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Abstract 

Heat transfer and entropy generation analysis of the thermally developing forced convection in a porous-

saturated duct of rectangular cross-section, with walls maintained at a constant and uniform heat flux, is 

investigated based on the Brinkman flow model. The classical Galerkin method is used to obtain the fully 

developed velocity distribution. To solve the thermal energy equation, with the effects of viscous 

dissipation being included, the Extended Weighted Residuals Method (EWRM) is applied. The local 

(three dimensional) temperature field is solved by utilizing the Green’s function solution based on the 

EWRM where symbolic algebra is being used for convenience in presentation. Following the computation 

of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature 

as a function of the dimensionless longitudinal coordinate, the aspect ratio, the Darcy number, the 

viscosity ratio, and the Brinkman number. With the velocity and temperature field being determined, the 

Second Law (of Thermodynamics) aspect of the problem is also investigated. Approximate closed form 

solutions are also presented for two limiting cases of MDa values. It is observed that decreasing the aspect 

ratio and MDa values increases the entropy generation rate.  
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Nomenclature 

A   area, m2 

A   matrix 

aij   elements of matrix A 

B   matrix 

mB    coefficients 

Br   Brinkman number, )/(2 aqU weµ  

bij   elements of matrix B 

b    aspect ratio, b =b/a 

C   duct contour, m  

cp    specific heat, J/kg⋅K 

D   matrix 

Da   Darcy number, K/a2  

Dh   hydraulic diameter 4A/C, m 

dmj   elements of matrix D 

E   matrix with elements ije  

ije    elements of matrix E 

F   required pumping power to enthalpy change ratio, * /( )pF P cρ η=  

fi , fj   basis functions 

G   Green’s function 

h   heat transfer coefficient, W/m2⋅K 

h    average heat transfer coefficient, W/m2⋅K 

i, j   indices 

K   permeability, m2 

ek    effective thermal conductivity, W/m.K 
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L   duct length, m 

L̂    dimensionless duct length, L/(aPe) 

M   µµ /e  

m,n   indices 

N   matrix dimension 

N*   dimensionless pressure drop,* * /( / )N P U Kµ=  

Ns   dimensionless entropy generation rate, Ns=genSɺ /( mɺ cp) 

Nu   Nusselt number, ha/ke 

NuD   Nusselt numbed, hDh/ke 

Nu*   Nusselt number without viscous dissipation 

P   matrix having elements pmi 

P*   negative of the applied pressure gradient, Pa/m 

Pe   Péclet number, /p ec aU kρ   

p   pressure, Pa 

pmi   elements of matrix P 

q*   dimensionless wall heat flux, * /( )w e iq q a k T= . 

ReD   Reynolds number, ehUD µρ /  

s   entropy, J/KgK 

S   volumetric heat source, W/m3 

genSɺ    Cross-sectional average of the entropy generation rate, W/K  

T   temperature, K 

Ti   temperature at x=0, K 

U   average velocity, m/s 

U    average value of u  
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u   velocity, m/s 

u    dimensionless velocity, 2/( * )u u P aµ=  

x   axial coordinate, m  

x̂     Pe/)/( ax   

y, z   coordinates, m 

zy,    y/a and z/a 

Greek 

∆    vector with elementsiδ  

iδ    elements of vector∆  

θ   dimensionless temperature 

λm   eigenvalues 

µ   fluid viscosity, N⋅s/m2 

eµ    effective viscosity, N⋅s/m2 

ξ   dimensionless coordinate,  

ρ   fluid density, kg/m3  

Φ   transformed temperature, Eq. (24)  

ψ    Eigenfunction 

Ω   vectors with element iω  

iω    elements of vector Ω 

Subscripts 

b   bulk 

i   inlet condition 

s   source effect 

w   wall 
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1. Introduction 

Designed porous media, which are of current practical importance, are usually associated with such 

high permeability and porosity that the Darcy flow model is not applicable while the Brinkman flow 

model can predict hydraulics through such hyperporous media as noted by Nield and Bejan [1]. Flow 

through pores, in a microscopic scale, is inherently irreversible and a part of the mechanical power is 

dissipated to heat as a result of viscous dissipation. Consequently, this effect at the pore level is accounted 

for in macroscopic scale by retaining a viscous dissipation term in the thermal energy equation where the 

term is proportional to the volume-averaged velocity square as first noted by Ene and Sanchez-Palencia 

[2] for cases where the Darcy flow model is valid. On the other hand, as noted above, there are numerous 

cases of practical importance, where non-Darcy effects are significant and one should model the pore 

level dissipation in terms of appropriate properties (of fluid and solid matrix). However, for such cases 

one is left with two alternatives for the viscous dissipation function as proposed by Nield [3] and Al-

Hadhrami et al. [4]. Recently, Breugem and Rees [5] have reported a volume averaging procedure to 

come up with a general model for viscous dissipation that seems to be applicable for a Brinkman-

Brinkman problem. The term ‘Brinkman-Brinkman’, proposed by Nield [6], refers to a problem involving 

a saturated porous medium in which the Brinkman momentum equation is used, and the thermal energy 

equation includes a viscous dissipation term involving a Brinkman number, which is the case here. It is 

also instructive to note that there are certain cases where one can neglect the effects of viscous dissipation 

as highlighted by Nield [6,7].  

Regardless of the relative importance of the frictional heating compared to other heat transfer 

mechanisms in a system, there are some applications where one is willing to inspect the viscous 

dissipation effects. In an analysis of mantle flow, Bercovici [8] showed an example of the effects of 

viscous dissipation in self-lubricating systems. On the other hand, the recent work of Celata et al. [9] 

addresses an interesting application of viscous dissipation in measuring the fluid friction coefficient for 

flow in a microchannel. In another notable study, Murakami and Mikic [10] have stated that even for flow 

of air, which has a relatively small viscosity compared to common liquids, say water, through a micro-

channel one should consider the effects of viscous dissipation when it comes to seek an optimum design 

feature for either of laminar or turbulent flows. Moreover, when it comes to entropy generation 

minimization (EGM), which is a popular method of optimization, one should have a clear insight of the 

viscous dissipation as it emerges in the fluid friction term of entropy generation [11].  

The groundbreaking work by Bejan [11] introduced the application of entropy generation due to heat 

and fluid flow as a powerful tool to optimize variety of configurations when analyzing engineering 

problems. Since entropy generation destroys the available work of a system, it makes good engineering 

sense to focus on entropy production due to heat transfer and fluid flow processes to understand the 
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associated entropy generation mechanisms. The literature on the topic is rich for flow through 

unobstructed circular tubes or parallel plate channels. Similar work, mostly restricted to the fully 

developed region, extended the analysis to ducts of arbitrary cross-section [12-13], to name a few.  

On the other hand, modeling entropy generation in porous media is comparatively harder than the 

clear fluid case partly due to the increased number of variables present in the governing equations. 

Another source of debate is the different available models for viscous dissipation, that lead to different 

fluid friction irreversibility (FFI) terms, as noted earlier. Moreover, the complexity of the problem 

becomes clearer when one observes that, numerical or theoretical, solutions addressing the Second Law 

analysis of forced convection in porous ducts are mostly restricted to circular tubes or parallel plate 

channels [14-17], where the simplicity of the geometry allows analytical solution of closed form. Thus the 

question naturally arises as to whether analytical solutions, addressing heat transfer and entropy 

generation, for more complicated cross-sections are possible.  

The method of weighted residuals was exploited by Haji-Sheikh and Vafai [18] in their study of 

thermally developing convection in ducts of various shapes. In a subsequent study, Haji-Sheikh [19] has 

applied a Fourier series method to investigate fully developed forced convection in a duct of rectangular 

cross-section. Haji-Sheikh et al. [20-24] have investigated heat transfer characteristics of the thermal 

entrance region for flow through porous ducts of arbitrary cross-sections. Applying the Fourier series 

method, Hooman and Merrikh [25] have analytically investigated heat transfer and fluid flow in a 

rectangular duct occupied by a hyperporous medium.  

