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Abstract

Heat transfer and entropy generation analysis ethiermally developing forced convection in a pgrou
saturated duct of rectangular cross-section, walswmaintained at a constant and uniform heat, fisix
investigated based on the Brinkman flow model. @lassical Galerkin method is used to obtain thiy ful
developed velocity distribution. To solve the thalnenergy equation, with the effects of viscous
dissipation being included, the Extended WeightesgifRials Method (EWRM) is applied. The local
(three dimensional) temperature field is solvedulifizing the Green’s function solution based oe th
EWRM where symbolic algebra is being used for coiemce in presentation. Following the computation
of the temperature field, expressions are presdbtetthe local Nusselt number and the bulk tempeeat
as a function of the dimensionless longitudinal rdowate, the aspect ratio, the Darcy number, the
viscosity ratio, and the Brinkman number. With ttetocity and temperature field being determined, th
Second Law (of Thermodynamics) aspect of the prob&also investigated. Approximate closed form
solutions are also presented for two limiting casfddDa values. It is observed that decreasing the aspect
ratio andMDa values increases the entropy generation rate.

Keywords: Extended weighted residuals method, porous medliacous dissipation, thermal
development, rectangular duct, Brinkman-Brinkmawbfgm, entropy generation
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required pumping power to enthalpy change rdfie; P*/( oc 1))
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heat transfer coefficienty/m?[K
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L duct lengthm

L dimensionless duct length/(aPe)

M He/H

m,n indices

N matrix dimension

N* dimensionless pressure drdy* = P*/( tJ/ K)
Ns dimensionless entropy generation rate, S&g;/( mcy)
Nu Nusselt numbeha/k,

Nup Nusselt numbedD,/ke

Nu* Nusselt number without viscous dissipation
P matrix having elements,

p* negative of the applied pressure gradiBatm
Pe Péclet numbepc au /k,

p pressure, Pa

Pri elements of matril

q* dimensionless wall heat flug* = g,a/(k.T) .
Rey Reynolds numbepUDy, / pe

S entropy J/KgK

S volumetric heat sourcgy/m’

Sgen Cross-sectional average of the entropy generasite, WK
T temperaturek

Ti temperature at=0, K

U average velocityg/s

U average value di
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1. Introduction

Designed porous media, which are of current praktiaportance, are usually associated with such
high permeability and porosity that the Darcy flomodel is not applicable while the Brinkman flow
model can predict hydraulics through such hypem®nmedia as noted by Nield and Bejan [1]. Flow
through pores, in a microscopic scale, is inheyeiteversible and a part of the mechanical povger i
dissipated to heat as a result of viscous dissipaGonsequently, this effect at the pore levelisounted
for in macroscopic scale by retaining a viscousigegion term in the thermal energy equation wiieee
term is proportional to the volume-averaged vejostjuare as first noted by Ene and Sanchez-Palencia
[2] for cases where the Darcy flow model is va{ih the other hand, as noted above, there are nusiero
cases of practical importance, where non-Darcyctsfare significant and one should model the pore
level dissipation in terms of appropriate propertjef fluid and solid matrix). However, for suchsea
one is left with two alternatives for the viscousstpation function as proposed by Nield [3] and Al
Hadhrami et al. [4]. Recently, Breugem and Reeshfble reported a volume averaging procedure to
come up with a general model for viscous dissipatioat seems to be applicable for a Brinkman-
Brinkman problem. The term ‘Brinkman-Brinkman’, pased by Nield [6], refers to a problem involving
a saturated porous medium in which the Brinkman maouamerequation is used, and the thermal energy
equation includes a viscous dissipation term invgh\a Brinkman number, which is the case heres It i
also instructive to note that there are certairsaghere one can neglect the effects of viscowsipdition
as highlighted by Nield [6,7].

Regardless of the relative importance of the friwdl heating compared to other heat transfer
mechanisms in a system, there are some applicatidrese one is willing to inspect the viscous
dissipation effects. In an analysis of mantle fldercovici [8] showed an example of the effects of
viscous dissipation in self-lubricating systems. @@a other hand, the recent work of Celata etdl. [
addresses an interesting application of viscousigfiion in measuring the fluid friction coeffictefor
flow in a microchannel. In another notable studyrkami and Mikic [10] have stated that even fowfl
of air, which has a relatively small viscosity ccangd to common liquids, say water, through a micro-
channel one should consider the effects of visdissipation when it comes to seek an optimum design
feature for either of laminar or turbulent flows.ohMover, when it comes to entropy generation
minimization (EGM), which is a popular method oftiafization, one should have a clear insight of the
viscous dissipation as it emerges in the fluidtivic term of entropy generation [11].

The groundbreaking work by Bejan [11] introducee #pplication of entropy generation due to heat
and fluid flow as a powerful tool to optimize vdgieof configurations when analyzing engineering
problems. Since entropy generation destroys thédade work of a system, it makes good engineering

sense to focus on entropy production due to heatster and fluid flow processes to understand the
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associated entropy generation mechanisms. Theatlirer on the topic is rich for flow through
unobstructed circular tubes or parallel plate cltsinSimilar work, mostly restricted to the fully
developed region, extended the analysis to ducashifrary cross-section [12-13], to name a few.

On the other hand, modeling entropy generationoirogs media is comparatively harder than the
clear fluid case partly due to the increased nuntdjevariables present in the governing equations.
Another source of debate is the different availabtdels for viscous dissipation, that lead to défer
fluid friction irreversibility (FFI) terms, as nadeearlier. Moreover, the complexity of the problem
becomes clearer when one observes that, numeri¢hkoretical, solutions addressing the Second Law
analysis of forced convection in porous ducts awestiyp restricted to circular tubes or parallel plat
channels [14-17], where the simplicity of the getynallows analytical solution of closed form. Thire
guestion naturally arises as to whether analyt®alutions, addressing heat transfer and entropy
generation, for more complicated cross-sectiongpassible.

The method of weighted residuals was exploited laji-Bheikh and Vafai [18] in their study of
thermally developing convection in ducts of vari@mpes. In a subsequent study, Haji-Sheikh [18] ha
applied a Fourier series method to investigatey fdéveloped forced convection in a duct of rectdargu
cross-section. Haji-Sheikh et al. [20-24] have stigated heat transfer characteristics of the theérm
entrance region for flow through porous ducts dfiteairy cross-sections. Applying the Fourier series
method, Hooman and Merrikh [25] have analyticalhdstigated heat transfer and fluid flow in a
rectangular duct occupied by a hyperporous medium.

