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ABSTRACT

Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating

recombination events is important in the study of molecular evolution, as inference of such events provides a clearer

picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination

events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending

on evolutionary events that take place after recombination. We previously evaluated the effects of post-recombination

events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The

main conclusion, supported by other studies, is that one should not depend on a single method when searching for

recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect

the occurrence of recombination events, and a Bayesian phylogenetic approach to delineate breakpoints of such events

in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the

applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large

datasets, and yields high-confidence results.
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1 INTRODUCTION

Genetic recombination is the process in which an ex-
ternal fragment of genetic material is integrated into
a recipient sequence. Recombination not only plays a
critical role in the completion of DNA replication and
DNA repair in prokaryotes [1], but also ensures proper
pairing and correct segregation of chromosomes during
meiosis in eukaryotes, a process essential for maintain-
ing genome integrity throughout cell division [2, 3].
The process of recombination, or genetic transfer in
general, contributes to genetic diversity and incon-
sistent phylogenetic signals across genomes of differ-
ent species. Therefore, elucidating genetic transfers
resulting from recombination events in biological se-
quences will enhance our understanding of the role
selective forces play in shaping genomes. However, de-
tecting recombination is not without problems. When
the recombining sequences are very similar to each
other, or when subsequent evolution has obscured
the recombination signal, detecting recombination can
be difficult. The scenario is more complicated when
there are overlapping recombination events on the se-
quences, or when recombination events occurring con-
stitutively one after another in regions within close
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proximity of each other.

A number of approaches are available for detecting
recombination events in biological sequences. These
approaches can be classified based on the different
algorithms used: distance-based [4, 5], substitution
distribution-based [6], compatibility-based [7, 8], and
phylogenetic-based [9]. New approaches are also be-
ing developed such as one adopting a genetic algo-
rithm [10] and one combining the use of two dif-
ferent statistical tests [11]. A number of these ap-
proaches were reviewed for their performance; the ef-
fects of sequence divergence, amount of recombina-
tion, and subsequent substitutions after the recom-
bination event were examined [12, 13, 14, 15]. All
these studies agree that recombination is easier to de-
tect when the event involves sequences that are diver-
gent, and that approaches based on compatibility and
substitution distribution showed higher prediction ac-
curacy than the conventional phylogenetic approach.
While the conventional phylogenetic approaches were
found to perform poorly compared to the other ap-
proaches examined, Bayesian phylogenetic approaches
were found to show higher accuracy than all the other
approaches [15]. The importance of not depending
on a single method in isolation when detecting re-
combination was well demonstrated in these studies,
as the different approaches have different advantages
and drawbacks. A good method for detecting occur-
rences of recombination might not be good in identi-
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fying the breakpoints of such events, and vice versa.
Using different approaches in succession can increase
our confidence in detecting an event that has indeed
taken place within the defined breakpoints at the se-
quences. When dealing with large datasets, it is desir-
able to use a quick method in first-pass screening for
the presence of recombination in the datasets, then a
more-accurate (albeit slower) method to delineate the
recombination breakpoints among the positives [15].
Here we present a two-phase strategy in detecting re-
combination events in nucleotide sequences, and high-
light its application in large-scale datasets.

2 TWO-PHASE APPROACH FOR DETECT-

ING RECOMBINATION

The strategy involves two phases: (a) detecting oc-
currences of recombination events in the sequence
dataset; and (b) identifying breakpoints of such
events. The first phase involves a quick, first-pass
screening for possible recombination events using a
number of statistical measures for evaluating phylo-
genetic discrepancy across the set of sequences. Once
significant phylogenetic discrepancy is detected, the
second phase involves a slower but more-accurate
Bayesian phylogenetic approach to delineate recom-
bination breakpoints in sequence data.

2.1 Phase I: Detecting occurrences of

recombination

To screen for occurrences of recombination events, we
used PhiPack [8] to evalute three different statistical
measures: neighbour similarity score (NSS) [7], max-
imal chi-squared (MaxChi) [16] and pairwise homo-
plasy index (PHI) [8]. These statistics measure the
significance of phylogenetic discrepancy across sites in
an alignment, each test yielding a p-value. Both NSS
and PHI are based on compatibility of parsimoniously
informative sites, whereas MaxChi is based on substi-
tution distributions across sites. If all three p-values
show high significance (e.g. each p-value ≤ 0.10), re-
combination is most likely present within the sequence
set. The three tests are chosen because they are fast
to run and the significance of the presence of a recom-
bination event can be evaluated easily based on the
p-values generated.