On the other hand, a quick look at [18-25] shows that none of these articles reported the Second Law 

analysis and the work addressing the issue is limited to those applying the Darcy flow model in ducts of 

arbitrary cross-sections [26-28] with the exception of [29] where the authors have reported heat transfer 

and entropy generation optimization in the fully developed region of a rectangular duct for three cases of 

H1 boundary condition in the terminology of Shah and London [30]. This study treats the more general 

case of a thermally developing Brinkman-Brinkman problem in a duct of rectangular cross-section with 

walls held at a constant and uniform heat flux, i.e. the H2 case [30]. To the authors’ knowledge, not only 

is no analytical solution is available for the First Law aspects of this problem but also the present 

assessment of entropy generation for a thermally developing Brinkman-Brinkman problem has not been 

reported elsewhere.  

 

2. Analysis 

2.1 Fluid flow analysis 

For a passage with a constant but arbitrarily shaped cross-section the Brinkman momentum equation 

reads 
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2 2

2 2
0e

u u p
u

y z K x

µµ  ∂ ∂ ∂+ − − = ∂ ∂ ∂ 
.         (1) 

Although an exact solution for hydrodynamically fully developed velocity solution is available, for 

convenience of symbolic manipulation, the classical Galerkin method is used for computation of velocity. 

It begins by setting  

1

( , ) ( , )
N

j j
j

u y z y zδ η
=

=∑ .         (2a) 

where 

2( 1) 2( 1)2 2 2 2( )( ) j jm n

j a y b z y zη − −= − −         (2b) 

and jδ  coefficients are the constants to be determined. Next, the substitution of u(y,z) from Eq. (2a) in 

momentum equation and following the procedure in [31] leads to  

⋅ =E ∆ Ω∆ Ω∆ Ω∆ Ω ,           (3a) 

with matrix E and vector Ω having elements 

2[ ( , ) ( , ) / ]ij e i j j

A

e z z K d Aµ η η µη= ∇ −∫ y y ,       (3b) 

and  

( , )i i

A

p
y z d A

x
ω η ∂=  ∂ 

∫ ,         (3c) 

Therefore, the unknown coefficients are members of the vector 1 2{ , , , }Nδ δ δ∆ = ⋯  obtainable 

from = ⋅-1E∆ Ω∆ Ω∆ Ω∆ Ω . Once the local velocity distribution is determined, the mean velocity can be obtained as 

1

A

U u dA
A

= ∫ ,          (4a) 

and the normalized velocity is 

ˆ
u

u
U

= .            (4b) 

It is worth noting that A in Eq. (4a) is the cross-sectional area of the duct.  
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2.2 Heat transfer analysis 

2.2.1 Governing Thermal Energy Equation 

  Under the local thermal equilibrium condition, the energy equation in its general form for 

hydrodynamically fully developed and incompressible flow is  

( ) ( , , )p f e e e

T T T T
c u k k k S x y z

x x x y y z z
ρ      ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

,   (5) 

where S (x, y, z) includes the contribution of frictional heating and parameters( )p fcρ  and ke are the fluid 

thermal capacity and the equivalent thermal conductivity, respectively. When the contribution of axial 

conduction is negligible, Eq. (5) reduces to 

( , ; ) ( )e e p f

T T T
k k S y z x c u

y y z z x
ρ   ∂ ∂ ∂ ∂ ∂+ + =   ∂ ∂ ∂ ∂ ∂   

.     (6) 

The solution for Eq. (6) with a prescribed wall heat flux and in the presence of frictional heating is 

possible as 

2

1

( , ; ) ( , ) m

N
x

m m
m

T y z x B y z e λ−

=
= Ψ∑         (7a) 

where 

1

( , )
N

m mj j
j

d f y z
=

Ψ =∑           (7b) 

The following set of basis functions satisfies the homogeneous boundary condition of the second kind 

along the walls, 

( )( ) 2( 1) 2( 1)2 2 21 ( 1)(1 ) 1 ( 1)(1 / ) ,j jm n

j j jf m y n z b y z− −= + − − + − −     (8) 

for all combinations of mj = 1,2,… and 1jn = ,2,…. The eigenvalues are2mλ and the coefficients dmj are the 

members of eigenvectors dm; they are obtainable from the relation 

2( ) 0mλ+ ⋅ =mA B d ,          (9) 

where the elements of the matrices A and B are 

( , ) ( , )ij e i j

A

a k f y z f y z d A= − ∇ ⋅∇∫         (10a) 

( , ) ( , ) ( , )ij p i j

A

b c u y z f y z f y z d Aρ= ∫ .       (10b) 
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After determination of 2
mλ  and dmj, the appropriate mathematical steps in [32] provide the general 

solution. The eigenvectors dm will constitute the rows of a matrix D. When the boundary conditions are 

homogeneous and the thermophysical properties are constant, the Green’s function solution is  

0

1
( , ; ) (y , ; ) ( , ) ( , , | , ,0) ( , ;0)

x

p A A

T y z x d G S z dA u y z G y z x y z T y z dA
c ξ

ξ ξ
ρ =

′ ′ ′ ′ ′ ′ ′ ′ ′ ′= +∫ ∫ ∫ . (11) 

wherein the Green’s function is 

2 ( )

1 1

( , | , ) ( , ) ( , ) .m

N N
x

mi i m
m i

G y z x y z p f y z y z e λ ξξ − −

= =

 ′ ′ ′ ′= Ψ 
 

∑ ∑, ,     (12) 

The parameters pmi in Eq. (12) are members of the matrix P=[(D⋅⋅⋅⋅B)T]−1 (see Chapter 10 of [32] for more 

details). In dimensionless space, the temperature solution in rectangular passages takes the following form  

ˆ 1

0 0 0

1
ˆ ˆ( , ; ) ( , | , ) ( , )

x b

p z y

T y z x d G y z x y z S y z d y d z
c ξ

ξ ξ
ρ = = =

′ ′ ′ ′ ′ ′= ∫ ∫ ∫ , ,  

1

0 0

ˆ( , ) ( , | , 0) ( , ;0)
b

z y

u y z G y z x y z T y z d y d z
= =

′ ′ ′ ′ ′ ′+ ∫ ∫ , ,      (13) 

wherein the Green’s function is 

2 ˆ( )

1 1

ˆ( , | , ) ( , ) ( , ) m

N N
x

mi i m
m i

G y z x y z p f y z y z e λ ξξ − −

= =

 ′ ′ ′ ′= Ψ 
 

∑ ∑, ,     (14) 

and  

2 22 2ˆ ˆ ˆ
( , )

( ) Da
e

e i w

U u u u
S y z

k T T M y z

µ     ∂ ∂′ ′ = + +    ′ ′− ∂ ∂     
      (15) 

 The next task is the computation of the temperature in the entrance region of rectangular passages 

with locally constant wall heat flux qw. For the EWRM, the boundary conditions should be homogeneous. 

Therefore, the following temperature transformation, in the dimensionless form, is being used for 

insertion into the energy equation,   

2 2( , ; )
ˆ ˆ( , ; ) ( , ; )

/ 2 2
i

w e

T y z x T y z
y z x y z x

q a k b
θ −= = Φ + +       (16) 

where / /w e ey a z b
q k T y k T z

= =
= ∂ ∂ = ∂ ∂  is the input heat flux. After substituting for T from this 

transformation in Eq. (15), the function ˆ( , ; )y z xΦ must satisfy the following equation  
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2 222 2 2

2 2

ˆ ˆ ˆ 1
ˆDa

e

w

U u u u b u

y z q a M y z b U x

µ     ∂ Φ ∂ Φ ∂ ∂ + ∂ Φ + + + + + =      ∂ ∂ ∂ ∂ ∂      
    (17) 

Now, the new function ˆ( , ; )y z xΦ  satisfies the boundary conditions 
0

/
y

y
=

∂ Φ ∂ =  
1

/ 0
y

y
=

∂ Φ ∂ = , 

0
/ / 0

z z b
z z

= =
∂ Φ ∂ = ∂ Φ ∂ =  and the entrance condition 2 2( , ;0) ( / ) / 2y z y z bΦ = − + .  

 The equation for ˆ( , ; )y z xΦ contains a heat source expression that results from viscous 

dissipation in a porous medium modeled by the Brinkman equation, in the form recommended in [4]. 

