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Quantum trajectory simulations of the fluorescence intensity from a two-level atom driven
by a multichromatic field
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The quantum trajectories method is illustrated for the resonance fluorescence of a two-level atom driven by
a multichromatic field. We discuss the method for the time evolution of the fluorescence intensity in the
presence of bichromatic and trichromatic driving fields. We consider the special case wherein one multichro-
matic field component is strong and resonant with the atomic transition whereas the other components are
much weaker and arbitrarily detuned from the atomic resonance. We find that the phase-dependent modulations
of the Rabi oscillations, recently observed experimen{@lyWu, D. J. Gauthier, and T. W. Mossberg, Phys.
Rev. A 49, R1519(1994)] for the special case when the weaker component of a bichromatic driving field is
detuned from the atomic resonance by the strong-field Rabi frequency, appear also for detunings close to the
subharmonics of the Rabi frequency. Furthermore, we show that for the atom initially prepared in one of the
dressed states of the strong field component the modulations are not sensitive to the phase. We extend the
calculations to the case of a trichromatic driving field and find that apart from the modulations of the amplitude
there is a modulation of the frequency of the Rabi oscillations. Moreover, the time evolution of the fluores-
cence intensity depends on the phase regardless of the initial conditions and a phase-dependent suppression of
the Rabi oscillations can be observed when the sideband fields are tuned to the subharmonics of the strong-field
Rabi frequency[S1050-2947@8)03501-X]

PACS numbd(s): 42.50.Lc, 42.50.Hz

I. INTRODUCTION interference of Fock-state photons in the framework of quan-
tum trajectory theory.

The traditional method of treating dissipative coupling be-  In this paper we investigate th_e fluorespeqce intensity of a
tween a quantunisource system and a large reservoir em- two-level atom driven by a multichromatic field. We espe-
ploys a master equation for the system reduced density ogially explore multichromatic field effects in the transient
erator [1]. This describes the evolution of the density @nd stationary fluorescence intensity. Various aspects of the
operator, having traced out the states of the reservoir an@{omic response to the bichromatic excitation have been
usually treating the system-reservoir coupling in the Born-Studied using standard Bloch equation approaches. For ex-
Markov approximation. ample, it has been shown that the fluorescence spectrum dif-

Recently, new theoretical methods have been developef&rs qualitatively from the characteristic triplet spectrum of
to describe the evolution of single quantum systems, inclugd" atom driven by a mon_ochromatlc figlLD]. Th.PT spectrum
ing simulation methods of quantum trajector{gd, Monte consists of a ”“T“ber of sidebands whose positions depend on
Carlo wave function$3], waiting time distributiong4], and the frequency difference between the two driving figltit].

. . The atomic inversion exhibits resonant behavior when the
quantum stochastic equatiof. One of the methods, that frequency difference is approximately equal to the Rabi fre-

- - ; . 3 'ahency of the driving fields or any subharmonic of the Rabi
trajectories methof?], which simulates the evolution of the  eqency{12]. Work has also been done relating to a tran-
trajectories in Hilbert space conditioned on continuous phogjent pichromatic excitation and it has been predicted that the
todetection with two distinct elements. The first is a SmOOthoichromatically driven atoms exhibit a dynamical behavior
evolution under the influence of a non-Hermitian Hamil- that is strongly dependent on the initial relative phase of the
tonian; the second element consists of a stochastic influenGgiving-field component$13]. Wu, Gauthier, and Mossberg
that randomly interrupts the non-Hermitian evolution by pro-[14] have explored, both theoretically and experimentally,
jections or quantum jumps. Carmichael has applied thehe special case wherein one bichromatic field component is
method, which he described as an “unravelling” of the mas-resonant with the atomic transition and the other, much
ter equation, to a number of systems in quantum ofj¢s  weaker component, is detuned from the atomic resonance by
including the driven Jaynes-Cummings mofig]. Wiseman the Rabi frequency of the stronger component. They have
and Milburn[7] have applied the method to the theory of demonstrated phase-dependent dynamics, for example, a
field-quadrature measurements. Zheng and Saj@lgeave phase-dependent slow modulation of the Rabi oscillations of
analyzed the method for the specific case of optical secondhe fluorescence intensity and a complete polarization of the
harmonic generation, and Choug8| has investigated the atom-resonant-field dressed stdtes. The observed modu-
lation represents a response characteristic to a bichromatic
excitation.
*Permanent address: Department of Physics and Centre for Laser The purpose of the present paper is to illustrate the quan-
Science, The University of Queensland, Brisbane, Australia 4072.tum trajectories method for the transient and stationary ef-
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FIG. 1. Schematic diagram of a two-level atom driven by three
fields of different amplitudes and frequencies. 0.1
fects in the fluorescence intensity of a driven two-level atom
In particular, we discuss the transient fluorescence intensit . g : . ' . ' ' ;
for bichromatic and trichromatic driving fields when one, a 50 40 30 20 10 O 10 20 30 40 50
strong, component is resonant to the atomic transition fre AT