2.2 Phase II: Identification of recombination

breakpoints

If the preliminary analysis suggests the presence of
a recombination event, the corresponding breakpoints
can then be identified with high accuracy using other
approaches such as the Bayesian phylogenetic ap-
proach [15]. We used DualBrothers [17], which im-
plements a Bayesian approach using reversible jump
Markov chain Monte Carlo and dual multiple change-
point model in inferring changes in tree topologies
and evolutionary rates across sites within a sequence
set. While the prediction accuracy of recombination

breakpoints comes at the expense of time and compu-
tational resources, the two-phase strategy avoids the
use of time-consuming approaches in delineating re-
combination on sequence datasets for which there is
no evidence of recombination in the first place.

3 EVALUATION OF PERFORMANCE

To evaluate the performance of the approaches used
in our two-phase strategy, we simulated data with a
single recombination event in the middle of a four-
sequence set. The effects of subsequent substitutions
after recombination and the sequence divergence prior
to recombination were assessed. We used Seq-Gen [18]
to simulate sequence evolution. Four-taxon sequence
sets of length 1000 nt were generated using the HKY
model of substitution [19] with nucleotide frequen-
cies A = 0.20, C = 0.30, G = 0.30, T = 0.20, a
transition/transversion ratio of 2, and a four-category
discrete approximation to a gamma distribution of
among-site rate variation with shape parameter alpha
= 1.0. Different evolutionary histories prior to recom-
bination and different number of subsequent substitu-
tions after the recombination event were used in the
simulations, and a total of 100 replicates was used
for each combination. The recombination event was
simulated by exchanging or replacing the fragments
within the sequences resembling a reciprocal or non-
reciprocal event respectively. After recombination,
each lineage was evolved independently of the other
with a different number of subsequent substitutions
per site. See Figure 1 and Chan et al. [15] for more
details on how the simulated sequence sets were gen-
erated.

The prediction accuracy for each of the three sta-
tistical measures implemented in PhiPack was evalu-
ated by the p-value generated; a small p-value implies
that the phylogeny discrepancy within the sequence
set is significant, hence recombination is highly prob-
able. Figure 2 shows the prediction accuracy (ρ) of
each test across different combinations of prior evo-
lutionary histories (showing sequence divergence) and
subsequent substitutions (λ). The prediction accuracy
(ρ) is calculated as the sum of true positives and true
negatives over the sum of all cases in a set. A true pos-
itive was inferred when a p-value ≤ 0.10 was assigned
on the recombinant sequence sets, whereas a false pos-
itive was inferred when a p-value ≤ 0.10 was assigned
to the negative control sequence sets (that are void of
recombination events). The results are shown for (a)
reciprocal and (b) non-reciprocal sets, with prediction
accuracies based on each test in isolation, any one test,
any two of the three tests, and all three tests.

As shown in Figure 2, when more subsequent sub-
stitutions were simulated, the prediction accuracy de-
creased accordingly (e.g. non-reciprocal set, all tests
ρ < 0.60 in L05/05 when λ = 0.50). In the reciprocal
set (Figure 2a), NSS and PHI showed higher accuracy
than MaxChi when used in isolation; PHI showed ac-
curacy of 0.97 when the recombining sequences are
divergent (L50) even when subsequent substitution is
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Figure 1: Tree topology of the recombined region in the simulations of (a) reciprocal and (b) non-reciprocal recombination.

(i) Tree topology before recombination, with branch lengths represented by θ, e.g. the notation L05/50 represents θ1 =

0.05 and θ2 = 0.05 substitutions per site. Longer external branch lengths depict that the sequences are more divergent

prior to recombination. (ii) A recombination event was simulated by exchanging (reciprocal) or replacing (non-reciprocal)

the corresponding region between sequences 1 and 3, in the middle of the sequences. (iii) After recombination, subsequent

substitutions (λ) were simulated on each sequence independently of each other. The signal of the recombination event

is expected to diminish as λ increases, making detection of such an event more difficult. More-detailed description is

provided in Chan et al. [15].
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Figure 2: Prediction accuracies (ρ) of neighbour similarity score (NSS), pairwise homoplasy index (PHI) and maximal

chi-squared (MXC) on simulated datasets of (a) reciprocal and (b) non-reciprocal recombination. The Y-axes represent the

prediction accuracy; the X-axes represent different amounts of subsequent substitution (λ) across different tree topologies

prior to the recombination event. For each set, each bar (from left to right) represents the prediction accuracy based on