Also it contains an additional source term that emerged following transformation. This suggests a 

development of two separate solutions; first, 1 ˆ( , ; )y z xΦ is neglecting the contribution of viscous 

dissipation and using the quantity ( 1) /b b+  as the only contribution for the wall effect. The second 

solution 2 ˆ( , ; )y z xΦ is to use ( , , )S y z ξ′ ′  in the Green’s function solution for the frictional contribution 

and this makes 1 2ˆ ˆ ˆ( , ; ) ( , ; ) Br ( , ; )y z x y z x y z xΦ = Φ + Φ with 2 /( )e wBr U q aµ= . Splitting Eq. (13) 

into two equations; the first contribution is  

ˆ 1

1

0 0 0

1
ˆ ˆ( , ; ) ( , | , )

x b

z y

b
y z x d G y z x y z d y d z

bξ

ξ ξ
= = =

 +′ ′ ′ ′Φ =  
 

∫ ∫ ∫ , ,  

1 2

0 0

ˆ( , ) ( , | , 0)
2 2

b 2

z y

y z
u y z G y z x y z d y d z

b= =

 ′ ′ ′ ′ ′ ′− + 
 

∫ ∫ , , .     (18) 

and the second one is 

2 2ˆ 1 2

2

0 0 0

ˆ ˆ ˆ
ˆ ˆ( , ; ) ( , | , )

Da

x b

z y

u u u
y z x d G y z x y z d y d z

M y zξ

ξ ξ
= = =

    ∂ ∂′ ′ ′ ′Φ = + +    ′ ′∂ ∂     
∫ ∫ ∫ , ,   (19) 

wherein the Green’s function is 

2 ˆ( )

1 1

ˆ( , | , ) ( , ) ( , ) .m

N N
x

mi i m
m i

G y z x y z p f y z y z e λ ξξ − −

= =

 ′ ′ ′ ′= Ψ 
 

∑ ∑, ,     (20) 

This form of the Green’s function contains the basis functions ( , )if y z′ ′ , eigenfunctions ( , )m y zΨ , 

parameters mip , and eigenvalues 2
mλ . The second contribution, following substitution for the Green’s 

function, attains a standard form, 

2 ˆ

2 2
1

1
ˆ( , ; ) ( , )

m xN

m m
m m

e
y z x A y z

λ

λ

−

=

−Φ = Ψ∑        (21) 

where  
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2 21 2

1 0 0

ˆ ˆ ˆ
( , )

Da

bN

m mi i
i z y

u u u
A p f y z d y d z

M y z= = =

    ∂ ∂ ′ ′ ′ ′= + +    ′ ′∂ ∂     
∑ ∫ ∫     (22) 

It is to be noted that as x̂  becomes large, the solution for2Φ approaches that for the quasi thermally fully 

developed solution 2,FDΦ . Therefore, the solution using equation 

2 ˆ

2 2, 2
1

ˆ( , ; ) ( , )
m xN

FD m m
m m

e
y z x A y z

λ

λ

−

=

Φ = Φ − Ψ∑        (23) 

exhibits better convergence characteristics. The solution for 2,FDΦ uses the Poisson’s equation 

2 22 2 2
2, 2,

2 2

ˆ ˆ ˆ
ˆBr 0

Da
FD FD u u u

S u
y z M y z

∗
 ∂ Φ ∂ Φ    ∂ ∂+ + + + − =    ∂ ∂ ∂ ∂     

    (24a) 

where 

2 21 2

0 0

ˆ ˆ ˆ

Da

b

z y

u u u
S d y d z

M y z
∗

= =

    ∂ ∂ ′ ′= + +    ′ ′∂ ∂     
∫ ∫       (24b) 

and it is obtainable by different methods. Since symbolic algebra is being used, it is determined by the 

classical Galerkin method [31]. Alternatively, a known 2,FDΦ solution leads to an initial value problem 

similar to that used to obtain 1Φ instead of the second term on the right side of Eq. (23).  

 Once the functions 1 ˆ( , ; )y z xΦ  and 2 ˆ( , ; )y z xΦ  are known, the temperature solution ˆ( , ; )y z xθ   

is available. Accordingly, for convenience of this presentation, the two contributions of the dimensionless 

temperature 1 2ˆ ˆ ˆ( , ; ) ( , ; ) ( , ; )y z x y z x y z xθ θ θ= +  are presented separately; that is,  

2 2

1 1ˆ ˆ( , ; ) ( , ; )
2 2

y z
y z x y z x

b
θ = + + Φ         (25-a) 

and 

2 2ˆ ˆ( , ; ) Br ( , ; )y z x y z xθ = Φ .         (25-b)  

Therefore, for i=1or 2, the following equation provides the mean wall temperature for each contribution, 

1

,

0 0

1
ˆ ˆ ˆ( ) ( , ; ) (1, ; )

1

b

i w i i

y z

x y b x d y z x d z
b

θ θ θ
= =


= + 

+   
∫ ∫      (26) 
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2.3 Second Law analysis 

Cross-sectional average of the entropy generation rate genSɺ  can be found as [12] 

gen
w

Q
dS mds

T

δ= −ɺ ɺ ,          (27) 

Noting that the longitudinal pressure gradient is constant, *
dP

P
dx

− = , with b
p

b b

dT dp
ds c

T Tρ
= −  and 

wQ q Cdxδ = , and after some algebraic manipulations one has  

*gen b w

p b p b p w

dS dT q Cdxdx P dx

mc dx T c T mc Tρ
= − −

ɺ

ɺ ɺ
.         (28) 

On the other hand, the First Law of Thermodynamics for an element reads 

3 2

2

4 (1 ) *
*b w e

p

dT q b a U S A
T

dx mc a

µ+ += =
ɺ

        (29) 

where T* is a constant (longitudinal bulk temperature gradient). Solving for the bulk temperature, one has 

*b iT T x T= +            (30) 

Making use of the above equation in the entropy production formula, Eq. (28), one concludes that 

*

/ * * / *
gen w

p i p i p w

dS q Cdxdx P dx

mc x T T c T x T T mc Tρ
= + −

+ +

ɺ

ɺ ɺ
      (31) 

As the wall temperature is not explicitly defined in terms of the known variables, one replaces it by the 

dimensionless variable counterpart ( ) /( / )w w i w eT T q a kθ = − where, in terms of the tabulated data, one has 

( )1 1 /w i w w w eT T Br q a kθ= + + Φ         (32) 

leading to 

( )1 1/ * / * 1 *
gen

p i i p i w w

dS dx dx q C dx
F

mc x T T x T T mc T Br qθ
′′

= + −
+ + + + Φ

ɺ

ɺ ɺ
    (33) 

with the dimensionless wall heat flux being defined as * /( )w e iq q a k T= . Moreover, the dimensionless 

parameter * /( *)pF P c Tρ=  is a measure of required pumping power to enthalpy change (longitudinal 

heat transfer). For non-zero Br values and in terms of the Darcy pressure drop one concludes that  

4
* /( *)

H

Br a
F N BrS

MDa D
= +          (34) 
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where N* shows the degree of non-Darcy effects on the longitudinal pressure gradient as 

* * /( / )N P U Kµ=  . For the Darcy flow model N*=1. Integrating from x=0 to x=L and rearranging in 

terms of known parameters, one has  

Ns= ( )

1
ˆ

0
1 1

( ) ˆ4 4ˆ1 * ( *) *
1 *

F
Lgen

p H H w w

S L a a dx
ln q L BrS q

mc D D Br qθ

+
 

= + + −  + + Φ 
∫

ɺ

ɺ
  (35a) 

As seen, like the left-hand-side term the first two terms in the right-hand-side of Eq. (33) are integrated 

directly; however, the last term on the right side should be evaluated numerically. Before reporting the 

numerical results, which are obtained using the trapezoidal rule, two limiting cases, for which 

approximate closed form solutions are obtained, will be presented. It is assumed that the dimensionless 

heat flux q* is very small compared to unity. Commensurate with that is the constant property assumption 

similar to [29]. First consider the case of a hyperporous medium for which one has MDa=O(1). A quick 

check of our table 1 shows that for this case S*=O(1) so that neglecting the terms smaller that O(q*), like 

q* 2, one finds that 

ˆ* ( (1 ) / *(1 ))Ns q L F b b BrS F= + + +        (35b) 

Replacing F, one has 

ˆ* ( * /( ))Ns q LBr S N MDa= +         (35c) 

Comparing the predictions of the above equation and the numerically obtained results, a good degree of 

agreement is observed. For example with b/a=1, N*=0.1, and MDa=1, Eq. (35c) predicts Ns=0.4291 and 

0.0429 while the numerical results are 0.3435 and 0.0418 for q*=0.01 and 0.001, respectively. The results 

agree better for smaller q* values, as expected based on our asymptotic analysis assumptions. 