guency and the other compongtis (are arbitrarily de-
tuned from the atomic resonance. We find that for some de- FIG. 2. The stationary fluorescence intensity as a function of the
tunings of the weaker components the transient response détuningA for a bichromatic driving field withy; =1, §=5TI", and
the atom shows a slow modulation superimposed on the Rall=5I". The circles present the Bloch equations results and the
oscillations induced by the strong field. We notice that thesolid line presents the quantum trajectories results.
modulation appears for the detunings close to the subhar-
monics of the Rabi frequend of the strong field. A small The time evolution of the atomic system can be described
shift of the frequencies from the subharmonic resonanceby the reduced density operator which in the interaction
Q/n is found to be proportional t6)%/45, whereQ, is the  Picture obeys the following master equatidn11]:
Rabi frequency of the weak components. The shift is more .
apparent fom> 1. and can be id(_entified as th_e generalized '3_’): ! [H,p]— 1 [(S'S p+pStS —25 pS*),
Bloch-Siegert shiff16]. We also find that the time modula- at fi 2
tions of the fluorescence intensity are strongly dependent on (1)
the initial state of the atom. When the atom is initially in one
of the dressed states of the strong field and is driven by ; . . )
bichromatic field, the time evolution of the fluorescence in-operators, which together W'th. the INversion operaibsat-
tensity is independent of the phase. For a trichromatic drivISTY the well-known commutation relations
ing field the fluorescence intensity depends on the phase in-
dependent of the initial conditions and for some phases the
intensity evolv.es in tim_e without the Rabi oscillations. In Eq. (1), T is the spontaneous emission rate and the Hamil-
Thg paper is organized as foII_ows: In Sec. Il _the mastekonianH is given by
equation of a two-level atom driven by a multichromatic
field is presented and a method of calculating the time evo-H=#A S+ {A Q[ 1+ a8/ (" 9+ aze! "+ 9]ST +H.c},
lution of the fluorescence intensity is described. In Sec. IlI (3
the method of quantum trajectories is applied to the system
of a two-level atom driven by a multichromatic field. In Sec. where(} is the Rabi frequency of the central component of
IV our numerical results are given and interpreted. the trichromatic field; =04 /Q, a3=03/Q with ; and
Q) ; the Rabi frequencies of the detuned components of the
trichromatic field, and¢ is the relative phase between the
ll. DENSITY-MATRIX APPROACH central component and the sideband fields. The master equa-
We consider a two-level atom with ground staté, and tion.(l) with the Hamiltor_1ian(3) leads to three equations of
excited statd2) connected by the transition dipole moment Motion for the expectation values of the atomic operators
w and separated by the transition frequengy The atom is  (Optical Bloch equations which can be written as
driven by a multichromatic fieldFig. 1) with three fre-

g/heres+ andS™ are the usual raising and lowering atomic

[S*,S]=2S% [S%,S°]==+S". )

guency componentso;, w,, and w; such thatws;— w, (ST(0))=-(GT+iA)S (1) + Qo (t)(SH(D)),
=w,—w1= 45, and with the central componeat, detuned _

from the atomic resonance ly= wy— w,. The atom is also (ST(1))=—(GT—iA){S* (1)) + Qo* (1)(SH1)),
coupled to all other modes of the electromagnetic field, (4)

which are assumed to be initially in their vacuum state. This  gzt)y= — 1T —T(S41)) = L Qw(t/{S (1)) = LQ w* (t
coupling leads to spontaneous emissidissipation with a (S)=-2 (1) =2 Qe(){S7(1) ~20w* ()
rate given by the EinsteiA coefficient. X(S*(1)),



