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Force measurement in hypervelocity expansion tubes is not possible using conventional techniques. The stress 

wave force balance technique can be applied in expansion tubes to measure forces despite the short test times 

involved. This paper presents a new calibration technique for multiple-component stress wave force balances where 

an impulse response created using a load distribution is required and no orthogonal surfaces on the model exist.. 

This new technique relies on the tensorial superposition of single-component impulse responses analogous to the 

vectorial superposition of the calibration loads. The example presented here is that of a scale model of the Mars 

Pathfinder, but the technique is applicable to any geometry and may be useful for cases where orthogonal loads 

cannot be applied.  
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Nomenclature 

A = area [m
2
] 

ia
r

 = calibration load on the top rearward facing conical frustum 

aiA
ur

 = vector location of the point of application of load ia
r

 

biA
ur

 = vector location of the point of application of load ib
r

 

niA
ur

 = vector location of the point of application of load in
r

 

ib
r

 = calibration load on the bottom rearward facing conical frustum  

g = impulse response function  

go = impulse response tensor element 

,ai k
g
ur

 = single-component impulse response relating load ia
r

with stress bar k  

,bi k
g
ur

 = single-component impulse response relating load ib
r

with stress bar k  

,ni k
g
ur

 = single-component impulse response relating load in
r

with stress bar k  

GIJ = impulse response tensor relating load in direction J with strain in stress bar I  

in
r

 = calibration load on the forward facing surface  

u = force function 

UJ = discretised force vector in direction J  

YI = discretised strain vector for bar I   

y = strain function  

 

Subscripts 

D1 = axial direction  

D2 = normal direction 

m = moment direction 
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I. Introduction 

 

 

Planetary entry vehicles experience high velocity flows with nonequilibrium chemical kinetics. To simulate 

such flows experimentally it is necessary to reproduce high velocity flows of a gas with a chemical composition 

closely resembling that experienced by a capsule in flight. The Pathfinder entry into the Martian atmosphere
1
, for 

example, was at a nominal speed of 7.35 km/s, corresponding to a total enthalpy of approximately 27 MJ/kg, in an 

atmosphere that is mostly carbon dioxide. Expansion tubes are currently capable of generating useful aerodynamic 

flows with low levels of dissociation at such high total enthalpies
2-4

.  

An expansion tube uses a shock wave generated by a difference in pressure across two adjoining sections of a 

tube to add energy to a slug of gas called the test gas. An unsteady expansion is used to accelerate the test gas 

further to superorbital speeds, if necessary, in a third adjoining section of the tube. Most force measurement 

techniques used in low speed tunnels rely on establishment of equilibrium between aerodynamic forces on the test 

model and the reaction forces in the balance and its support structure
5
. There is insufficient test time to establish 

such equilibrium in expansion tubes and alternative techniques have had to be developed.   One such approach is 

based on the stress wave force balance, which characterizes the dynamic response of the model and its support in an 

impulse response function relating the force time histories on the model to strain time histories in the force balance 

during calibration
6-9

. Since the stress wave force balance approach accounts for the dynamic response of the model, 

if the model is calibrated dynamically, the inertia of the model is taken into account and relied upon to provide a 

characterization of the model’s response to loads of differing magnitudes and time histories. The time histories of 

the forces acting on the model in a tunnel test are then calculated from the strain time histories recorded in the test 

using numerical deconvolution
10

. This enables the measurement of force coefficients under conditions of structural 

non-equilibrium. 
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II. Deconvolution 

 

Strain time histories can be measured using strain sensors and the force time history can be calculated from the 

recorded strain time histories using deconvolution techniques. For a single-component linear system with an applied 

load, u(t), and a single output signal, y(t), the output and input are related via the impulse response function, g(t), 

using the convolution integral  

 
0

( ) ( ) ( )

t

y t g t u dτ τ τ= −∫ . (2) 

One way to obtain the solution of this equation is to solve it in the time domain. If the signals are discretised with 

time step, t∆ , Eq. 2 can be written as 

 
0

i

i i j j

j

y g u t−

=

= ∆∑ , (3) 

 

which, in matrix form, is termed a Fredholm equation of the second kind.  In matrix form this can be written as 

 

 Y GU= , (4) 

 

where U and Y are the discretised force and strain vectors and G is a square impulse response matrix obtained via 

calibration tests. G is then the lower triangular matrix of the form 

 

 

0

1 0

2 1 0

1 2 0n n n

g

g g

g g g t

g g g g
− −

 
 
 
 ∆
 
 
  

M M M O

K

. (5) 

 



Author’s version of Abdel-jawad MM, Mee DJ and Morgan RG “New Calibration Technique for 

Multiple- Component Stress Wave Force Balances” Review of Scientific Instruments 78, 065101, 

2007 
 

 

 

 

In an experiment, Y is measured and U is determined using techniques such as iterative deconvolution
10

. 