It is instructive to rearrange Eq. (35c) in terms of dimensional variables as 

)*(
2

2

MDa

N
S

Ta

U
ALS

i

e
gen += µ
ɺ          (35d) 

Based on table 1 results, S* decreases with the aspect ratio so that, as shown by Eq. (35d), the square 

cross-section is associated with the highest entropy generation rate compared to rectangular counterparts.

 Another case of interest is the one for which MDa→0 where even for relatively small q* one can 

still expect that the product of Brq*S* will be notably greater than O(1) so that the second term in the 

right side of Eq. (35a) is negligible compared to the first one; a term that can be simplified in such a way 

that Ns be obtained as  

*
*

(1 ) ( )e

p i

UN L
Ns ln S

MDaS c T a a

µ
ρ

= +         (35e) 
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similar to the previous case, Eq. (35e) has been verified versus numerical counterparts for MDa=10-4 and 

N*=1 with the other parameters remaining the same. The numerical results are Ns=12.249, 7.814 while 

approximate counterparts are 12.344 and 7.785 for q*=0.01 and 0.001, respectively.  

 

3. Results and Discussion 

  In the absence of frictional heating contribution, under the constant wall heat flux condition, the 

energy balance leads to a relation for the bulk temperature,  

bxbb /ˆ)1(,1 +=θ           (36a) 

The bulk temperature is also obtainable analytically from Eq. (11), with ˆ( , ; )y z xθ  from Eq. (16). This 

was done mainly for the verification of the mathematical relations for the temperature solution. Similarly, 

the application of energy balance to a material element yields the relation 

xSb ˆ*
,2 =Φ            (36b) 

and S* values for selected values of b/a and M Da values are in Table 1. 

  If one designates ( ) /( / )w w i w eT T q a kθ = −  and ( ) /( / )b b i w eT T q a kθ = − , the Nusselt number is 

obtainable from the relation Nu=ha/ke= )/(1 bw θθ − and then using the hydraulic diameter 

4 /( )hD ab a b= +  in the definition, the Nusselt number becomes  

1, 1, 2, 2,

4 1 4 1
Nu

1 1 ( ) Br ( )
h

D
w b w b w b

D b b
Nu

a b bθ θ θ θ
  

= = =   + − + − + Φ − Φ    
.   (37) 

The values of NuD can be determined from tabulated 1, 1,( )w bθ θ−  and 2, 2,( )w bΦ − Φ  data in Tables 

2(a,b) through 5(a,b), at different ˆ ( / ) / Pex x a= , b/a, M Da, and Br values which can be positive or 

negative depending on the direction of heat flux.  

  The data for 2, 2,w bΦ − Φ can also identify the values of the wall temperature in the absence of 

heating or cooling at the walls where viscous dissipation is the only reason for heat transfer as discussed 

by Hooman et al. [24] for a similar problem with isothermal wall heating. In this case the energy 

generated inside the duct should be carried by the moving fluid leading to an increase in the fluid 

enthalpy. For this case one obtains the wall and bulk temperature as  

2,2

( , ; )
ˆ( , ; )

/
w i

w
e e

T y z x T
y z x

U kµ
− = Φ ,        (38-a) 

2,2

( , ; )
ˆ ˆ( , ; )

/
b i

b
e e

T y z x T
y z x S x

U kµ
∗− = Φ = .        (38-b) 
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One notes that the temperature scale is 2 /e eU kµ  for this case as there is no wall heat flux to be included 

in the denominator. The data in Tables 2(a,b) through 5(a,b) can be used to illustrate the wall-bulk 

temperature difference2, 2,w bΦ − Φ . This has been done for some cases as shown in Figures 2(a-d) for 

b/a=1, 2, 4, and 10 where the variations of the wall temperature 1,wθ  and the bulk temperature1,bθ  are 

graphically presented in [21] for the same aspect ratios. As a common trend in all charts on Figures 2(a-

d), one observes that value of 2, 2,w bΦ − Φ  increases along the duct. However, with MDa>0.1 the curve 

experiences a turning point while for smaller values of MDa there is a sharp increase in2, 2,w bΦ − Φ . 

For a more comprehensive analysis of the problem, one can use the data presented in tables 1-5 to 

find the Nusselt number for any arbitrary combination of the key parameters. As an illustration, this is 

partly done and the results are in Figures 3-4. Figure 3(a) shows the developing Nusselt number for 

MDa=0.001 versus the streamwise direction for several values of Br. It is clear that increasing Br will 

reduce the Nusselt number level. Moreover, increasing Br and aspect ratio, the NuD-x plots tend to be 

more flattened. The square cross-section seems to behave differently for higher Br values in such a way 

that the developing Nusselt number is as high as that of other aspect ratios in the duct entrance and then 

decreases sharply with the fully developed NuD being the minimum among the other counterparts. It is 

interesting that in their study of heat transfer and entropy generation in a duct of rectangular cross-section 

with the fully developed assumption, Hooman et al. [29] have reported that the square cross-section acts 

in a different manner for very small MDa values where the velocity profile is nearly slug and the problem 

is a conduction-like one. They attributed this fact (in part) to the special geometry of a square for having 

more symmetry compared to rectangular counterparts. Figure 3(b) shows NuD versus longitudinal 

coordinate for different Br values with MDa=1 which represents a hyperporous medium. It can be 

concluded that for a fixed Br value NuD increases with the aspect ratio for all cases considered here.  

Figures 4(a,b) present the fully developed NuD versus Br for two limiting aspect ratios being 

b/a=1 and 10. One realizes that the hyperporous case, with MDa=1, mimics the clear fluid counterpart as 

the corresponding curves are nearly identical but moving from MDa=0.0001 to 0.001, changes in the 

Nusselt number are more pronounced compared to the former case. In line with the aforementioned 

observations increasing Br or decreasing MDa will decrease the Nusselt number for either values of the 

duct aspect ratio. Moreover, the Nusselt number puts higher values for smaller aspect ratio compared to 

the higher one. Nevertheless, it should be noted that, for small Br values, selection of a length scale in the 

Nusselt number (hydraulic diameter) is partly responsible for that similar to what was reported by [29]. 

Interestingly, moving to higher Br values, this choice becomes of less importance.  
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For a better understanding of the problem, Eq. (37) is rearranged in terms of the Nusselt number 

for negligible viscous dissipation case, Nu*, as follows  

1

2, 2,

4 1
Nu Br ( )

1 *D w b

b

b Nu

−
 = + Φ − Φ +  

.       (39) 

Eq. (39) is identical to the form reported by Kakaç et al. [33] for clear flow through a pipe and also by 

Hooman and Gurgenci [34] for a parallel plate porous channel (see [35-37] for more closed form 

solutions for similar problems), if rearranged as follows 

2, 2,

4 *
Nu

1 1 *Br ( )D
w b

b Nu

b Nu

 
=  + + Φ − Φ  

.       (40) 

It is an easy task to see that increasing Br decreases NuD where Nu* is the Nusselt number for the case 

where one can neglect the viscous dissipation effects. Eq. (40) can be modified to be used for ducts of 

other cross-sections. The significance of this point becomes more vivid as one can apply Eq. (40) to 

account for the viscous dissipation effects, for the fully developed or thermally developing region, by 

combining two easier problems, with their answers available in the literature, to obtain the solution to a 

more complex problem. For example one can use the correlations proposed by Haji-Sheikh [38] to find 

Nu* for ducts of parallel plate or circular cross-sections and solve only for the second part to obtain the 

final solution for a problem where frictional heating is important. This seems to be of practical 

importance in engineering applications where usually one is in search for a rough and ready estimate 

rather than complicated calculations.  