)

It)

T 0.9+

10
0.9
08
0.7
08
05
04
03
02
0.1
0.0

1.0
0.9
08
0.7
06
05
04
03
02
0.1

QUANTUM TRAJECTORY SIMULATIONS OF THE .. .. 1297

@

(b)

MR rsre e e

1.0
0.9
084
07
06
05
0.4
03
0.2
01
0.0

©

ANAAAA AL

1.0 4
0.9
0.8
0.7
0.6
0.5

0.3
0.2
0.14
6.0

1.0+

0.8 4
07 j
06

05
0.4
03]
02]

0.1
0.0

1.04
0.9
0.8 4
0.7 4
0.6 1
0.5+
0.4 1
0.3
0.2 1
0.1

0.0

@)

AAAAAAAAAATAAAANAAAR AN

(©

AAAAA AN

FIG. 3. Fluorescence intensity as a function of
time for a bichromatic driving field witl®A=0,
O=90I', ¢==/2, a;=0.1, 5=Q/n and differ-
entn: (@ n=1, (b) n=2, (c) n=3. The atom was
initially in its ground state.

FIG. 4. Fluorescence intensity as a function of
time for a bichromatic driving field witlA=0,
O=90I', ¢p=m/2, ;=0.2, and differents. (a)
0=49", (b) 6=46.9", (c) 6=49I'. The atom
was initially in its ground state.
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FIG. 5. The same as in Fig. 4, but the atom
was initially in a superposition state with,;(0)
=1/V2 andC,(0)=i/v2.

FIG. 6. Fluorescence intensity as a function of
time for a trichromatic driving field withA=0,
O =90I', a1=a3=0.3,5=0Q/2, and differentg:
@ ¢#=0, (b) p=m/2, (c) ¢=m. The atom was
initially in its ground state.
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wherew(t) =1+ a;e' (% #) 4 g el (- o+é), which leads to a less computing time. The results here are
In order to solve the system of equatio@d$, we decom- based on ensembles of 10 000 trajectories.

pose the expectation values of the atomic operators into am- Quantum trajectories are generated numerically by repre-

plitudes that oscillate at frequendyand its harmonics. This senting the wave function in the atomic states basis

decomposition is given b
P g+w ’ |y =Ca(1)|1)+Cy(1)[2), (8)

Xi(th= > X/ (el =123, (5)  where Cy(t) and C,(t) are ¢ numbers. The coefficients
f==e C,(t) andC,(t) are found from a Schdinger equation with
R a non-Hermitian Hamiltonian and it is easy to show that they
where Xj(t) are the components of the vectok(t)  satisfy a system of two coupled first-order differential equa-
=[(S7(1)),(S"(t)),(SX(t))]. Substituting Eq.5) into Eq. tions
(4), we obtain a set of equations of motion for the slowly

varying amplitudes(i/(t), which can be solved, for example, Cl(t)= FIAC (1) — 2Qw(t)Cy(t),

by the continuous fraction method. For general and detailed _ ©
developments of this method the reader is referred to Refs. Co(t)=—2(T+iA)Cy(t) + 3Qw* (1)Cy(t).
[11,16.

Here, we are interested in the time evolution of the fluo-The quantum trajectories method requires the integration of
rescent intensity that, in photons per second, is defined dsg. (9) to be repeated many times before an average is ob-
[17,18 tained to describe an ensemble of dissipative systems. The

procedure involves discretizing time into finite stejlsand
1(1)=T(S"(1)S™(1)). (6)  at every step deciding whether or not a collaggeantum
jump) occurs. The collapses and normalization are straight-