On the other hand, a quick look at [18-25] shoved titone of these articles reported the Second Law
analysis and the work addressing the issue isdini¢ those applying the Darcy flow model in duafts
arbitrary cross-sections [26-28] with the exceptidrj29] where the authors have reported heat teans
and entropy generation optimization in the fullwel®ped region of a rectangular duct for three sage
H1 boundary condition in the terminology of Shah &mweshdon [30]. This study treats the more general
case of a thermally developing Brinkman-Brinkmankpem in a duct of rectangular cross-section with
walls held at a constant and uniform heat flux,theH?2 case [30]. To the authors’ knowledge, not only
is no analytical solution is available for the Fitsaw aspects of this problem but also the present
assessment of entropy generation for a thermalgldping Brinkman-Brinkman problem has not been

reported elsewhere.

2. Analysis
2.1 Fluid flow analysis
For a passage with a constant but arbitrarily sthapess-section the Brinkman momentum equation

reads
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0°u du) u op
+ -—u-—=0. 1
/Je(ay2 azzj K~ ox M

Although an exact solution for hydrodynamically Iyuldeveloped velocity solution is available, for
convenience of symbolic manipulation, the clasdigallerkin method is used for computation of velacity

It begins by setting
N

u(y,2)=>y. 9,n,(y,2). (2a)
j=1

where

2(m; -1) Z2(nj -1)

n, =@ -y’)(b*-z%y (2b)
and JJ coefficients are the constants to be determineckt,Nhe substitution of u(y,z) from Eq. (2a) in

momentum equation and following the procedure ij [8ads to

EA=Q, (3a)
with matrix E and vectof) having elements
& = [ [ (y. 2 0n,(y, 2) - un; I K] dA, (3b)
A
and
@=221[ n(y.2dA (30
ox )5 7 '

Therefore, the unknown coefficients are memberstte vector A={J, J,, ---, 9} obtainable

fromA = E™ [Q . Once the local velocity distribution is determintéhe mean velocity can be obtained as

U= j u dA, (4a)

>~

and the normalized velocity is

= (4b)

Y
5

It is worth noting thaf\ in Eq. (4a) is the cross-sectional area of the.duc
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2.2 Heat transfer analysis

2.2.1 Governing Thermal Energy Equation
Under the local thermal equilibrium conditionetbnergy equation in its general form for
hydrodynamically fully developed and incompressitey is

oT _ 0 oT 0 oT 0 oT
C,)iU—=—| k.— |+—| K Ke— [+S(X,Y,2 5
(o)1 ax(keaxj ay(eayj az( azj (x.2). ©)

whereS(x, Y, ) includes the contribution of frictional heatinlgdaparametel(s,ocp)f andk.are the fluid

thermal capacity and the equivalent thermal conditigtrespectively. When the contribution of axial

conduction is negligible, Eq. (5) reduces to

0 oT 0 oT 6T
— k k,— |+S(Y,z X C 6
ay(eayj az( aj (¥,2:%)= (p2,) U~ (6)
The solution for Eq. (6) with a prescribed wall hélax and in the presence of frictional heating is
possible as
N 2
T(y.zx) =2 BW,(y.2e™ (7a)
m=1
where
N
W.=> d,fi(y.2) (7b)
j=1

The following set of basis functions satisfies timmogeneous boundary condition of the second kind

along the walls,

f, =(1+(m -D@A-y*))(1+ @, - DE2* b? )y 070 (8)

for all combinations o =1,2,... andnj =1,2,.... The eigenvalues aﬂé and the coefficientd,,; are the
members of eigenvectods,; they are obtainable from the relation

(A+A:B)dd, =0, ©)
where the elements of the matridesindB are

=-[ Kk Of (v, 2)0f (y,2) dA (10a)
A
b =] pc, u(y.2) fi(y.2)f,(y.2)dA. (10b)

A
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After determination of/ini and dy;, the appropriate mathematical steps in [32] prowide general

solution. The eigenvectods, will constitute the rows of a matriR. When the boundary conditions are

homogeneous and the thermophysical propertiesoargtant, the Green'’s function solution is
1 . / I ! I
T(y.zx)=—— [ dé[ GS(y.Z;§)dA+[ u(y.Z)G(y.zx|y Z,0T ¢ Z ;0pK.  (11)
pcp £=0 A A
wherein the Green'’s function is

G(y,z xly,z,&)=2, {z P fi (Y ,Z')}Wm(y,z)e”"z“(x_g) : (12)

m=1 i=1

The parameterg,; in Eq. (12) are members of the matfix[(DB)'] ™ (see Chapter 10 of [32] for more

details). In dimensionless space, the temperatlwien in rectangular passages takes the folloviamm

1
[ 6@.z.%1y7.§)sy Z)dydz
V:

b 1
+j j u(y,z)G(y,z,X|¥,Z,0)T (y,z;0)dy dZ (13)

wherein the Green'’s function is

N N 2,5
G(Y.Z,XY.Z.&)=) { Pu | (V',f)}”’m (y,z)ee® (14)
=1 i=1
and
2 ~2 A \2 A \2
Sy, z)=—H_ | U [0t o (15)
k.(T-T,)|MDa |0y 07

The next task is the computationtb&temperature in the entrance region of rectangudasgges
with locally constant wall heat flux,qFor the EWRM, the boundary conditions should bmbgeneous.
Therefore, the following temperature transformatiam the dimensionless form, is being used for

insertion into the energy equation,

o _T(Y,ZX)-T _ ¥y 7
(Y, ZX)=—2""2 1L =d(Yy,Z;X)+—+— 16
(V.Z;%) qalk (V.Z;x) > % (16)

where qwzkeaTldy|y:a =k 0T /07 is the input heat flux. After substituting foF from this

transformation in Eq. (15), the functish(Y, Z; X) must satisfy the following equation
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2 9% pU?|l 62 (aa) (aa) | b+1_(u)ood
— H— |+ —| [+—=—=| = |— (17)
dy- 0z g,a|MbDa |0y 0Z b U)ox

Now, the new function®(y,Z;X) satisfies the boundary conditiorzBs)CD/O37|y:O =0 CI>/0)7|)7:l =0,

0®/07|,_ =0®/07Z| =0 and the entrance conditich(y,Z;0)=~(y* +Z° /b)/2.
The equation for®d(y,Z;X)contains a heat source expression that results fvistous

dissipation in a porous medium modeled by the Briak equation, in the form recommended in [4].