 It is worth noting that several combinations of the key parameters can lead to different results, 

based on the data in tables 2-5; however, for the sake of brevity, we restrict our results for the Second 

Law aspects of the problem to the most irreversible geometry being the square cross-section (see [11-13] 

and [29]). Figure 5 illustrates plots of Ns versus Br for two different values of MDa being 1 and 10-4. As 

seen, with the other parameters fixed, decreasing MDa or increasing either of Br or q* increases the 

entropy production rate. This is inline with the results of Hooman et al. [29]. Moving from MDa=1 to   

10-4, the Ns-Br slope changes as expected based on the approximate predictions of Eq. (35d-e).  

 

4. Conclusion 

The effect of viscous dissipation on heat transfer and entropy generation for thermally developing 

forced convection in a porous-saturated duct of rectangular cross-section is investigated. The classical 

Galerkin method is applied to solve the Brinkman momentum equation while the EWRM is undertaken to 

solve the non-homogenous three-dimensional thermal energy equation. It is believed that the solution 

reported in this study can serve as a benchmark for verification of numerical solutions concerning similar 
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problems [39-46]. It was observed that viscous dissipation reduces the Nusselt number in both thermally 

developing and fully developed regions unlike the similar case with isothermal wall heating. Key 

parameters affecting the Second Law aspects of the problem are highlighted and analyzed.  

 

Acknowledgments 

The first author, the scholarship holder, acknowledges the financial support provided by The 

University of Queensland in terms of UQILAS, Endeavor IPRS, and School Scholarship. 

 

References 

[1] D.A. Nield, A. Bejan, Convection in Porous Media, 3rd ed., Springer, New York, 2006. 

[2] H. I. Ene, E. Sanchez-Palencia, On thermal equation for flow in porous media, Int. J. Engng. Sci. 20 

(1982) 623–630. 

[3] D. A. Nield, Resolution of a paradox involving viscous dissipation and nonlinear drag in a porous 

medium, Transport Porous Media 41 (2000) 349-357. 

[4] A. K. Al-Hadhrami, L. Elliot, D. B. Ingham, A new model for viscous dissipation in porous media 

across a range of permeability values, Transport Porous Media 53 (2003) 117-122. 

[5] W. P. Breugem, D.A.S. Rees, A derivation of the volume-averaged Boussinesq equations for flow in 

porous media with viscous dissipation, Transport Porous Media (2006) 63: 1–12.  

[6] D.A. Nield, Modelling fluid flow in saturated porous media and at interfaces, in Transport 

Phenomena in Porous Media II (D. B. Ingham and I. Pop, eds.), Elsevier Science, Oxford, 2002. 

[7] D.A. Nield, A note on a Brinkman-Brinkman forced convection problem, Transport Porous Media 64 

(2006) 185–188 

[8] D. Bercovici, Generation of plate tectonics from lithosphere–mantle flow and void-volatile self-

lubrication, Earth Planetary Science Letters 154 (1998) 139–151. 

[9] G. P. Celata, G. L. Morini, V. Marconi, S.J. McPhail, G. Zummo, Using viscous heating to determine 

the friction factor in microchannels - An experimental validation, Experimental Thermal Fluid Sci. 30 

(2006) 725-731. 

[10] Y. Murakami, B. Mikic, Parametric investigation of viscous dissipation effects on optimized air 

cooling microchanneled heat sinks, Heat Transfer Engng., 24 (2003) 53-62. 

[11] A. Bejan, Entropy Generation through Heat and Fluid Flow, Wiley, New York, 1982. 

[12] A.Z. Sahin, Irreversibilities in various duct geometries with constant wall heat flux and laminar 

flow, Energy 23 (1998) 465-473  

[13] E.B. Ratts, A.G. Raut, Entropy generation minimization of fully developed internal flow with 

constant heat flux, ASME J. Heat Transfer 126 (2004) 656-659. 



K. Hooman and A. Haji-Sheikh          Int. J. Heat Mass Transfer           50(2007)4180-4194 18 

[14] A.C. Baytas, Entropy generation for free and forced convection in a porous cavity and a porous 

channel, in Emerging Technology and Techniques in Porous Media (Eds. D.B. Ingham et al.), Kluwer 

Academic Publishers (2004) 259-270. 

[15] K. Hooman, A. Ejlali, Entropy generation for forced convection in a porous saturated circular tube 

with uniform wall temperature, Int. Comm. Heat Mass Transfer 34 (2007) 408-419.  

[16] K. Hooman, Entropy-energy analysis of forced convection in a porous-saturated circular tube 

considering temperature-dependent viscosity effects, Int. J. Exergy 3 (2006) 436–451. 

[17] K. Hooman, A. Ejlali, Second law analysis of laminar flow in a channel filled with saturated porous 

media: a numerical solution, Entropy, 7 (2005) 300-307. 

[18] A. Haji-Sheikh, K. Vafai, Analysis of flow and heat transfer in porous media imbedded inside 

various-shaped ducts, Int. J. Heat Mass Transfer 47 (2004) 1889-1905.  

[19] A. Haji-Sheikh, Fully developed heat transfer to fluid flow in rectangular passages with filled with 

porous materials, ASME J. Heat Transfer 128 (2006) 822–828. 

[20] A. Haji-Sheikh, W. J. Minkowycz, E. M. Sparrow, Green’s function solution of temperature field for 

flow in porous passages, Int. J. Heat Mass Transfer 47 (2004) 4685-4695. 

[21] A. Haji-Sheikh, D. A. Nield, K. Hooman, Heat transfer in thermal entrance region for flow through 

rectangular porous passages, Int. J. Heat Mass Transfer 49 (2006) 3004–3015 

[22] A. Haji-Sheikh, W. J. Minkowycz, E. M. Sparrow, A numerical study of the heat transfer to fluid 

flow through circular porous passages, Num. Heat Transfer A 46 (2004) 929-955. 

[23] A. Haji-Sheikh, E. M. Sparrow, W. J. Minkowycz, Heat transfer to flow through porous passages 

using extended weighted residuals method–A Green’s function solution, Int. J. Heat Mass Transfer 48 

(2005) 1330-1349. 

[24] K. Hooman, A. Haji-Sheikh, D.A. Nield, Thermally developing Brinkman-Brinkman forced 

convection in rectangular ducts with isothermal walls, Int. J. Heat Mass Transfer, in press. 

 [25] K. Hooman, A.A. Merrikh, Analytical solution of forced convection in a duct of rectangular cross-

section saturated by a porous medium, ASME J. Heat Transfer, 128 (2006) 596-600. 

[26] K. Hooman, H. Gurgenci, Effects of temperature-dependent viscosity variation on entropy 

generation, heat, and fluid flow through a porous-saturated duct of rectangular cross-section, Appl. Math. 

Mech. 28 (2007) 69-78 

[27] K. Hooman, Fully developed temperature distribution in porous saturated duct of elliptical cross-

section, with viscous dissipation effects and entropy generation analysis, Heat Transfer Research 36 

(2005) 237-245. 

[28] K. Hooman, Analysis of entropy generation in porous media imbedded inside elliptical passages, Int. 

J. Heat Technology 23 (2005) 145-149. 



K. Hooman and A. Haji-Sheikh          Int. J. Heat Mass Transfer           50(2007)4180-4194 19 

[29] K. Hooman, H. Gurgenci, A.A., Merrikh, Heat transfer and entropy generation optimization of 

forced convection in a porous-saturated duct of rectangular cross-section, International Journal of Heat  

and Mass Transfer  50 (2007) 2051-2059.  

[30] R.K. Shah, A.L. London, Laminar Flow Forced Convection in Ducts (Advances in Heat Transfer, 

Supplement 1), Academic Press, New York, 1978. 

[31] L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis, Wiley, New York, 

1960. 

[32] J.V. Beck, K. Cole, A. Haji-Sheikh, B. Litkouhi, Heat Conduction Using Green's Functions, 

Hemisphere Publ. Corp., Washington D. C., 1992. 

[33] S. Kakaç, R.K. Shah, W. Aung, Handbook of Single-Phase Convective Heat Transfer, Wiley, New 

York, 1987. 

[34] K. Hooman, H. Gurgenci, Effects of viscous dissipation and boundary conditions on forced 

convection in a channel occupied by a saturated porous medium, Transport in Porous Media (2007), 

doi:10.1007/s11242-006-9049-4 

[35] D.A. Nield, A.V. Kuznetsov, M. Xiong, Effects of viscous dissipation and flow work on forced 

convection in a channel filled by a saturated porous medium, Transport Porous Media 56 (2004) 351-367. 