 

For a three-component force balance that is designed to measure forces in two orthogonal directions and a 

moment in the plane of these forces, a minimum of three independent output signals is required.  If the three output 

signals are discretized into vectors YA, YB and YC, the forces in orthogonal directions are in vectors UD1 and  UD2 and 

the moment is in vector Um, then the relationship between the inputs and outputs can be written as 

 

 
, 1 , 2 , 1

, 1 , 2 , 2

, 1 , 2 ,

A D A D A mA D

B B D B D B m D

C mC D C D C m

G G GY U

Y G G G U t

Y UG G G

    
    

= ∆    
    
    

. (6) 

 

This results in nine square impulse response submatrices, Gi,j, relating the inputs to the outputs. Coupled 

deconvolution techniques are then required to determine the three input signals from the three measured output 

signals.  

The impulse response can be determined from calibration tests (see section III). When a wind-tunnel test to 

measure aerodynamic forces is conducted, the strain vector is recorded and the only unknown in Eq. 6 is the vector 

of force time histories. This is determined using a deconvolution process.  

III. Calibration 

Calibration of the force balance is required to determine the impulse response matrix in Eq. 6. The linearity of 

the system can be exploited to use superposition of the results from a series of point load calibrations to determine 

the impulse response matrix for a distributed load on the model. Dynamic calibration of stress wave force balances 

can be performed by cutting wires attaching weights to the model or by applying loads using a calibrated impact 

hammer
11

. Using an impact hammer is usually preferred because of the simpler experimental arrangement required. 

 

Calibration of multiple-component stress wave force balances in the past has used mutually orthogonal 

calibration loads exclusively
6-9

. For a three-component balance, by applying a pure force in direction D1 (see Figure 
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2), the three submatrices 
, 1A D

G , 
, 1B D

G  and 
, 1C D

G  in Eq. 6 can be determined by using single-component 

deconvolution. Similarly, when a pure force in the orthogonal direction, D2, is applied, one is able to solve for the 

central column of the impulse response matrix in Eq. 6. Finally, with the application of a pure moment load, one can 

solve for the final column of the impulse response matrix. However, for the present case, the application of 

distributed orthogonal loads using an impact hammer is not possible since the hammer can only reliably be used to 

apply loads normal to the surface and no two surfaces on the model are perpendicular. A new method of calibration 

was therefore developed. 

The new technique involves using an impact hammer to apply a series of point loads at different locations on the 

model and measuring the outputs from the strain gauges for these loads. For each test, single-component 

deconvolution can be used to find the impulse response relating the output signals to the applied load. The principle 

of superposition is then used to combine these impulse responses to determine an impulse response that would be 

obtained if the loads from combinations of the calibration loads were applied simultaneously, but in different 

proportions, to the model. By judicious selection of the locations and proportions, it is possible to determine loading 

combinations that produce pure loads in given directions or a pure moment on the model. It is possible also to 

simulate the effects of a distributed pressure load by applying calibration loads at many points on the model and 

using superposition. 

 

The present balance was calibrated to resolve forces in the axial direction (D1) and normal direction (D2) as well as 

a pitching moment, M (see Figure 1). Twenty-seven impact-hammer hits were used to calibrate the balance (see 

Figure 1). All forces were applied perpendicular to the local surface. The nomenclature used for the calibration tests 

is shown in Table 1. Note that the subscript i indicates the location and the subscript k indicates the output number.  

The loads on the forward facing nose and conical frustum of the model are labeled in
r

 where 1 ≤ i ≤. 21. The loads 

on the top and bottom sides of the rear conical frustum in the x-y plane (the plane in which the angle of attack varies) 

are labeled ia
r

 and ib
r

 respectively (where 1 ≤ i ≤. 3). Three output signals are produced for each load - one for each 

bar.   

Single-component impulse responses were formed between each input and the three outputs. Therefore, for each 

calibration load, three single-component impulse responses are produced.  