Also it contains an additional source term that myee following transformation. This suggests a

development of two separate solutions; fire, (Y,Z;X)is neglecting the contribution of viscous
dissipation and using the quanti(5+1)/5 as the only contribution for the wall effect. Thecond
solution ®, (Y, Z; X)is to useS(y', Z,£) in the Green’s function solution for the frictidremntribution
and this makes®(Y,Z;X) = ®,(Y,Z;X)+ Br®,(y,Z;X)with Br = zU?/(q,a). Spliting Eq. (13)

into two equations; the first contribution is

b 1 =
- 5.3 - =5 JI1 5 1+b — =
P, (V,Z;X) = j dEI j G(Y,z, x|y ,z,f)(Tjdydz
£=0 z=0 y=0 b
b 1 — 22
j j u(y,z)G(,z, %1V .Z, 0) y.,z dydz . (18)
220 2 2
and the second one is
Poon @ (oa) (aa)
D.(V,Z2X)=| d G(Y,Z,x|V ,Z, +| — | +|—| |dVdZ 19
(V. Z;%) {j fj (V.Z.%1|¥ Z.¢) {MDa (67) (67” y (19)
wherein the Green'’s function is
N N 2,0
G(Y.Z,X|Y.Z,6)=), {Z Pu (7,7)}%@2)@“* o (20)
m=1 i=1

= =

This form of the Green’s function contains the bafsinctions f,(y',Z), eigenfunctionsW¥ (Y,Z),
parametersp, ., and eigenvaluesl’. The second contribution, following substituticor the Green’s
function, attains a standard form,

1e

(V28 =2, AYL(7.2) (21)

m

where
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N e 1 @ (aa) (ad
= i H— | + f(y,Z)dydZ 22
A= P | o (637'] (azj (7,2) dy (22)
It is to be noted that a& becomes large, the solution B approaches that for the quasi thermally fully

developed solutio®P, ., . Therefore, the solution using equation

A2>“<
OV TR =0, ALY, 2> (23)
m=1 m
exhibits better convergence characteristics. Theisa for ®, ., uses the Poisson’s equation
0*® 0’® 42 0
22 +— 22 +Br Uy a—Li ou -Si=0 (24a)
0y 0z MDa (0Yy F¥4
where
b 1 D A \2 A N2
=] [ |+ U |9 | 4ydz (24b)
o ywo | MDa (0Y 07

and it is obtainable by different methods. Sincelsglic algebra is being used, it is determined Hxy t
classical Galerkin method [31]. Alternatively, aokin ®, ., solution leads to an initial value problem
similar to that used to obtai®, instead of the second term on the right side of(E8j).

Once the function®, (y,Z;X) and®,(y,Z;X) are known, the temperature solut&(y, Z; X)

is available. Accordingly, for convenience of tpigsentation, the two contributions of the dimenlkgiss

temperaturéd(y, Z;X) = 6, (Y, Z;X) + 6,(y,Z;X) are presented separately; that is,

6.(y,Z:%) = 77 EHO0.ZN) (25-a)
and
6,(¥,Z;X) =Br @, (y,Z;X). (25-b)

Therefore, foi=1or 2, the following equation provides the meaili veanperature for each contribution,

j a(y,b;0dy+ [ 6(,z;%)dz (26)

0

6..(X) =

1| ) |

1+b

z
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2.3 Second Law analysis

Cross-sectional average of the entropy generaaéi’cmS"rgen can be found as [12]

dS,, = mds—@, (27)
TW
Noting that the longitudinal pressure gradient dmsiant,—ﬁz P*, with dschﬂ—E and
dx T, o1,

0Q =q,Cdx, and after some algebraic manipulations one has

dS,, _dT, dx_P*dx _ g,Cdx

— = : : (28)
mc, dx T, pc T, nmcT,
On the other hand, the First Law of Thermodynarfacsn element reads
+b)a®+yU3S*
dT, _ 4q,(1+b)a’+pU"S A:T* (29)

dx e, a’
whereT* is a constant (longitudinal bulk temperature geat). Solving for the bulk temperature, one has
T, =T*x+T (30)
Making use of the above equation in the entropylpetion formula, Eq. (28), one concludes that

ds *
e dx P dx O!WCdx (31)
mc, Xx+T/T* pcT* x+T/T* mcT,

As the wall temperature is not explicitly definedterms of the known variables, one replaces ithay

dimensionless variable counterp@yt= (T, —T.) /(g,a/k,) where, in terms of the tabulated data, one has

TW = Tl + (elw + qu)lw) qwa/ ke (32)
leading to
ds,, dx dx  gC dx

(33)

——= +F .
me, Xx+T/T*  x+T/T* e T1+(6,+Bro,)g

with the dimensionless wall heat flux being defiresig* = q,a/(k.T.) . Moreover, the dimensionless

parameterF = P*/(,ocpT*) is a measure of required pumping power to enthal@nge (longitudinal

heat transfer). For non-zero Br values and in teshtke Darcy pressure drop one concludes that

F=N*— (22 grgy (34)
MDa ' D,
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where N* shows the degree of non-Darcy effects on the itodinal pressure gradient as
N* = P*/( tJ/ K) . For the Darcy flow model*=1. Integrating fronx=0 to x=L and rearranging in

terms of known parameters, one has
S |_ ~ 1+F R ~
N2 e (e | g 4ajL ax
me, Dy, D, °° 1+ (le+ qu)lw)q*

(35a)

As seen, like the left-hand-side term the first ti@oms in the right-hand-side of Eq. (33) are irabed
directly; however, the last term on the right sgtmuld be evaluated numerically. Before reportimg t
numerical results, which are obtained using theezaidal rule, two limiting cases, for which
approximate closed form solutions are obtained, lvél presented. It is assumed that the dimensignles
heat fluxg* is very small compared to unity. Commensurate \wlitht is the constant property assumption
similar to [29]. First consider the case of a hgmeous medium for which one h&#Da=0(1). A quick
check of our table 1 shows that for this c&eO(1) so that neglecting the terms smaller thag*(ike

g*?, one finds that

Ns=q* [(F(L+b)/b +BrS*(1 + F)) (35b)
ReplacingF, one has

Ns=q* LBr(S* +N/( MD3) (35c)
Comparing the predictions of the above equationtaedhumerically obtained results, a good degree of
agreement is observed. For example wifde=1, N*=0.1, andMDa=1, Eq. (35c) predictbls=0.4291 and
0.0429 while the numerical results are 0.3435 aAdX3 forg*=0.01 and 0.001, respectively. The results
agree better for smallef values, as expected based on our asymptotic sisagsumptions.