In terms of the slowly varying amplitude/ (t) the intensity forwardly implemented into this procedure, and the fluores-

can be written as cence intensity is calculated from
1 | 1 |Ca(t)]*—|Cy(t)]?
()=T|5+2 X3(t)e . () I()==T| 14— AN 10
277 O=2 M e, orTIc,mP (10
In Sec. IV, we will discuss the fluorescence intensity for
three cases(l) The steady-state intensity for a bichromatic IV. RESULTS
driving field with «;=1 anda;3=0, (2) the transient fluores- | thjs section we discuss the time evolution of the fluo-

cence intensity for a bichromatic driving field witlh <1  rescence intensity calculated numerically using the quantum
and a3=0, and(3) the transient fluorescence intensity for a trajectories method. In order to ensure that the method is

trichromatic driving field witha; = a;<1. correct, we first consider two special cases, in which we
compare the quantum trajectories results with that obtained
. QUANTUM TRAJECTORIES METHOD from the Bloch equations. In the first case, we consider the

steady-state fluorescence intensity as a function ¢or a

In this section we describe the method of quantum trajecbichromatically driven atom, i.e., forz=0. In Fig. 2, we
tories for the specific case of a two-level atom driven by ashow the steady-state fluorescence intensity as a function of
multichromatic field. The quantum trajectories approach isA for 6=5I', a;=1, andQ=5I". The solid line represents
built around the standard theory of photoelectric detectiorthe quantum trajectories method results, whereas the circles
and the master equation theory of a photoemissive sourceepresent the results obtained from the Bloch equat{dns
Here, a stochastic wave function describes the timein obtaining the quantum trajectories results, the average of
dependent state of the quantum-mechanical source condiO 000 trajectories has been taken. It is seen that the quan-
tioned on a history of classical stochastic signals that appedum trajectories and the Bloch equations results converge
at detectors monitoring the source system. The stochast@ccurately.
wave-function evolution generates the measurement record, In the second case, we consider the transient fluorescence
the numbers that appear in the laboratory. The parallel evdntensity for a bichromatically driven atom with one of the
lution of the stochastic wave function and accompanyingfield components resonant to the atomic resonance and the
measurement record is called a quantum trajectory. Such @ther, much weaker, detuned from the atomic resonance by
single trajectory gives a picture of what is going on in thethe Rabi frequency of the resonant component. This corre-
source in a visible form. The master equation approach doesponds to the case used by \&tual.[14] in their experiment
not allow this concrete visualization. Further, the connectiorto observe the time evolution of the fluorescence intensity
between the conditional wave function and the master equaand its dependence on the relative phase of the two driving
tion is that an ensemble average taken with respect to thields. We find that for certain values of the phage(¢
conditioned wave function reproduces the results of a master #/2) [19], the fluorescence intensity exhibits a slow modu-
equation calculation. Although the quantum trajectoriedation superimposed on the fast oscillations. This modulation
method solves fewer equations, this advantage comes at thepresents a response characteristic to the bichromatic exci-
expense of taking an average over an ensemble of trajecttation and results from the splitting of the dressed states by
ries. In many cases, particularly in this paper, the averagéhe weaker field11].
over a relatively small ensemble of trajectories is needed, For certain detunings of the weaker component from the
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strong component, it is possible to excite multiphotonevolution of the fluorescence intensity is independent of the
dressed-state transitions. Therefore, we consider the timghase. This is shown in Fig. 5, where we plot the fluores-
evolution of the fluorescence intensity for a bichromaticcence intensity foA=0, Q=90I', «;=0.1, 6=(, and dif-
field, in which the weaker component is coupled to the subferent ¢. The atom was initially in a linear superposition
harmonics of the Rabi frequency of the strong componentwith C;(0)=1#2 andC,(0)=i/v2. It is clearly seen from
Moreover, we calculate the time evolution of the fluores-Fig. 5, that for the atom initially prepared in the superposi-
cence intensity for a trichromatically driven atom. In Fig. 3, tion states the time evolution of the fluorescence intensity is
we plot the fluorescence intensity for=90I', ¢= /2, A independent otb. The same conclusion applies for the case
=0, §=Q/n, a;=0.1 and differenn. The atom starts from when the weaker component is coupled to the subharmonic
its ground state. It is seen that the time evolution of theresonances. This feature is in contrast to the monochromatic
fluorescence intensity is strongly affected by the presence afase when the phase-dependent dynamics are observed only
the weaker field only whed={, i.e., forn=1. In this case = when the interaction begins with the atom in a superposition
the fluorescence intensity exhibits a slow modulation superstate[22].