[36] D. A. Nield, K. Hooman, Comments on “Effects of viscous dissipation on the heat transfer in forced 

pipe flow. Part 1: both hydrodynamically and thermally fully developed flow, and Part 2: thermally 

developing flow” by O. Aydin, Energy Conv. Manag., 47 (2006) 3501-3503. 

[37] K. Hooman, A. Pourshaghaghy, A. Ejlali, Effects of viscous dissipation on thermally developing 

forced convection in a porous saturated circular tube with an isoflux wall, Appl. Math. Mech. 27 (2006) 

617-626. 

[38] A. Haji-Sheikh, Estimation of average and local heat transfer in parallel plates and circular ducts 

filled with porous materials, ASME J. Heat Transfer 126 (2004) 400-409.  

[39] A.R.A. Khaled, K. Vafai, Analysis of flow and heat transfer inside nonisothermal squeezed thin 

films, Numerical Heat Transfer Part A, 47 (10) (2005) 981-996. 

[40] S. V. Iyer, K. Vafai, Passive heat transfer augmentation in a cylindrical annulus utilizing a porous 

perturbation, Numerical Heat Transfer Part A, 36 (2) (1999) 115-128.  

[41] S.S. Mousavi, K. Hooman, Heat and fluid flow in entrance region of a channel with staggered 

baffles, Energy Conversion and Management, 47 (15-16) (2006) 2011-2019  

[42] K. Khanafer, K. Vafai, Double-diffusive mixed convection in a lid-driven enclosure filled with a 

fluid-saturated porous medium, Numerical Heat Transfer Part A, 42 (5) (2002) 465-486. 

[43] K. Hooman, A perturbation solution for forced convection in a porous-saturated duct, J. Comput. 

Appl. Math. (2006), doi: 10.1016/j.cam.2006.11.005 



K. Hooman and A. Haji-Sheikh          Int. J. Heat Mass Transfer           50(2007)4180-4194 20 

[44] A. Narasimhan, J. L. Lage, Forced convection of a fluid with temperature-dependent viscosity 

flowing through a porous medium channel, Numerical Heat Transfer Part A, 40 (2001): 801-820. 

[45] S. C. Chen, K. Vafai, Non-Darcian surface tension effects on free surface transport in porous media  

Numerical Heat Transfer Part A, 31 (1997) 235-254.  

[46] P. C. Huang, K. Vafai, Internal heat transfer augmentation in a channel using an alternate set of 

porous cavity-block obstacles, Numerical Heat Transfer Part A, 25 (1994) 519-539. 

 

 

 

 

 

 

 

 
Table 1. The parameter S*, for different b/a and M Da values,  

for determination of xSb ˆ*
,2 ⋅=Φ .  

M Da b/a=1 b/a=2 b/a=4 b/a=10 
0.0001 10202.9 10151.6 10126.3 10111.5 
0.001 1066.07 1049.09 1040.81 1035.90 
0.01 123.042 116.772 113.871 112.199 
0.1 20.1833 16.9485 15.6872 15.0167 
1 8.48230 5.70568 4.83563 4.42943 
10 7.25128 4.50748 3.68970 3.32534 
∞ 7.11354 4.37289 3.56109 3.20179 
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Table 2(a). The difference between the dimensionless wall temperature 
and bulk temperature due to the wall effect and frictional 

heating contribution when b/a = 1. 

 M Da   = ∞ M Da  =1 M Da  =1/10 

x̂  θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b 

0.0005 0.0949 0.044 0.0928 0.046 0.0816 0.061 
0.0006 0.1012 0.049 0.0990 0.051 0.0870 0.068 
0.0008 0.1119 0.058 0.1095 0.061 0.0963 0.080 
0.001 0.1211 0.067 0.1184 0.070 0.1043 0.090 
0.002 0.1545 0.102 0.1512 0.106 0.1333 0.132 
0.003 0.1783 0.131 0.1745 0.134 0.1540 0.163 
0.004 0.1971 0.155 0.1930 0.159 0.1705 0.189 
0.005 0.2130 0.176 0.2086 0.180 0.1844 0.212 
0.006 0.2269 0.196 0.2223 0.200 0.1966 0.231 
0.008 0.2505 0.231 0.2454 0.235 0.2174 0.265 
0.01 0.2703 0.262 0.2649 0.265 0.2348 0.294 
0.02 0.3402 0.381 0.3337 0.382 0.2969 0.397 
0.03 0.3868 0.469 0.3796 0.468 0.3386 0.467 
0.04 0.4219 0.540 0.4143 0.536 0.3703 0.519 
0.05 0.4499 0.600 0.4420 0.592 0.3958 0.561 
0.06 0.4731 0.650 0.4649 0.641 0.4169 0.596 
0.08 0.5095 0.733 0.5010 0.719 0.4502 0.651 
0.1 0.5369 0.798 0.5280 0.780 0.4753 0.692 
0.2 0.608 0.974 0.5984 0.947 0.5406 0.802 
0.3 0.633 1.039 0.6231 1.007 0.5632 0.840 
0.4 0.6422 1.063 0.6322 1.029 0.5714 0.854 
0.5 0.6457 1.072 0.6356 1.038 0.5744 0.859 
0.6 0.6470 1.075 0.6369 1.041 0.5755 0.861 
0.8 0.6477 1.077 0.6376 1.042 0.5760 0.862 

1 0.6478 1.077 0.6377 1.043 0.5761 0.862 
2 0.6478 1.077 0.6377 1.043 0.5761 0.862 
3 0.6478 1.077 0.6377 1.043 0.5761 0.862 
4 0.6478 1.077 0.6377 1.043 0.5761 0.862 
5 0.6478 1.077 0.6377 1.043 0.5761 0.862 
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Table 2(b). The difference between the dimensionless wall temperature 

and bulk temperature due to the wall effect and frictional 
heating contribution when b/a = 1. 

 M Da = 1/100 M Da = 1/1000 M Da = 1/10000 

x̂  θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b 

0.0005 0.0609 0.132 0.0441 0.132 0.0441 0.274 
0.0006 0.0647 0.143 0.0471 0.143 0.0471 0.292 
0.0008 0.0714 0.162 0.0521 0.162 0.0521 0.313 
0.001 0.0773 0.177 0.0564 0.177 0.0564 0.325 
0.002 0.0991 0.234 0.0727 0.234 0.0727 0.345 
0.003 0.1146 0.272 0.0847 0.272 0.0847 0.354 
0.004 0.1271 0.300 0.0944 0.300 0.0944 0.360 
0.005 0.1376 0.322 0.1028 0.322 0.1028 0.364 
0.006 0.1469 0.341 0.1102 0.341 0.1102 0.367 
0.008 0.1627 0.370 0.1229 0.370 0.1229 0.371 
0.01 0.1761 0.392 0.1337 0.392 0.1337 0.374 
0.02 0.2240 0.459 0.1733 0.459 0.1733 0.381 
0.03 0.2565 0.494 0.2009 0.494 0.2009 0.383 
0.04 0.2814 0.517 0.2223 0.517 0.2223 0.385 
0.05 0.3016 0.533 0.2398 0.533 0.2398 0.386 
0.06 0.3185 0.546 0.2545 0.546 0.2545 0.386 
0.08 0.3453 0.564 0.2783 0.564 0.2783 0.387 
0.1 0.3658 0.577 0.2966 0.577 0.2966 0.388 
0.2 0.4197 0.608 0.3461 0.608 0.3461 0.389 
0.3 0.4383 0.618 0.3638 0.618 0.3638 0.389 
0.4 0.4448 0.622 0.3701 0.622 0.3701 0.389 
0.5 0.4471 0.623 0.3725 0.623 0.3725 0.389 
0.6 0.4479 0.624 0.3733 0.624 0.3733 0.389 
0.8 0.4483 0.624 0.3737 0.624 0.3737 0.389 
1 0.4484 0.624 0.3738 0.624 0.3738 0.389 
2 0.4484 0.624 0.3738 0.624 0.3738 0.389 
3 0.4484 0.624 0.3738 0.624 0.3738 0.389 
4 0.4484 0.624 0.3738 0.624 0.3738 0.389 
5 0.4484 0.624 0.3738 0.624 0.3738 0.389 
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Table 3(a). The difference between the dimensionless wall temperature 

and bulk temperature due to the wall effect and frictional 
heating contribution when b/a = 2. 