It is instructive to rearrange Eq. (35¢) in ternislinensional variables as

: uuU? N
S =ALZE S*+ 35d
gen a’T, ( MDa) (35d)

Based on table 1 resultSt decreases with the aspect ratio so that, as shmywaq. (35d), the square
cross-section is associated with the highest entggmeration rate compared to rectangular countistpa
Another case of interest is the one for whitha—0 where even for relatively smajt one can
still expect that the product &@rg*S* will be notably greater than O(1) so that the secterm in the
right side of Eq. (35a) is negligible comparedtte first one; a term that can be simplified in sachay

thatNs be obtained as

Ns=(1+— yincY_Lg (35€)
MDaS pc,Taa
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similar to the previous case, Eq. (35e) has beefiagversus numerical counterparts fdba=10* and
N*=1 with the other parameters remaining the sante Aumerical results afds=12.249, 7.814 while
approximate counterparts are 12.344 and 7.78§*0.01 and 0.001, respectively.

3. Results and Discussion
In the absence of frictional heating contributionder the constant wall heat flux condition, the

energy balance leads to a relation for the bulkptnature,
6,, = 1+b)x/b (36a)
The bulk temperature is also obtainable analyticttbm Eq. (11), with@(Y,Z;X) from Eq. (16). This

was done mainly for the verification of the mathéina relations for the temperature solution. Sariy,

the application of energy balance to a materiahela yields the relation
®,,=S% (36b)
andS* values for selected valuestwa andM Da values are in Table 1.

If one designated), = (T, -T.)/(q,a/k,) and g, =(T,-T.)/(qg,a/k,), the Nusselt number is
obtainable from the relationNu=ha/ke=1/(8, —6,)and then using the hydraulic diameter
D, =4ab/(a+b) in the definition, the Nusselt number becomes

w20 gy B (1) B 1 . @
a 1+b\ 6, -6, 1+b| G,-6,)* Br(@,,-®,)

The values ofNup can be determined from tabulat¢é, , —6,,) and (¥,,—P,,) data in Tables

2(a,b) through 5(a,b), at different=(x/a)/Pe, b/a, M Da, andBr values which can be positive or
negative depending on the direction of heat flux.

The data for®, —®, can also identify the values of the wall tempemtir the absence of
heating or cooling at the walls where viscous g@isson is the only reason for heat transfer asudised
by Hooman et al. [24] for a similar problem withotlsermal wall heating. In this case the energy

generated inside the duct should be carried byntbging fluid leading to an increase in the fluid

enthalpy. For this case one obtains the wall arkl temnperature as

T (Y,Z,X)-T ——a
w = q) ,Z,X , 38'
HU?/k, 2u(3:2%) oo
Tb(y' Z, X)_Ti =q)2'b(ylz;)’2) - SD)'Z (38-b)

UU? 1k,
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One notes that the temperature scalg/d */ k. for this case as there is no wall heat flux tartwiuded

in the denominator. The data in Tables 2(a,b) thino&(a,b) can be used to illustrate the wall-bulk

temperature differenc®, , —®,, . This has been done for some cases as shown umesi@(a-d) for

b/a=1, 2, 4, and 10 where the variations of the werhperature@lvW and the bulk temperatuﬂ??gb are

graphically presented in [21] for the same aspatbs. As a common trend in all charts on Figures 2(

d), one observes that value @f,  —®, increases along the duct. However, wiba>0.1 the curve

experiences a turning point while for smaller valoéMDa there is a sharp increasedy , —®,, .

For a more comprehensive analysis of the problem®,can use the data presented in tables 1-5 to
find the Nusselt number for any arbitrary combioatbf the key parameters. As an illustration, this
partly done and the results are in Figures 3-4urféigB(a) shows the developing Nusselt number for
MDa=0.001 versus the streamwise direction for sevesles ofBr. It is clear that increasinBr will
reduce the Nusselt number level. Moreover, increpBr and aspect ratio, thdup-x plots tend to be
more flattened. The square cross-section seemshavk differently for higheBr values in such a way
that the developing Nusselt number is as high asdhother aspect ratios in the duct entrancethed
decreases sharply with the fully developéah being the minimum among the other counterparts It
interesting that in their study of heat transfed antropy generation in a duct of rectangular ceesgion
with the fully developed assumption, Hooman e{28] have reported that the square cross-sectits ac
in a different manner for very smalilDa values where the velocity profile is nearly slugldahe problem
is a conduction-like one. They attributed this faetpart) to the special geometry of a squarehoring
more symmetry compared to rectangular counterpaitgurd 3(b) showsNup versus longitudinal
coordinate for differenBr values withMDa=1 which represents a hyperporous medium. It can be
concluded that for a fixeBr valueNup increases with the aspect ratio for all casesidersd here.

Figures 4(a,b) present the fully developged, versusBr for two limiting aspect ratios being
b/a=1 and 10. One realizes that the hyperporous eageMDa=1, mimics the clear fluid counterpart as
the corresponding curves are nearly identical butingpfrom MDa=0.0001 to 0.001, changes in the
Nusselt number are more pronounced compared tdotimeer case. In line with the aforementioned
observations increasirgy or decreasing/iDa will decrease the Nusselt number for either valfethe
duct aspect ratio. Moreover, the Nusselt numbes pigher values for smaller aspect ratio compaoed t
the higher one. Nevertheless, it should be notat thr smallBr values, selection of a length scale in the
Nusselt number (hydraulic diameter) is partly resdole for that similar to what was reported by][29

Interestingly, moving to highéBr values, this choice becomes of less importance.
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For a better understanding of the problem, Eq. {8T¢arranged in terms of the Nusselt number
for negligible viscous dissipation caddy*, as follows
_4b [ 1

Nu, =——
1+b| Nu*

+ Br(q)z,w_q)zb)] . (39)

Eq. (39) is identical to the form reported by Kal@al. [33] for clear flow through a pipe and atso
Hooman and Gurgenci [34] for a parallel plate psrahannel (see [35-37] for more closed form
solutions for similar problems), if rearranged akofvs

Nu, = 4b_ Nu . (40)
1+b | 1+ Nu*Br(®,, - ®,,)

It is an easy task to see that increadnglecreaseslup, whereNu* is the Nusselt number for the case
where one can neglect the viscous dissipation wsfféx). (40) can be modified to be used for duéts o
other cross-sections. The significance of this pbecomes more vivid as one can apply Eq. (40) to
account for the viscous dissipation effects, far folly developed or thermally developing regiory, b
combining two easier problems, with their answesailable in the literature, to obtain the solutimna
more complex problem. For example one can use dhelations proposed by Haji-Sheikh [38] to find
Nu* for ducts of parallel plate or circular cross-gmtd and solve only for the second part to obth@ t
final solution for a problem where frictional hewgi is important. This seems to be of practical
importance in engineering applications where uguaiie is in search for a rough and ready estimate
rather than complicated calculations.