Author’s version of Abdel-jawad MM, Mee DJ and Morgan RG “New Calibration Technique for 

Multiple- Component Stress Wave Force Balances” Review of Scientific Instruments 78, 065101, 

2007 
 

 

 

 

Superposition was then used to combine the impulse responses from the 27 calibration tests to produce impulse 

responses that would be obtained for decoupled loads in the directions D1 and D2 and for a decoupled moment. Our 

impulse response superposition is analogous to the vectorial superposition of forces of unit magnitude (denoted as 

in̂ , iâ , and ib̂  respectively) resulting in decoupled loads in the directions D1 and D2 and a decoupled moment M.  

We shall make use of this analogy for the derivation of the impulse response superposition equations. 

 

Firstly, since the loads applied are symmetric about the direction D1, summation of all loads,  

∑∑∑∑
==

=

=

−−=
3

1

3

1

21

1

ˆˆˆ1
i

i

i

i

i

i

i banD , produces a net load in the positive D1 direction and zero resultants for the other 

components, 02 ==∑∑ MD . (See Fig. 2 for directions). The analogous impulse response operation is:  

21 3 3

1 , , ,
1 1 1

D n a bk i k i k i k
i i i

g g g g

= = =

     
= − −          
     
∑ ∑ ∑

r r r r
.  (7)  

Here the single-component impulse responses ,in k
g
v

, ,ia k
g
v

and ,ib k
g
v

 arise from the loads in
r

, ia
v

and ib
v

,  

respectively (see Table 1). These terms are also the constituents of Eq. 9 and Eq. 11.  

   

Secondly, we seek to superpose vectorially the loads such that the net result is a load in the D2 direction with 

01 ==∑∑ MD . We denote unit vectors in the direction of application of ia
r

, ib
r

and  in
r

 as iâ , ib̂ and in̂  

respectively.  To achieve 01∑ =D , we first reverse the direction of the a-series loads on the rearward facing 

surfaces of the capsule (see Fig. 1) so that their D1 components cancel the D1 components of the b-series loads. The 

resultant ∑∑
==

−
3

1

3

1

ˆˆ

i

i

i

i ab still has a positive moment contribution about the centre of the balance due to a nonzero 

moment arm.  Similarly, the reversal of the upper half of the n-series loads (see Fig. 1) on the forward facing 

surfaces of the capsule and superposition to the lower half of the n-series loads, according to  ∑∑
=
=

=
=

+

=
=

=
=
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3
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gives a resultant in the D2 direction with 01∑ =D  but also with a moment contribution (which is negative) due to 

a non-zero moment arm from the centre of the balance.  

 

Since the moment contributions are opposing we can multiply the n-series loads by the ratio of magnitudes of the 

moment contribution of ∑∑
==
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.   (8)   

 

where 1/1 k is the ratio of moment contribution magnitudes and ai
A
v

, bi
A
v

 and ni
A
v

 are the vector locations of the 

points of application of loads ia
r

, ib
r

and in
r

, respectively (see Fig. 2). The analogous superposition of impulse 

responses is then given by  

 

2 2
7 3 3 3

2 1 7 , 7 , , ,
5 1 1 1
0 0

j j
i i

D n n a bk i j k i j k i k i k
i i i i
j j

g k g g g g

= =
= =

+ +
= = = =
= =

 
     

   = − − +                     
 

∑ ∑ ∑ ∑
r r r r r , (9) 

By examining Eq. (4), it is can be seen that the multiplication of a load, U, by any factor is analogous to the 

division of the impulse response, G, by that factor. Hence, Eq. 9 shows the factor k1 which is the reciprocal of  the 

formulation in Eq. 8. 

 

Finally we seek to superpose the loads such that there is a resultant moment due to a distributed load but with 

021 ==∑∑ DD . We reverse the direction of the b-series loads (see Fig. 1) so that their axial components 
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cancel the axial components of the a-series loads. The resultant ∑∑
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of the upper n-series loads with superposition of the lower n-series loads also has a positive moment with a negative 

D2 force contribution. We now seek to cancel the D2 force contribution of these loads.  This can be achieved by 

multiplying the n-series loads by the ratio of magnitudes of the D2 force contribution of ∑∑
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where 2/1 k  is the ratio of D2 force contribution magnitudes. The analogous formulation for the impulse response is 

then  
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 where  

 

Note that the impulse response 
kmg

v
 (units of 1/Nmms) relates a unit impulse of a moment to the strain response 

of the model while 
kDg 1

v
and 

kDg 2

v
 (units of 1/Ns) relate unit impulse forces to the strain response of the model. As 
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such, the formulation of 
kmg

v
differs from the other two impulse responses in that a moment arm is required. It is up 

to the practitioner to select an appropriate length scale for the problem at hand and this can be achieved through the 

selection of appropriate units for the moment arms ai
A
v

, bi
A
v

 and ni
A
v

. 