 M Da = ∞ M Da =1 M Da =1/10 

x̂  θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b 

0.0005 0.0995 0.034 0.0964 0.037 0.0819 0.054 
0.0006 0.1059 0.038 0.1027 0.041 0.0875 0.060 
0.0008 0.1170 0.045 0.1134 0.049 0.0968 0.070 
0.001 0.1264 0.052 0.1224 0.056 0.1046 0.080 
0.002 0.1611 0.080 0.1558 0.085 0.1329 0.116 
0.003 0.1855 0.103 0.1795 0.108 0.1532 0.143 
0.004 0.2051 0.122 0.1985 0.128 0.1695 0.165 
0.005 0.2218 0.139 0.2145 0.145 0.1834 0.185 
0.006 0.2363 0.155 0.2286 0.161 0.1955 0.202 
0.008 0.2610 0.182 0.2526 0.189 0.2161 0.231 
0.01 0.2819 0.207 0.2728 0.214 0.2335 0.256 
0.02 0.3564 0.303 0.3452 0.309 0.2963 0.344 
0.03 0.4071 0.374 0.3946 0.378 0.3392 0.402 
0.04 0.4463 0.432 0.4327 0.433 0.3724 0.446 
0.05 0.4783 0.480 0.4638 0.479 0.3996 0.481 
0.06 0.5054 0.522 0.4902 0.519 0.4227 0.510 
0.08 0.5495 0.591 0.5331 0.584 0.4602 0.555 
0.1 0.5845 0.646 0.5671 0.635 0.4898 0.590 
0.2 0.6922 0.808 0.6713 0.784 0.5792 0.683 
0.3 0.7496 0.883 0.7264 0.852 0.6248 0.722 
0.4 0.7860 0.925 0.7610 0.888 0.6527 0.740 
0.5 0.8110 0.951 0.7848 0.911 0.6717 0.751 
0.6 0.8291 0.968 0.8020 0.926 0.6855 0.758 
0.8 0.8524 0.990 0.8243 0.945 0.7033 0.766 
1 0.8656 1.003 0.8369 0.955 0.7136 0.771 
2 0.8822 1.018 0.8529 0.969 0.7270 0.777 
3 0.8832 1.019 0.8539 0.969 0.7279 0.778 
4 0.8832 1.019 0.8539 0.970 0.7280 0.778 
5 0.8832 1.019 0.8539 0.970 0.7280 0.778 
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Table 3(b). The difference between the dimensionless wall temperature 

and bulk temperature due to the wall effect and frictional 
heating contribution when b/a = 2. 

 M Da = 1/100 M Da = 1/1000 M Da = 1/10000 

x̂  θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b 

0.0005 0.0591 0.123 0.0423 0.252 0.0334 0.285 
0.0006 0.0633 0.134 0.0454 0.269 0.0361 0.296 
0.0008 0.0706 0.154 0.0508 0.295 0.0407 0.312 
0.001 0.0767 0.169 0.0554 0.314 0.0446 0.324 
0.002 0.0983 0.223 0.0726 0.366 0.0595 0.352 
0.003 0.1133 0.258 0.0848 0.391 0.0703 0.362 
0.004 0.1254 0.285 0.0945 0.408 0.0792 0.367 
0.005 0.1358 0.305 0.1028 0.420 0.0868 0.370 
0.006 0.1450 0.323 0.1101 0.429 0.0937 0.372 
0.008 0.1607 0.350 0.1229 0.442 0.1057 0.376 
0.01 0.1740 0.370 0.1339 0.452 0.1161 0.378 
0.02 0.2222 0.432 0.1747 0.475 0.1550 0.382 
0.03 0.2556 0.464 0.2036 0.486 0.1829 0.383 
0.04 0.2816 0.485 0.2264 0.492 0.2050 0.384 
0.05 0.3031 0.500 0.2454 0.496 0.2235 0.384 
0.06 0.3214 0.511 0.2617 0.500 0.2394 0.383 
0.08 0.3513 0.528 0.2887 0.504 0.2657 0.383 
0.1 0.3751 0.539 0.3103 0.507 0.2869 0.382 
0.2 0.4472 0.568 0.3767 0.515 0.3522 0.380 
0.3 0.4833 0.578 0.4103 0.517 0.3853 0.378 
0.4 0.5050 0.583 0.4304 0.519 0.4051 0.377 
0.5 0.5196 0.586 0.4438 0.519 0.4182 0.376 
0.6 0.5301 0.587 0.4535 0.520 0.4277 0.375 
0.8 0.5440 0.589 0.4663 0.520 0.4402 0.374 
1 0.5522 0.590 0.4739 0.521 0.4476 0.374 
2 0.5633 0.592 0.4845 0.521 0.4582 0.373 
3 0.5642 0.592 0.4854 0.521 0.459 0.373 
4 0.5642 0.592 0.4854 0.521 0.4591 0.373 
5 0.5642 0.592 0.4854 0.521 0.4591 0.373 
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Table 4(a). The difference between the dimensionless wall temperature 

and bulk temperature due to the wall effect and frictional 
heating contribution when b/a = 4. 

 M Da = ∞ M Da =1 M Da =1/10 

x̂  θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b 

0.0005 0.0936 0.033 0.0902 0.035 0.0767 0.050 
0.0006 0.1002 0.037 0.0965 0.040 0.0819 0.056 
0.0008 0.1114 0.044 0.1073 0.047 0.0910 0.067 
0.001 0.1209 0.051 0.1165 0.055 0.0988 0.076 
0.002 0.1551 0.079 0.1497 0.083 0.1276 0.113 
0.003 0.1786 0.101 0.1726 0.106 0.1478 0.140 
0.004 0.1970 0.119 0.1904 0.125 0.1636 0.162 
0.005 0.2125 0.136 0.2054 0.141 0.1767 0.180 
0.006 0.2260 0.151 0.2184 0.157 0.1881 0.197 
0.008 0.2490 0.178 0.2407 0.184 0.2074 0.225 
0.01 0.2684 0.202 0.2594 0.208 0.2236 0.248 
0.02 0.3377 0.293 0.3266 0.298 0.2819 0.333 
0.03 0.3849 0.360 0.3723 0.364 0.3218 0.389 
0.04 0.4214 0.414 0.4075 0.416 0.3525 0.430 
0.05 0.4512 0.459 0.4364 0.459 0.3777 0.463 
0.06 0.4765 0.497 0.4608 0.495 0.3990 0.490 
0.08 0.5177 0.558 0.5006 0.553 0.4336 0.533 
0.1 0.5505 0.606 0.5321 0.599 0.4609 0.565 
0.2 0.6530 0.737 0.6295 0.722 0.5429 0.648 
0.3 0.7109 0.790 0.6834 0.770 0.5853 0.678 
0.4 0.7513 0.815 0.7205 0.792 0.6130 0.691 
0.5 0.7830 0.829 0.7493 0.804 0.6341 0.697 
0.6 0.8096 0.839 0.7734 0.813 0.6514 0.701 
0.8 0.8528 0.853 0.8125 0.824 0.6793 0.706 
1 0.8873 0.863 0.8437 0.832 0.7016 0.710 
2 0.9921 0.890 0.9385 0.853 0.7702 0.718 
3 1.0416 0.901 0.9836 0.863 0.8035 0.721 
4 1.0663 0.907 1.0063 0.867 0.8207 0.723 
5 1.0787 0.910 1.0177 0.869 0.8296 0.724 
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Table 4(b). The difference between the dimensionless wall temperature 

and bulk temperature due to the wall effect and frictional 
heating contribution when b/a = 4. 