It is worth noting that several combinations oé tkey parameters can lead to different results,
based on the data in tables 2-5; however, for #ke ®f brevity, we restrict our results for the Get
Law aspects of the problem to the most irreversgelemetry being the square cross-section (see3l1-1
and [29]). Figure 5 illustrates plots Nf versusBr for two different values oflDa being 1 and 1t As
seen, with the other parameters fixed, decreablBg or increasing either oBr or g* increases the
entropy production rate. This is inline with thesults of Hooman et al. [29]. Moving froMDa=1 to

10", theNs-Br slope changes as expected based on the approxinedietions of Eq. (35d-e).

4. Conclusion

The effect of viscous dissipation on heat tranafat entropy generation for thermally developing
forced convection in a porous-saturated duct ofareggular cross-section is investigated. The claksic
Galerkin method is applied to solve the Brinkmarmmeatum equation while the EWRM is undertaken to
solve the non-homogenous three-dimensional theenatgy equation. It is believed that the solution

reported in this study can serve as a benchmarkefidgfication of numerical solutions concerning gan
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problems [39-46]. It was observed that viscousipi®on reduces the Nusselt number in both thesmall
developing and fully developed regions unlike thmilar case with isothermal wall heating. Key

parameters affecting the Second Law aspects girtitdem are highlighted and analyzed.
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Table 1. The paramet&, for differentb/a andM Da values,
for determination ofP,, =S’ [X.

M Da b/a=1 b/a=2 b/la=4 b/a=10

0.0001 10202.9 10151.6 10126.3 10111|5
0.001 1066.07 1049.09 1040.81 1035.90
0.01 123.042 116.772 113.871 112.199
0.1 20.1833 16.9485 15.6872 15.016[7
1 8.48230 5.70568 4.83563 4.42943
10 7.25128 450748 3.68970 3.32534
00 7.11354 4.37289 3.56109 3.20179
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Table 2(a). The difference between the dimensisnied| temperature
and bulk temperature due to the wall effect anttiémal

heating contribution whel/a = 1.

MDa = M Da =1 M Da =1/10
X BiwB1p  PowPap | OrwBip  Pow®2p | BiwBip  PowPap
0.0005| 0.0949 0.044 0.0928 0.046 0.0816 0.061
0.0006| 0.1012 0.049 | 0.0990 0.051 0.0870 0.068
0.0008| 0.1119 0.058 | 0.1095 0.061 0.0963 0.080
0.001| 0.1211 0.067 | 0.1184 0.070 0.1043 0.090
0.002| 0.1545 0.102 | 0.1512 0.106 0.1333 0.132
0.003| 0.1783 0.131 | 0.1745 0.134 0.1540 0.163
0.004| 0.1971 0.155 | 0.1930 0.159 0.1705 0.189
0.005| 0.2130 0.176 | 0.2086 0.180 0.1844 0.212
0.006| 0.2269 0.196 | 0.2223 0.200 0.1966 0.231
0.008| 0.2505 0.231 | 0.2454 0.235 0.2174 0.265
0.01| 0.2703 0.262 | 0.2649 0.265 0.2348 0.294
0.02| 0.3402 0.381 | 0.3337 0.382 0.2969 0.397
0.03| 0.3868 0.469 | 0.3796 0.468 0.3386 0.467
0.04| 0.4219 0.540 | 0.4143 0.536 0.3703 0.519
0.05| 0.4499 0.600 | 0.4420 0.592 0.3958 0.561
0.06| 0.4731 0.650 | 0.4649 0.641 0.4169 0.596
0.08| 0.5095 0.733 | 0.5010 0.719 0.4502 0.651
0.1| 0.5369 0.798 | 0.5280 0.780 0.4753 0.692
0.2| 0.608 0.974 | 0.5984 0.947 0.5406 0.802
0.3| 0.633 1.039 | 0.6231 1.007 0.5632 0.840
0.4| 0.6422 1.063 | 0.6322 1.029 0.5714 0.854
0.5| 0.6457 1.072 | 0.6356 1.038 0.5744 0.859
0.6| 0.6470 1.075 | 0.6369 1.041 0.5755 0.861
0.8| 0.6477 1.077 | 0.6376 1.042 0.5760 0.862
1| 0.6478 1.077 | 0.6377 1.043 0.5761 0.862
2| 0.6478 1.077 | 0.6377 1.043 0.5761 0.862
3| 0.6478 1.077 | 0.6377 1.043 0.5761 0.862
4| 0.6478 1.077 | 0.6377 1.043 0.5761 0.862
5| 0.6478 1.077 | 0.6377 1.043 0.5761 0.862
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Table 2(b). The difference between the dimensiantes| temperature
and bulk temperature due to the wall effect anditmal

heating contribution whel/a = 1.