The scalar k1 is necessary in order that moments caused by the components of the n-series loads in the D1 

direction cancel the moments caused by the components in the D1 direction of the a- and b-series loads. The sum of 

forces in the D1 direction is also zero, leaving a decoupled force in the D2 direction.  Similarly the scalar k2 is 

necessary in order that forces in direction D2 of the n-series loads cancel the forces in the D2 direction of the a- and 

b-series loads leaving the decoupled moment M. 

 

 The resulting impulse responses for components D1, D2, and M for each bar are determined. The results from 

each of the three bars are combined to form one, three-component impulse response.  This impulse response relates 

three strain time histories to the three loads (axial force, normal force and pitching moment) and is termed the global 

impulse response.  

IV. Assessment of Accuracy of the Balance   

The performance of any force balance can be assessed by its ability to recover known loads. The recovery of the 

loads used to make up the global impulse response is not a particularly severe test, while the recovery of single point   

loads with a distributed impulse response is a more severe test. Neither have any practical application for a force 

balance and are recommended only as a general assessment tool for the appraisal of force balance performance. 

These tests were conducted for this balance and are reported elsewhere
11

. A good test for the performance of the 

balance is to examine its performance for load distributions and temporal variations similar to those expected in 

tunnel tests. 

The three output signals that would be obtained if a point load of a given time history was applied at one of the 

calibration points can be simulated by convolving the load signal with the impulse responses obtained at that 

location in the calibration tests. A series of these signals can then be superposed to obtain the output signals that 

would be obtained for a combination of these loads applied simultaneously. Using this principle, the output signals 

that would be obtained for a distributed load with a given time history can be obtained. The entire set of loads on the 
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forward facing surfaces of the capsule were combined to give a loading distribution similar to that expected in the 

expansion-tunnel tests. The front face of the model was split into seven horizontal strips (see Figure 4). The loads 

1n
r

 to 21n
r

 were weighted according to the area of the capsule they act upon (see Figure 4) and multiplied by factors 

such that the combination of loads produced axial forces, normal forces and moments with time histories and levels 

similar to those expected in the experiments.  

For example, if a resultant distributed load acting on the capsule is required to act in direction D1 with no net 

force in direction D2 and no net  moment, then loads 1n
r

 to 21n
r

  are multiplied by the same factor. Similarly, if the 

resultant distributed load is required to produce a resultant force in directions D1 and D2 with a pitching moment 

then the loads 1n
r

, 8n
r

and 15n
r

 can be multiplied by a factor greater than that for loads 7n
r

,  14n
r

and 21n
r

. In this 

manner both Newtonian load distributions (where pressure varies as a function of the square of the sine of the 

azimuthal angle
12

) and departures there from can be modeled using vectorial superposition of loads. This is done to 

simulate the application of a pressure load. 

 

A force signal (see Figure 3) similar to that expected in tunnel tests was convolved with various weighted 

combinations of single-component impulse responses obtained from loads 1n
r

 to 21n
r

 described in Table 2. Note that 

the values are reported accurate to 2 decimal places rather than a constant number of significant figures. This is 

more suitable in this case in order to resolve the accuracy of force and moment measurement to the same fraction of 

a unit of measurement.  From Table 2 it can be seen that forces in direction D2 are around two orders of magnitude 

smaller than those in direction D1. This is typical of the proportions expected in the tunnel and provides a severe test 

of capability of the balance to decouple the forces. The levels recovered for axial forces, normal forces and pitching 

moments were averaged between times 200 µs and 325 µs, the test time window in the tunnel tests, and were 

compared with the input levels. The errors in recovered axial forces, and normal forces were used to calculate the 

error in measurement for the lift and drag for the experiments while the error in the moment recovered from these 

tests was used directly.  
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Ten cases were selected to test the sensitivity of the balance. Different loading distributions were chosen to 

investigate the performance of the balance for different aerodynamic situations. Case C1 was chosen to simulate a 

zero incidence test with all loads combined to produce an axial force of 200 N and no normal forces or pitching 

moments. Cases C2 and C3 were chosen to simulate the performance for Newtonian pressures on the model. The net 

resultant axial forces acting on the capsule were similar to Newtonian levels at angles of attack of 2° and 5° 