 M Da = 1/100 M Da = 1/1000 M Da = 1/10000 

x̂  θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b 

0.0005 0.0575 0.113 0.0434 0.225 0.0344 0.328 
0.0006 0.0610 0.124 0.0462 0.237 0.0368 0.337 
0.0008 0.0673 0.143 0.0508 0.257 0.0410 0.352 
0.001 0.0728 0.160 0.0549 0.273 0.0447 0.363 
0.002 0.0941 0.218 0.0709 0.326 0.0593 0.393 
0.003 0.1095 0.254 0.0831 0.356 0.0705 0.405 
0.004 0.122 0.281 0.0931 0.377 0.0798 0.412 
0.005 0.1324 0.301 0.1017 0.391 0.0877 0.416 
0.006 0.1415 0.318 0.1093 0.402 0.0948 0.419 
0.008 0.1569 0.344 0.1223 0.418 0.1069 0.423 
0.01 0.1697 0.364 0.1333 0.428 0.1173 0.426 
0.02 0.2155 0.423 0.1732 0.452 0.1556 0.433 
0.03 0.2473 0.454 0.2012 0.462 0.1831 0.437 
0.04 0.2721 0.474 0.2235 0.468 0.2050 0.438 
0.05 0.2926 0.489 0.2420 0.473 0.2232 0.440 
0.06 0.3100 0.500 0.2579 0.476 0.2389 0.440 
0.08 0.3384 0.515 0.2842 0.480 0.2649 0.442 
0.1 0.3609 0.527 0.3052 0.483 0.2857 0.442 
0.2 0.4287 0.553 0.3692 0.491 0.3493 0.444 
0.3 0.4628 0.563 0.4014 0.494 0.3814 0.445 
0.4 0.4842 0.567 0.4212 0.495 0.4011 0.445 
0.5 0.4999 0.569 0.4356 0.495 0.4152 0.445 
0.6 0.5126 0.570 0.4471 0.495 0.4264 0.445 
0.8 0.5332 0.571 0.4655 0.496 0.4443 0.445 
1 0.5497 0.572 0.4802 0.496 0.4586 0.445 
2 0.6010 0.573 0.5263 0.497 0.5035 0.445 
3 0.6266 0.574 0.5495 0.497 0.5261 0.444 
4 0.6401 0.575 0.5618 0.497 0.5381 0.444 
5 0.6473 0.575 0.5684 0.497 0.5446 0.444 
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Table 5(a). The difference between the dimensionless wall temperature 

and bulk temperature due to the wall effect and frictional 
heating contribution when b/a = 10. 

 M Da = ∞ M Da =1 M Da =1/10 

x̂  θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b 

0.0005 0.0893 0.028 0.0878 0.035 0.0779 0.050 
0.0006 0.0947 0.032 0.0930 0.039 0.0824 0.055 
0.0008 0.1041 0.039 0.1020 0.047 0.0902 0.065 
0.001 0.1122 0.045 0.1096 0.054 0.0969 0.074 
0.002 0.1420 0.072 0.1379 0.083 0.1215 0.109 
0.003 0.1633 0.094 0.1582 0.106 0.1391 0.135 
0.004 0.1803 0.115 0.1745 0.125 0.1533 0.157 
0.005 0.1948 0.134 0.1883 0.143 0.1654 0.176 
0.006 0.2074 0.151 0.2004 0.158 0.1759 0.193 
0.008 0.2287 0.182 0.2211 0.186 0.1941 0.221 
0.01 0.2465 0.210 0.2385 0.211 0.2094 0.246 
0.02 0.3087 0.311 0.2999 0.303 0.2643 0.332 
0.03 0.3498 0.379 0.3407 0.369 0.3012 0.388 
0.04 0.3809 0.431 0.3713 0.420 0.3291 0.429 
0.05 0.4061 0.473 0.3960 0.462 0.3515 0.462 
0.06 0.4272 0.509 0.4166 0.498 0.3702 0.488 
0.08 0.4612 0.565 0.4495 0.555 0.4000 0.529 
0.1 0.4877 0.609 0.4751 0.598 0.4229 0.560 
0.2 0.5651 0.725 0.5492 0.709 0.4880 0.638 
0.3 0.6039 0.765 0.5853 0.746 0.5176 0.664 
0.4 0.6292 0.781 0.6084 0.761 0.5351 0.673 
0.5 0.6490 0.788 0.6262 0.767 0.5479 0.677 
0.6 0.6658 0.792 0.6412 0.771 0.5584 0.679 
0.8 0.6944 0.798 0.6666 0.775 0.5761 0.682 
1 0.7188 0.801 0.6882 0.778 0.5911 0.683 
2 0.8082 0.811 0.7673 0.786 0.6459 0.686 
3 0.8703 0.815 0.8223 0.790 0.6841 0.688 
4 0.9185 0.818 0.8649 0.792 0.7139 0.689 
5 0.9579 0.820 0.8997 0.794 0.7383 0.689 
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Table 5(b). The difference between the dimensionless wall temperature 

and bulk temperature due to the wall effect and frictional 
heating contribution when b/a = 10. 

 M Da = 1/100 M Da = 1/1000 M Da = 1/10000 

x̂  θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b θ1,w-θ1,b Φ2,w-Φ2,b 

0.0005 0.0594 0.112 0.0455 0.244 0.0371 0.313 
0.0006 0.0628 0.122 0.0481 0.256 0.0394 0.325 
0.0008 0.0689 0.140 0.0527 0.275 0.0434 0.341 
0.001 0.0740 0.154 0.0567 0.290 0.0469 0.353 
0.002 0.0932 0.206 0.0720 0.335 0.0605 0.378 
0.003 0.1070 0.239 0.0832 0.360 0.0709 0.387 
0.004 0.1182 0.265 0.0925 0.376 0.0796 0.392 
0.005 0.1277 0.285 0.1005 0.387 0.0872 0.396 
0.006 0.1361 0.302 0.1076 0.396 0.0940 0.399 
0.008 0.1506 0.329 0.1200 0.409 0.1059 0.402 
0.01 0.1629 0.350 0.1307 0.418 0.1162 0.405 
0.02 0.2076 0.413 0.1703 0.443 0.1549 0.411 
0.03 0.2381 0.445 0.1980 0.455 0.1823 0.413 
0.04 0.2614 0.466 0.2197 0.463 0.2038 0.414 
0.05 0.2803 0.480 0.2374 0.468 0.2215 0.414 
0.06 0.2962 0.491 0.2524 0.471 0.2365 0.414 
0.08 0.3219 0.506 0.2769 0.476 0.2609 0.414 
0.1 0.3418 0.517 0.2961 0.479 0.2802 0.415 
0.2 0.3990 0.543 0.3521 0.487 0.3367 0.415 
0.3 0.4245 0.552 0.3774 0.489 0.3624 0.415 
0.4 0.4388 0.555 0.3914 0.490 0.3766 0.415 
0.5 0.4486 0.556 0.4007 0.491 0.3860 0.415 
0.6 0.4564 0.557 0.4080 0.491 0.3932 0.415 
0.8 0.4693 0.558 0.4198 0.491 0.4049 0.415 
1 0.4803 0.558 0.4297 0.491 0.4147 0.415 
2 0.5205 0.559 0.4661 0.491 0.4507 0.415 
3 0.5487 0.559 0.4918 0.492 0.4761 0.415 
4 0.5708 0.559 0.5118 0.492 0.4959 0.415 
5 0.5889 0.559 0.5283 0.492 0.5122 0.415 
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Figure Captions 

Fig 1. A schematic of a rectangular passage with coordinates. 

Fig 2d. The effects of frictional heating on the wall-bulk temperature difference for different M Da values 
in the absence of wall heat flux, when (a) b/a = 10, (b) b/a = 2, (c) b/a = 4, (d ) b/a = 10. 
Fig 3-a. NuD versus (x/a)/Pe for different Br and aspect ratio values, (a) when MDa=0.001 and (b) when 
MDa=1. 
Fig 4-a. Fully developed NuD versus Br, MDa, and aspect ratio values, (a) when b/a=1 and (b) when 
b/a=10. 
Figure 5. Variation of Ns versus Br for different values of MDa. 
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Fig 1. A schematic of a rectangular passage with coordinates. 
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Fig 2. The effects of frictional heating on the wall-bulk temperature difference for different M Da values 

in the absence of wall heat flux, when (a) b/a = 10, (b) b/a = 2, (c) b/a = 4, (d ) b/a = 10. 
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Fig 3. NuD versus (x/a)/Pe for different Br and aspect ratio values,  
(a) when MDa=0.001 and (b) when MDa=1. 
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Fig 4. Fully developed NuD versus Br, MDa, and aspect ratio values,  
(a) when b/a=1 and (b) when b/a=10. 
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Fig 5. Variation of Ns versus Br for different values of MDa. 