M Da =1/100 | MDa= 1/1000 | MDa= 1/10000

X BwB1p  Pow@Pap | OrwBip  Pow®2p | BiwBip Py Pap
0.0005| 0.0609 0.132 0.0441 0.132 0.0441 0.274
0.0006 | 0.0647 0.143 0.0471 0.143 0.0471 0.292
0.0008 | 0.0714 0.162 0.0521 0.162 0.0521 0.313
0.001 | 0.0773 0.177 0.0564 0.177 0.0564 0.325
0.002 | 0.0991 0.234 0.0727 0.234 0.0727 0.345
0.003 | 0.1146 0.272 0.0847 0.272 0.0847 0.354
0.004 | 0.1271 0.300 0.0944 0.300 0.0944 0.360
0.005 | 0.1376 0.322 0.1028 0.322 0.1028 0.364
0.006 | 0.1469 0.341 0.1102 0.341 0.1102 0.367
0.008 | 0.1627 0.370 0.1229 0.370 0.1229 0.371
0.01 0.1761  0.392 0.1337 0.392 0.1337 0.374
0.02 0.2240  0.459 0.1733 0.459 0.1733 0.381
0.03 0.2565 0.494 0.2009 0.494 0.2009 0.383
0.04 0.2814  0.517 0.2223 0.517 0.2223 0.385
0.05 0.3016  0.533 0.2398 0.533 0.2398 0.386
0.06 0.3185 0.546 0.2545 0.546 0.2545 0.386
0.08 0.3453  0.564 0.2783 0.564 0.2783 0.387
0.1 0.3658  0.577 0.2966 0.577 0.2966 0.388
0.2 0.4197  0.608 0.3461 0.608 0.3461 0.389
0.3 0.4383 0.618 0.3638 0.618 0.3638 0.389
0.4 0.4448 0.622 0.3701 0.622 0.3701 0.389
0.5 0.4471  0.623 0.3725 0.623 0.3725 0.389
0.6 0.4479 0.624 0.3733 0.624 0.3733 0.389
0.8 0.4483 0.624 0.3737 0.624 0.3737 0.389
1 0.4484  0.624 0.3738 0.624 0.3738 0.389

2 0.4484  0.624 0.3738 0.624 0.3738 0.389
3 0.4484  0.624 0.3738 0.624 0.3738 0.389
4 0.4484  0.624 0.3738 0.624 0.3738 0.389
5 0.4484 0.624 0.3738 0.624 0.3738 0.389
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Table 3(a). The difference between the dimensisnied| temperature
and bulk temperature due to the wall effect anditmal

heating contribution whel/a = 2.

M Da = M Da =1 M Da =1/10
X BiwB1p  Pow®Pap | OrwBip  Pow®op | BwBip Do Pap
0.0005 | 0.0995 0.034 | 0.0964 0.037 0.0819 0.054
0.0006 | 0.1059 0.038 | 0.1027 0.041 0.0875 0.060
0.0008 | 0.1170 0.045 | 0.1134 0.049 0.0968 0.070
0.001 | 0.1264 0.052 | 0.1224 0.056 0.1046 0.080
0.002 | 0.1611 0.080 | 0.1558 0.085 0.1329 0.116
0.003 | 0.1855 0.103 | 0.1795 0.108 0.1532 0.143
0.004 | 0.2051 0.122 | 0.1985 0.128 0.1695 0.165
0.005 | 0.2218 0.139 | 0.2145 0.145 0.1834 0.185
0.006 | 0.2363 0.155 | 0.2286 0.161 0.1955 0.202
0.008 | 0.2610 0.182 | 0.2526 0.189 0.2161 0.231
0.01 0.2819 0.207 | 0.2728 0.214 0.2335 0.256
0.02 0.3564 0.303 | 0.3452 0.309 0.2963 0.344
0.03 0.4071 0.374 | 0.3946 0.378 0.3392 0.402
0.04 0.4463 0.432 | 0.4327 0.433 0.3724 0.446
0.05 0.4783 0.480 | 0.4638 0.479 0.3996 0.481
0.06 0.5054 0.522 | 0.4902 0.519 0.4227 0.510
0.08 0.5495 0.591 | 0.5331 0.584 0.4602 0.555
0.1 0.5845 0.646 | 0.5671 0.635 0.4898 0.590
0.2 0.6922 0.808 | 0.6713 0.784 0.5792 0.683
0.3 0.7496 0.883 | 0.7264 0.852 0.6248 0.722
0.4 0.7860 0.925 | 0.7610 0.888 0.6527 0.740
0.5 0.8110 0.951 | 0.7848 0.911 0.6717 0.751
0.6 0.8291 0.968 | 0.8020 0.926 0.6855 0.758
0.8 0.8524 0.990 | 0.8243 0.945 0.7033 0.766
1 0.8656 1.003 | 0.8369 0.955 0.7136 0.771
2 0.8822 1.018 | 0.8529 0.969 0.7270 0.777
3 0.8832 1.019 | 0.8539 0.969 0.7279 0.778
4 0.8832 1.019 | 0.8539 0.970 0.7280 0.778
5 0.8832 1.019 | 0.8539 0.970 0.7280 0.778
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Table 3(b). The difference between the dimensiantea| temperature
and bulk temperature due to the wall effect anditmal

heating contribution whel/a = 2.

M Da =1/100 | MDa= 1/1000 | MDa= 1/10000
X BwB1p  Pow@Pap | OrwBip  Pow®2p | BiwBip Py Pap
0.0005| 0.0591 0.123 0.0423 0.252 0.0334 0.285
0.0006 | 0.0633 0.134 0.0454 0.269 0.0361 0.296
0.0008 | 0.0706 0.154 0.0508 0.295 0.0407 0.312
0.001 | 0.0767 0.169 0.0554 0.314 0.0446 0.324
0.002 | 0.0983 0.223 0.0726 0.366 0.0595 0.352
0.003 | 0.1133 0.258 0.0848 0.391 0.0703 0.362
0.004 | 0.1254 0.285 0.0945 0.408 0.0792 0.367
0.005 | 0.1358 0.305 0.1028 0.420 0.0868 0.370
0.006 | 0.1450 0.323 0.1101 0.429 0.0937 0.372
0.008 | 0.1607 0.350 0.1229 0.442 0.1057 0.376
0.01 0.1740 0.370 0.1339 0.452 0.1161 0.378
0.02 0.2222 0.432 0.1747 0.475 0.1550 0.382
0.03 0.2556  0.464 0.2036 0.486 0.1829 0.383
0.04 0.2816  0.485 0.2264 0.492 0.2050 0.384
0.05 0.3031  0.500 0.2454 0.496 0.2235 0.384
0.06 0.3214 0.511 0.2617 0.500 0.2394 0.383
0.08 0.3513  0.528 0.2887 0.504 0.2657 0.383
0.1 0.3751  0.539 0.3103 0.507 0.2869 0.382
0.2 0.4472  0.568 0.3767 0.515 0.3522 0.380
0.3 0.4833 0.578 0.4103 0.517 0.3853 0.378
0.4 0.5050  0.583 0.4304 0.519 0.4051 0.377
0.5 0.5196  0.586 0.4438 0.519 0.4182 0.376
0.6 0.5301  0.587 0.4535 0.520 0.4277 0.375
0.8 0.5440 0.589 0.4663 0.520 0.4402 0.374
1 0.5522 0.590 0.4739 0.521 0.4476 0.374

2 0.5633 0.592 0.4845 0.521 0.4582 0.373
3 0.5642 0.592 0.4854 0.521 0.459 0.373
4 0.5642 0.592 0.4854 0.521 0.4591 0.373
5 0.5642 0.592 0.4854 0.521 0.4591 0.373
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Table 4(a). The difference between the dimensignied| temperature
and bulk temperature due to the wall effect anditmal

heating contribution whel/a = 4.