NSS; PHI; MXC; any one (Any1) of the three tests; any two (Any2) of the three tests; and all three (All3) tests.
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high (λ = 0.50). In the non-reciprocal set (Figure 2b),
MaxChi and PHI showed higher accuracy than NSS
when used in isolation; MaxChi showed the highest ac-
curacy among the three tests (e.g. prediction accuracy
of MaxChi at 0.89 in cases of L50/50, λ = 0.50). In
both reciprocal and non-reciprocal sets, the three tests
showed higher prediction accuracy when the recom-
bining sequences are more divergent (e.g. L50 in re-
ciprocal set, L50/05 and L50/50 in non-reciprocal set)
even when subsequent substitutions are high. When
the recombining sequences are closely related to each
other, the prediction accuracy of recombination event
in the simulation sets decreased drastically when sub-
sequent substitutions were increased (e.g. L05 in the
reciprocal set and L05/05 in the non-reciprocal set
where all methods showed ρ ≤ 0.70 with λ ≥ 0.25).
This finding supports previous studies that have re-
ported that recombination events involving closely re-
lated sequences are more difficult to detect than simi-
lar events involving sequences that are more divergent.
A change in tree topology involving more-divergent
sequences will yield a stronger recombination signal
compared to a similar change involving closely related
sequences; this effect has also been shown to create
biases in phylogeny reconstruction [14].

Although the prediction accuracy of these statis-
tical measures was sensitive to subsequent substitu-
tions and prior evolutionary history (sequence diver-
gence), PHI was found to be least sensitive to the
number of subsequent substitutions and the prior evo-
lutionary histories of the sequence sets (multiple re-
gression analysis on non-reciprocal set, adjusted R2

0.341, F statistic 156.1, 1195 degrees of freedom). All
three statistical measures can be calculated quickly
and are less dependent on certain parameter settings
compared to other approaches evaluated in a previous
study e.g. GENECONV (substitution distribution-
based) or RecPars (phylogenetic-based) [15].

A recombination event can be inferred when all
three tests show significant p-values (average accuracy
0.80 across both reciprocal and non-reciprocal sets),
but this might be considered too strict. A better op-
tion is to rely on any two of these three tests; this
yields an average prediction accuracy of 0.86, which
is better than using a single method in isolation (PHI
0.85, MXC 0.85, NSS 0.80) or than using any one test
(0.83). The prediction accuracies of all three methods
are similar, but there are obvious biases in each of the
three tests in detecting reciprocal and non-reciprocal
recombination events, especially when the number of
subsequent substitutions was high (Figure 2). One
should not rely on a single test to detect a recombi-
nation event in set of sequences when the nature of
such event (reciprocal or non-reciprocal) is unknown.
Given the minimal time needed to compute p-values
for each of the three tests, there is no great burden
associated with computing all three tests.

For identifying recombination breakpoints, we
used DualBrothers, a Bayesian phylogenetic approach
using a multiple change-point model described by
eight parameters related to location of breakpoints,

tree topologies and evolutionary rates within a set of
sequences. Using the same simulated dataset, the al-
gorithm was found to be accurate in delineating re-
combination breakpoints, but at the expense of com-
putational resources and time [15]. The two-phase
approach with a first-pass screening reduces the num-
ber of datasets that require recombination breakpoint
analysis with DualBrothers, as first-pass screening will
avoid running computationally intensive DualBroth-
ers on sequence sets for which there is no evidence of
recombination.
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Figure 3: Breakpoint detection using DualBrothers in false

negative datasets resulted from the first-pass screening, in

(a) reciprocal set L05, and (b) non-reciprocal set L05/05.

The Y-axes represent the posterior probability of a site

being proposed as a breakpoint. The X-axes represent

sites in the alignment. The simulated breakpoints are at

positions 250/251 and 750/751. The different lines on each

graph represent the number of subsequent substitutions

per site (λ): thick line, 0.25; thin line, 0.50.

To examine the effectiveness of first-pass screen-
ing in filtering out recombination-negative datasets,
DualBrothers was run on the false negative datasets
from the first-pass screening, i.e. cases that do not
meet the requirement that any two of the three statis-
tical tests yield p-values ≤ 0.10 in Figure 2. Figure 3
shows the relevant results on a selection of simulated
datasets. DualBrothers was run with MCMC chain
length = 1,000,000 generations and burn-in = 20,000
generations.

Within these false negative datasets, DualBroth-
ers either failed to identify any recombination break-
points (posterior probabilities of all sites < 0.010, re-
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Figure 4: Computation time of DualBrothers across different sizes of alignments. The Y-axis represents computation

time in the unit of hour on a 2.66GHz Pentium 4 processor (in a log10 scale), and the X-axis represents the number of

sequences in an alignment. A linear relationship in this graph shows an exponential relationship between computation

time and alignment size.