respectively. Cases C4 and C5 were chosen to simulate conditions where a reduction in static stability is experienced 

by the capsule at 2° angle of attack. The loading was similar to that for case C2 but loads near the shoulder on the 

pitch-in side ( 7n
r

, 14n
r

, and 21n
r

 for case C4 and 6n
r

, 7n
r

, 13n
r

, 14n
r

, 20n
r

 and 21n
r

 for case C5) were multiplied by a 

factor less than that which Newtonian theory would prescribe. This resulted in a reduced static stability in 

comparison to that expected from Newtonian pressures for a 2° angle of attack. Similarly cases C6 and C7 were 

chosen to simulate conditions where a reduction in static stability is experienced by the capsule at 5° angle of attack. 

Loads near the shoulder on the pitch-in side were multiplied by a factor less than that which Newtonian theory 

would prescribe, resulting in a reduced restoring moment compared with the Newtonian level at 5° angle of attack. 

Cases C8, C9 and C10 were produced with the pitch-in side moments weighted to produce an outright instability.  

 

The input and recovered axial forces (direction D1), normal forces (direction D2) and moments are shown in 

Figure 5 and Figure 6. Errors in the mean axial force averaged between times of 200 µs and 325 µs were seen to be 

less than approximately 0.6% (approximately 1N) for all cases. Errors in the mean of the normal force were all 

below 0.4 N. Errors in the mean of the moment were all below 10 Nmm. However, as the craft moves through 0 

angle of attack, the normal forces and moments drop to zero as the absolute measurement accuracy remains 

constant. Relative errors are therefore not meaningful in this situation but the balance is useful to indicate if 

significant normal forces and moments are present.   

The balance displays very good capabilities for recovering the applied loads. However, the moment recovery 

shows some sensitivity to load distribution. For example, the magnitude of the input moment for case C6 was -10.15 

Nmm which was half of that for case C5, yet the error in the recovered moment for case C6 is approximately seven 

times less than that for case C5 due to the different load distributions.  
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V. Conclusion  

 

This paper shows the mathematical formulation for the tensorial superposition of loads to allow for the use of 

nonorthogonal calibration loads in the formulation of three-component impulse response. Assessment of the 

accuracy of the balance shows that the technique is able to resolve small moments for loading distributions that 

represent  departures from stable Newtonian loading distributions. The technique is useful where a three-component 

impulse response based on loads distributed over an area is required, such as for the case presented here (the Mars 

Pathfinder geometry), yet it is applicable to any geometry.    
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Figure 1 Schematic of the force balance showing location of calibration loads and directions of resolution.  

Figure 2. Vector location of calibration hits.  

Figure 3 Force time history used in accuracy assessment of the balance. 

Figure 4 Areas acted upon by calibration loads.  

Figure 5 Input and recovered distributed loads for cases C1 to C5  

Figure 6 Input and recovered distributed loads for cases C6 to C10 
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Table 1 Nomenclature of impulse responses 

Load  Impulse response Load location  

identification 

Strain output 

identification 

ia
r

 
,ai k

g
r

 1 ≤ i ≤ 3 1 ≤ k ≤ 6 

ib
r

 ,bi k
g
r

 1 ≤ i ≤ 3 1 ≤ k ≤ 6 

in
r

 
,ni k

g
r

 1 ≤ i ≤ 21 1 ≤ k ≤ 6 
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 Table 2 Distributed load case. Resultant axial forces, normal forces and pitching moments recovered with global 

impulse response and the errors in the recovery of the mean. (averaging window between 200 µs and 325 µs. ) 

Load Case D1 [N] D2 [N] Moment [Nmm] Error in 

the mean 

-D1 [N] 

Error in 

the mean 

     -D2 [N] 

Error in 

the mean 

         -M [Nmm] 

C1 200.69 0.00 0.00 0.13 0.01 1.65 

C2 200.56 0.93 -45.27 0.32 0.03 1.29 

C3 199.92 2.32 -113.40 0.14 0.05 1.15 

C4 198.81 0.29 -4.05 0.33 0.13 9.76 

C5 199.49 0.54 -21.97 0.38 0.21 9.87 

C6 195.55 0.73 -10.15 0.36 0.33 1.44 

C7 196.69 1.14 -28.06 0.23 0.35 0.24 

C8 198.20 0.07 14.63 1.06 0.39 8.87 

C9 197.15 -0.31 36.56 0.03 0.04 9.70 

C10 195.26 -1.00 82.57 0.13 0.22 9.88 

 

 

 

 