M Da = M Da =1 M Da =1/10
X BwB1p  Pow@Pap | OrwBip  Pow®2p | BiwBip Py Pap
0.0005 | 0.0936 0.033 | 0.0902 0.035 0.0767 0.050
0.0006 | 0.1002 0.037 | 0.0965 0.040 0.0819 0.056
0.0008 | 0.1114 0.044 | 0.1073 0.047 0.0910 0.067
0.001 | 0.1209 0.051 | 0.1165 0.055 0.0988 0.076
0.002 | 0.1551 0.079 | 0.1497 0.083 0.1276 0.113
0.003 | 0.1786 0.101 | 0.1726 0.106 0.1478 0.140
0.004 | 0.1970 0.119 | 0.1904 0.125 0.1636 0.162
0.005 | 0.2125 0.136 | 0.2054 0.141 0.1767 0.180
0.006 | 0.2260 0.151 | 0.2184 0.157 0.1881 0.197
0.008 | 0.2490 0.178 | 0.2407 0.184 0.2074 0.225
0.01 0.2684 0.202 | 0.2594 0.208 0.2236 0.248
0.02 0.3377 0.293 | 0.3266 0.298 0.2819 0.333
0.03 0.3849 0.360 | 0.3723 0.364 0.3218 0.389
0.04 0.4214 0.414 | 0.4075 0.416 0.3525 0.430
0.05 0.4512 0.459 | 0.4364 0.459 0.3777 0.463
0.06 0.4765 0.497 | 0.4608 0.495 0.3990 0.490
0.08 0.5177 0.558 | 0.5006 0.553 0.4336 0.533
0.1 0.5505 0.606 | 0.5321 0.599 0.4609 0.565
0.2 0.6530 0.737 | 0.6295 0.722 0.5429 0.648
0.3 0.7109 0.790 | 0.6834 0.770 0.5853 0.678
0.4 0.7513 0.815 | 0.7205 0.792 0.6130 0.691
0.5 0.7830 0.829 | 0.7493 0.804 0.6341 0.697
0.6 0.8096 0.839 | 0.7734 0.813 0.6514 0.701
0.8 0.8528 0.853 | 0.8125 0.824 0.6793 0.706
1 0.8873 0.863 | 0.8437 0.832 0.7016 0.710
2 0.9921 0.890 | 0.9385 0.853 0.7702 0.718
3 1.0416 0.901 | 0.9836 0.863 0.8035 0.721
4 1.0663 0.907 | 1.0063 0.867 0.8207 0.723
5 1.0787 0.910 | 1.0277 0.869 0.8296 0.724
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Table 4(b). The difference between the dimensienhesl temperature
and bulk temperature due to the wall effect anditmal

heating contribution wheb/a = 4.

M Da =1/100 | MDa= 1/1000 | MDa= 1/10000
X BiwB1p  Pow®Pap | OrwBip  Pow®op | BwBip Do Pap
0.0005| 0.0575 0.113 0.0434 0.225 0.0344 0.328
0.0006 | 0.0610 0.124 0.0462 0.237 0.0368 0.337
0.0008 | 0.0673 0.143 0.0508 0.257 0.0410 0.352
0.001 | 0.0728 0.160 0.0549 0.273 0.0447 0.363
0.002 | 0.0941 0.218 0.0709 0.326 0.0593 0.393
0.003 | 0.1095 0.254 0.0831 0.356 0.0705 0.405
0.004 0.122 0.281 0.0931 0.377 0.0798 0.412
0.005 | 0.1324 0.301 0.1017 0.391 0.0877 0.416
0.006 | 0.1415 0.318 0.1093 0.402 0.0948 0.419
0.008 | 0.1569 0.344 0.1223 0.418 0.1069 0.423
0.01 0.1697 0.364 0.1333 0.428 0.1173 0.426
0.02 0.2155 0.423 0.1732 0.452 0.1556 0.433
0.03 0.2473 0.454 0.2012 0.462 0.1831 0.437
0.04 0.2721 0.474 0.2235 0.468 0.2050 0.438
0.05 0.2926  0.489 0.2420 0.473 0.2232 0.440
0.06 0.3100  0.500 0.2579 0.476 0.2389 0.440
0.08 0.3384 0.515 0.2842 0.480 0.2649 0.442
0.1 0.3609  0.527 0.3052 0.483 0.2857 0.442
0.2 0.4287  0.553 0.3692 0.491 0.3493 0.444
0.3 0.4628  0.563 0.4014 0.494 0.3814 0.445
0.4 0.4842  0.567 0.4212 0.495 0.4011 0.445
0.5 0.4999  0.569 0.4356 0.495 0.4152 0.445
0.6 0.5126  0.570 0.4471 0.495 0.4264 0.445
0.8 0.5332 0.571 0.4655 0.496 0.4443 0.445
1 0.5497 0.572 0.4802 0.496 0.4586 0.445

2 0.6010 0.573 0.5263 0.497 0.5035 0.445
3 0.6266 0.574 0.5495 0.497 0.5261 0.444
4 0.6401 0.575 0.5618 0.497 0.5381 0.444
5 0.6473 0.575 0.5684 0.497 0.5446 0.444
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Table 5(a). The difference between the dimensisnied| temperature
and bulk temperature due to the wall effect anditmal

heating contribution wheb/a = 10.