sults not shown), or, in the two instances shown in
Figure 3, identified the breakpoints at a very low confi-
dence level. The breakpoints in the simulated datasets
are at positions 250/251 and 750/751. In the recipro-
cal case of L05 (λ = 0.25), breakpoints were identified
at low posterior probability 0.019 (position 251/252)
and 0.014 (position 755/756); whereas in the non-
reciprocal case of L05/05 (λ = 0.25), both breakpoints
248/249 and 749/750 were identified at low posterior
probabilities close to 0.025. The Bayes factor, as de-
scribed in [17], was calculated for each of these false
negative sets, to compare prior and posterior proba-
bilities between the null and test hypotheses. The null
hypothesis in this instance postulates that there is no
recombination occurring in the sequences, whereas the
test hypothesis postulates otherwise. A low Bayes fac-
tor (e.g. less than 5) would indicate a very strong sup-
port of the null hypothesis, i.e. DualBrothers failed to
identify any recombination breakpoint. For the ma-
jority of the false negative datasets, the calculated
Bayes factors were less than 50 (85.6%); a substan-
tial number of the sequence sets (77.1%) with Bayes
factor < 5. The weak, ambiguous breakpoint con-
clusions and low Bayes factors in the false negative
cases show that the recombination events in these in-
stances are indeed difficult to detect, and that first-
pass screening using the three statistical tests is a
good approach in filtering out datasets that are po-
tentially recombination-negative. Therefore, having
a first-pass screening in the recombination-detecting
strategy will save time and computational resources,
such that the accurate-but-slow method needs only be
applied to those sequence sets that show evidence of
recombination from the first-pass screening (e.g. at a
certain cut-off threshold of p-value).

4 APPLICATION TO EMPIRICAL DATA

We applied the two-phase strategy in an attempt to
infer recombination events among families of protein-
coding sequences among prokaryotic genomes. The
dataset consisted of 22437 putatively orthologous
protein families obtained from 144 fully sequenced
prokaryotic genomes [20]. Clustered via a hybrid ap-
proach of näıve and Markov clustering algorithms [21],
protein alignments of these gene families were vali-
dated using a pattern-centric objective function [22],
and converted into nucleotide sequence alignments for
the analysis of recombination.

The first-pass screening for occurrence of recom-
bination within the DNA alignments was carried out
using the three statistical measures mentioned above,
in which detection is treated as positive when two out
of three measures (NSS, MaxChi and PHI) yield a p-
value ≤ 0.10. Of 1462 DNA alignments of strictly
orthologous gene families, 427 (29.2%) showed evi-
dence of recombination. Based on this criterion, the
largest gene family consisted of 48 sequences. The
quick screening step greatly reduced the number of
alignments needed for breakpoint detection in the next
phase of the strategy.

Figure 4 shows the exponential relationship be-
tween the computation times of DualBrothers and the
different number of sequences in an alignment. When
the number of sequences approached 28, a runtime of
over 100 hours was needed to run DualBrothers on a
2.66GHz Pentium 4 processor (MCMC chain length =
1,020,000 generations; burn-in = 20,000 generations;
window length = 5; single start tree). The first-pass
screening has reduced the number of datasets from
1462 to 427, and considering that it is necessary to
run multiple replicates to increase confidence in our
conclusions, the two-phase strategy greatly reduced
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Figure 6: Tree topology within each partition separated by the recombination breakpoints. The line on top of the tree

topologies depicts the positions of the DNA alignment (label shown is not to scale).

the required computational time and resources.
Figure 5 shows an example of a recombination

event detected in a gene family, s1065, a family of
hypothetical proteins consisting four sequences. As
shown by the peaks in the change-of-point (COP)
marginal posterior probability (mPP) plot and the
corresponding change of tree topology, two possible
breakpoint positions were detected, one between align-
ment positions 250-300, and another between posi-
tions 300-350.

Table 1: Inferred breakpoints in gene family s1605. Num-

bers shown are positions in the alignment.

COP(Breakpoint) 95% Bayesian Confidence
Interval (BCI)

281/282 277-284

318/319 312-329

The exact breakpoints were determined by a sta-
tistical approach involving sub-sampling of COP mPP
under a peak with 95% Bayesian confidence inter-
val [17, 23], as shown in Table 1. Positions 281/282
and 318/319 in the DNA alignments were identified
as the recombination breakpoints, separating the se-
quences into three partitions. Figure 6 shows the dom-
inant tree topology within each partition of the align-

ment.
As shown in Figure 6, a recombination event was

detected in this gene family, in which a recombined
region was inferred in the middle of the alignment be-
tween positions 282-318. These topologies suggest sev-
eral alternative explanations. A simple explanation is
that the genetic fragments within that region could
have been transferred from Pseudomonas aeruginosa

PA01 to P. putida KT2440, or vice versa, making
the two sequences more closely related to each other
within the region 282-318.

5 CONCLUSIONS

Using different approaches in succession, we were able
to detect recombination events more rapidly and with
higher confidence than if a single method had been
used in isolation. The first step of first-pass screening
is quick and useful for filtering out sequence sets that
show no evidence of recombination, making this ap-
proach suitable for detecting recombination in multi-
genome scale data.
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