1 sociated to quantum coherence have essentially disappeared.
Pe(®)=p11 = (73

On the contrary, the state evolved in the presence of feed-
back is almost indistinguishable from the initial one and the
which is verified by the plots shown in Fig. 7. interference oscillations are still very visible. FigurébB

The form of the stationary state can be obtained from thalso shows that the unconventional, feedback-induced phase
general expression of the mappig9). In fact, since the diffusion is actually very slow, since its effects are not yet
time evolution of a given matrix element is coupled only to visible aftert~ 3tge.

e’T—1+ 5 sir? ,u,1

those with the same off-diagonal index this mapping can The effects of phase diffusion begin to be visible after one

be written in the simpler form relaxation timet=+y"1, as shown by Fig. 9, where the
. . Wigner functions at this time, both in the preseit@eand in
Vp=AVp, (74  the absencéb) of feedback are compargdther parameter

R values are the same as in Fig. @uantum coherence is quite
wherep, 4 is thenth component of the vectdr, andA,  visible in (a), while it has completely disappeared (h);
is a matrix whose expression can be obtained from(&9.  however, the state in the presence of feedback begins to dis-
The state of the cavity field afté¢ measurement@nd even-  tort with respect to the initial state, as the two peaks associ-
tual feedback correctiohss therefore obtained applying the ated with the two coherent states become broader and more
matrix A, K times. Since the evolution of the cavity field is rounded due to phase diffusion.
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FIG. 9. Wigner function of the odd cat state of Fig. 8, evolved
for a timet=1/y in the presence of feedback with the same param-
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¥ photon number distribution of the initial quantum state of the
cavity. This is obtained at the price of introducing an uncon-
ventional phase diffusion, slower than the usual phase diffu-
sion[see Eqs(11) and(19)] that modifies the state at suffi-
ciently long times. To be more specific, feedback protects
very well the relative phase of the coefficients of the com-

x ponents of the initial state, generating at the same time the

FIG. 8. (a) Wigner function of the initial odd cat statéy) diffusion of the phase _Of the field. ..
=N_(|&)—|—a)), |a|?=3.3: (b) Wigner function of the same cat The above description of the feedback scheme explicitly

state evolved for a timé=0.44k (t~3tyy), in the presence of considers all the experimental limitatiofrsonunit efficiency
feedback fu= /6, yT=0.02, =0.4); (c) Wigner function of the  Of the detectors, comparison between the various time gcales
same state after a timie=0.44/y, but evolved in the absence of €xceptone: here we have assumed that one has an extremely
feedback. good control of the atomic injection and that it is possible to
sendexactlyone atom at a time in the cavity. This is not
VIl. CONCLUDING REMARKS experimentally possible at the moment; for exampld,1i8]
sending an “atom” explicitly means sending an atomic

In this paper we have presented a way for protecting a : .
generic initial quantum state of a radiation mode in a cavitypUIse with an average number-0.2, so that the probability

against decoherence. The initial quantum state is not peﬁbeaV_irnhg t\;vo atorrils sirr?ultaneousla/fin :thbe CI?Vi% is negli- h
fectly preserved for an infinite timghis is possible only in a gible. This fact makes the proposed feedback scheme muc

cavity with an infiniteQ): nonetheless its quantum coher- less effective; in fact, this is essentially equivalent to having,

ence properties can be preserved for a long time and thig the itroboscopic case, an effectiy_e quantum eff?ciency
“lifetime” of the state significantly increased. The model 7= 7N°, because one has a probability~0.04 of having
presented here is a “physical” way to control decoherence®n€ probe atom and one feedback atom in each feedback
based on feedback, that is, measuring the system and modfOP- As a consequence, the dynamics in the presence of
fying its dynamics according to the result of the measurefeedback becomes hardly distinguishable from the standard
ment. In this sense it is very similar in spirit to the proposalsdissipative evolution.

of Ref.[32]. Our approach is complementary to those based N the continuous feedback scheme for optical cavities
on quantum error correction codg3l], using software to ONne€ has the ﬂaedback atomic beam only and the effective
deal with decoherence. The present feedback acts in a vesfficiency isyn. Anyway in the optical case, the problem of
simple way: one checks if the cavity has lost a photon, andhaving exactly one feedback atom at a time with certainty
when this happens, one gives the photon back through theould be overcome, at least in principle, by replacing the
injection of an appropriately prepared atom. In the case of #eam of feedback atoms with a single fixed feedback atom,
continuous monitoring of the system and in the ideal limit of optically trapped by the cavityfor a similar configuration,

unit detector efficiency, the model preserves perfectly thesee, for example[32]). The trapped atom must have the
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sameA configuration described in Fig. 1 and the adiabatictodetections, the atom has to remain in the “ready” state
photon transfer between the classical laser field and thgy,), which is decoupled from the cavity mode, and this
quantized optical mode could be obtained with an appropricould be obtained with an appropriate recycling process,
ate shaping of the laser pul§g(t). The possibility of simu-  driven, for example, by supplementary laser pulss].

lating the adiabatic transfer with an appropriately designed

laser pulse has been recently discussed by Kimble and Law

[38] in a proposal for the realization of a “photon pistol,” ACKNOWLEDGMENTS

able to release exactly one photon on dem@eg als$29]).

In this case, the feedback loop would be simply activated by This work was partially supported by the Istituto Nazion-
turning on the appropriately shaped laser pulse focused oale Fisica della MateridINFM) through the “Progetto di
the trapped atom. During the time interval between two phoRicerca Avanzata INFM-CAT.”
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