imposed on the fast oscillations at the Rabi frequeticit is Finally, we apply the quantum trajectories method to cal-
interesting to note that the frequency of the modulation isculate the time evolution of the fluorescence intensity for a
equal to3Q,. The factor} results from the fact that the trichromatic driving field. We will limit the calculations to
dipole moment between the two dressed states to which thiéae case when the central, strong component, is on resonance
weaker field is coupled i [15]. When the weaker com- Wwith the atomic transition£=0) and the two weaker side-
ponent is tuned to the subharmonic resonanceQ,afi>1, bands have the same amplitudes= a;=a and both are

the time evolution of the fluorescence intensity is not af-equally detuned(in opposite directionsfrom the central
fected by the weaker field and is similar to that characteristicomponent. When one of the fields is coupled to the lower
of a monochromatically driven atom. However, a modulationfrequency whereas the other is coupled to the higher fre-
can be seen fob slightly detuned from the subharmonic quency Rabi sideband of the strong component, the time
resonances. This is shown in Fig. 4, where we plot the timevolution of the intensity and its phase dependence are simi-
evolution of the intensity fod =0, ¢==u/2, Q=90T", «a; lar to that for the bichromatic field. The effect of the side-
=0.2, and different, but close to the first subharmonic reso- band fields, however, is quite different if we couple the side-
nance (1=2). It is evident from Fig. 4 that the weaker field band fields to the first subharmonic resonancesat(2/2.
affects the time evolution of the intensity fédifferent from  This is illustrated in Fig. 6, where we plot the time evolution
the subharmonic resonanée= (/2. This indicates the pres- of the intensity forQ=90I", a;=a3=0.3, andé=Q/2. In
ence of a shift of the subharmonic resonance. The same aphis case there is no amplitude modulation, but depending on
plies for the higher subharmonic resonances=a. We find  the phaseg there is a modulation of the frequency of the
that the shift of the frequencies from the subharmonic resooscillations.

nances is equal tnQ)2/45, which is recognized as the gen- ~ On the other hand, when the atom is initially prepared in
eralized Bloch-Siegert shiftL6]. Therefore, an experimental @ Superposition state witle;(0)=1#2 and C,(0)=i/v2,
observation of the modulations of the time evolution of thethe Rabi oscillations can be significantly reduceddoer O or
fluorescence intensity for detunings shifted from the subhar¢= 7. The oscillations can even be completely suppressed.
monic resonances would provide evidence for the presencEhis happens when the sideband fields are coupled to the
of the generalized Bloch-Siegert shift in the interaction of afirst subharmonic resonance. We show this in Fig. 7, where
two-level system with the bichromatic field. we plot the time evolution of the intensity fa@=90I", &

The modulation of the time evolution of the fluorescence={2/2, anda=0.1. It is evident from Fig. 7 that fop=0
intensity forn=2 results from a two-photon coupling be- and ¢= the Rabi oscillations are completely suppressed
tween the dressed states of the strongly driven atom and tind the intensity evolves in an essentially nonoscillatory
weaker component of the bichromatic field. This couplingmanner.
can lead to a two-photon ac Stark effg20]. Indeed, we find The modulation of the amplitude of the Rabi oscillations
from Fig. 4b) that the frequency of the modulation is equal for the bichromatic driving field, seen in Figs. 3 and 4, and
to %\/1—3a29, which is recognized as the Rabi frequencythe modulation of the frequency of the Rabi oscillations for
associated with the two-photon resonafizé]. The multi- the trichromatic driving field, seen in Figs. 6 and 8, can be
photon ac Stark effect in the interaction between a two-levefxplained by analyzing the HamiltonigB). For a bichro-
system and the bichromatic field has recently been observe@atic driving field with A=0, a3=0, and ¢==/2, the
experimentally in the Autler-Townes absorption spectrumHamiltonian(3) reduces to
[21]. The modulation in the fluorescence intensity seen in
Fig. 4b) would be regarded as another way of testing the H=AQ(1+ia.e®)S"+H.c. (11
multiphoton ac Stark effect.