M Da = M Da =1 M Da =1/10
X BwB1p  Pow@Pap | OrwBip  Pow®2p | BiwBip Py Pap
0.0005 | 0.0893 0.028 | 0.0878 0.035 0.0779 0.050
0.0006 | 0.0947 0.032 | 0.0930 0.039 0.0824 0.055
0.0008 | 0.1041 0.039 | 0.1020 0.047 0.0902 0.065
0.001 | 0.1122 0.045 | 0.1096 0.054 0.0969 0.074
0.002 | 0.1420 0.072 | 0.1379 0.083 0.1215 0.109
0.003 | 0.1633 0.094 | 0.1582 0.106 0.1391 0.135
0.004 | 0.1803 0.115 | 0.1745 0.125 0.1533 0.157
0.005 | 0.1948 0.134 | 0.1883 0.143 0.1654 0.176
0.006 | 0.2074 0.151 | 0.2004 0.158 0.1759 0.193
0.008 | 0.2287 0.182 | 0.2211 0.186 0.1941 0.221
0.01 0.2465 0.210 | 0.2385 0.211 0.2094 0.246
0.02 0.3087 0.311 | 0.2999 0.303 0.2643 0.332
0.03 0.3498 0.379 | 0.3407 0.369 0.3012 0.388
0.04 0.3809 0.431 | 0.3713 0.420 0.3291 0.429
0.05 0.4061 0.473 | 0.3960 0.462 0.3515 0.462
0.06 0.4272 0.509 | 0.4166 0.498 0.3702 0.488
0.08 0.4612 0.565 | 0.4495 0.555 0.4000 0.529
0.1 0.4877 0.609 | 0.4751 0.598 0.4229 0.560
0.2 0.5651 0.725 | 0.5492 0.709 0.4880 0.638
0.3 0.6039 0.765 | 0.5853 0.746 0.5176 0.664
0.4 0.6292 0.781 | 0.6084 0.761 0.5351 0.673
0.5 0.6490 0.788 | 0.6262 0.767 0.5479 0.677
0.6 0.6658 0.792 | 0.6412 0.771 0.5584 0.679
0.8 0.6944 0.798 | 0.6666 0.775 0.5761 0.682
1 0.7188 0.801 | 0.6882 0.778 0.5911 0.683
2 0.8082 0.811 | 0.7673 0.786 0.6459 0.686
3 0.8703 0.815 | 0.8223 0.790 0.6841 0.688
4 0.9185 0.818 | 0.8649 0.792 0.7139 0.689
5 0.9579 0.820 | 0.8997 0.794 0.7383 0.689
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Table 5(b). The difference between the dimensienhesl temperature
and bulk temperature due to the wall effect anditmal

heating contribution whe/a = 10.

M Da =1/100 | MDa= 1/1000 | MDa= 1/10000
X BiwB1p  Pow®Pap | OrwBip  Pow®op | BwBip Do Pap
0.0005| 0.0594 0.112 0.0455 0.244 0.0371 0.313
0.0006 | 0.0628 0.122 0.0481 0.256 0.0394 0.325
0.0008 | 0.0689 0.140 0.0527 0.275 0.0434 0.341
0.001 | 0.0740 0.154 0.0567 0.290 0.0469 0.353
0.002 | 0.0932 0.206 0.0720 0.335 0.0605 0.378
0.003 | 0.1070 0.239 0.0832 0.360 0.0709 0.387
0.004 | 0.1182 0.265 0.0925 0.376 0.0796 0.392
0.005 | 0.1277 0.285 0.1005 0.387 0.0872 0.396
0.006 | 0.1361 0.302 0.1076 0.396 0.0940 0.399
0.008 | 0.1506  0.329 0.1200 0.409 0.1059 0.402
0.01 0.1629  0.350 0.1307 0.418 0.1162 0.405
0.02 0.2076  0.413 0.1703 0.443 0.1549 0.411
0.03 0.2381 0.445 0.1980 0.455 0.1823 0.413
0.04 0.2614  0.466 0.2197 0.463 0.2038 0.414
0.05 0.2803 0.480 0.2374 0.468 0.2215 0.414
0.06 0.2962 0.491 0.2524 0471 0.2365 0.414
0.08 0.3219  0.506 0.2769 0.476 0.2609 0.414
0.1 0.3418 0.517 0.2961 0.479 0.2802 0.415
0.2 0.3990 0.543 0.3521 0.487 0.3367 0.415
0.3 0.4245  0.552 0.3774 0.489 0.3624 0.415
0.4 0.4388  0.555 0.3914 0.490 0.3766 0.415
0.5 0.4486  0.556 0.4007 0.491 0.3860 0.415
0.6 0.4564  0.557 0.4080 0.491 0.3932 0.415
0.8 0.4693  0.558 0.4198 0.491 0.4049 0.415
1 0.4803 0.558 0.4297 0.491 0.4147 0.415

2 0.5205 0.559 0.4661 0.491 0.4507 0.415
3 0.5487 0.559 0.4918 0.492 0.4761 0.415
4 0.5708 0.559 0.5118 0.492 0.4959 0.415
5 0.5889 0.559 0.5283 0.492 0.5122 0.415
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Figure Captions

Fig 1. A schematic of a rectangular passage withidinates.

Fig 2d. The effects of frictional heating on thellvoulk temperature difference for differelt Da values
in the absence of wall heat flux, when i§g = 10, (b)b/a =2, (c)b/a=4,(d ) b/a=10.

Fig 3-a.Nup versus X/a)/Pe for differentBr and aspect ratio values, (a) widba=0.001 and (b) when
MDa=1.

Fig 4-a. Fully developeblu, versusBr, MDa, andaspect ratio value¢a) whenb/a=1 and (b) when
b/a=10.

Figure 5. Variation oNs versusBr for different values oMDa.
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Fig 2. The effects of frictional heating on the lallk temperature difference for differekt Da values
in the absence of wall heat flux, when lfég = 10, (b)b/a= 2, (c)b/a=4,(d ) b/a=10.
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Fig 3.Nup versus X/a)/Pe for differentBr and aspect ratio values,
(a) whenMDa=0.001 and (b) wheklDa=1.
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Fig 4. Fully developetlup versusBr, MDa, andaspect ratio values,
(a) whenb/a=1 and (b) whe/a=10.



K. Hooman and A. Haji-Sheikh  Int. J. Heat Mass Transfer 50(2007)4180-41985

21

19

17

MDa=0.0001 (N*=1)
— — — = MDa=1  (N*=0.1)

15
b/a=1

*=0.1
13 q

11

Ns

—
-— -
-
-
-—

\‘\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\ \I\\\\I\\\\I

=
i
~
=
o

Br

Fig 5. Variation ofNs versusBr for different values oMDa.