The generality of our theory allows us to investigate many . . .
different parameter regimes. So far we have considered thg this case the s.,|deb§nd. field acts as a quulator of .the
regime when the interaction begins with the atom in i'[spha‘?’e Of. thg Rabi osc!IIatl_()ns, which results in the beating
ground state. Other interesting features may be expected Wifﬁab' oscn_lat|ons seen in F'g: 3. .
the atom initially prepared in a superposition state. Surpris-, O @ trichromatic driving field witid =0 anda; = a3 =a
ingly, for a bichromatic driving field withd=( and the the Hamiltonian(3) takes the form
atom initially prepared in one of the dressed states of the _
strong componenC,(0)=1A2 andC,(0)=i/v2, the time H=AQ[1+2a cogét)e'?]S" +H.c. (12
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Now, depending on the phasg, the sideband fields can tichromatic field is quite different from that arising from the
modulate the phase or the amplitude of the Rabi oscillationsatom driven by a monochromatic field. The effect of a
For ¢=0 the sideband fields modulate the amplitude of thebichromatic field, with a strong component resonant to the
Rabi frequency(), which results in the modulation of the atomic transition frequency and the other component much
frequency of the Rabi oscillations seen in Fig. 6. Rbr weaker and resonant to the Rabi frequency of the strong
=m/2 the sideband fields modulate the phase of the Ralfdield, is to produce a slow modulation of the Rabi oscillations
frequency resulting in the modulation of the amplitude of theof the strong field 14]. We have found that the modulation is
Rabi oscillations seen in Fig (8. sensitive to the relative phase of the two fields when the
The absence of the oscillations in the time evolution ofatom is initially in its ground state. When the atom is initially
the intensity, seen in Fig. 7, can be explained in the sami the equal superposition of its states the modulation is in-
way as for the monochromatic excitatif22]. If the atom is  dependent of the phase. The modulation of the Rabi oscilla-
initially in a superposition state withC;(0)=1A2 and tions appears also for the frequencies of the weaker compo-
C,(0)=i/v2, the Bloch vector and the driving field vector nent tuned close to the subharmonic resonances of the Rabi

are initially parallel. Fort>0 the Bloch vectorB is effec-  frequency of the strong field. This effect results from the

tively “locked” to the field vector{) (i.e., the Bloch equa- multiphoton ac Stark effect and appears only for frequencies

R R o shifted from the subharmonic resonances by the generalized
tion is dB/dt=Q X B~0) and does not precess in time. The Bloch-Siegert shift.

oscillations are absent for relatively weak sideband fields \ye have also calculated the time evolution of the fluores-
(a<1). For largera the oscillations appear again in the cence intensity for a trichromatic driving field with a strong
fluorescence intensity. This is shown in Fig. 8, where we plot.omponent resonant to the atomic transition frequency and
the time evolution of the fluorescence intensity for the same,,o \weaker sideband components symmetrically located
parameters as in Fig. 7, but larger0.3. The fluorescence apoyt the frequency of the central component. In this case
intensity shows the modulated oscillations for all pha$e.s not only the amplitude but also the frequency of the Rabi
For largera the Bloch vector starts to rotate around the field 5gcijlations can be modulated by the sideband components.
vector (), which leads to the reappearing of the oscillations.For the atom initially prepared in the equal superposition of
its states the fluorescence intensity depends on the phase and
V. SUMMARY a complete suppression of the Rabi oscillations can be ob-

. . . served.
We have applied the quantum trajectories method to cal-

culate the time evolution of the fluorescence intensity of a
two-level atom driven by a multichromatic field. We have
found the quantum trajectories method very effective in the S.F.C. and M.R.B.W. are grateful to Young-Tak Chough
calculations of the time-dependent dynamics of the fluoresfor enlightening discussions. This research was supported in
cence field. The results show that the time evolution of thepart by Malaysia IRPA R&D 09-02-03-0337, and the Aus-
fluorescence intensity of a two-level atom driven by a mul-tralian Research Council.
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