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The one-dimensional Hubbard model is integrable in the sense that it has an infinite family of con-
served currents. We explicitly construct a ladder operator which can be used to iteratively generate all
of the conserved current operators. This construction is different from that used for Lorentz invariant
systems such as the Heisenberg model. The Hubbard model is not Lorentz invariant, due to the separa-
tion of spin and charge excitations. The ladder operator is obtained by a very general formalism which
is applicable to any model that can be derived from a solution of the Yang-Baxter equation.
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The one-dimensional Hubbard model has attracted con-
siderable interest because it is one of the few examples
of a model for strongly correlated electrons that is exactly
soluble [1]. The fact that it describes a doped Mott in-
sulator and exhibits spin-charge separation (i.e., spin and
charge excitations are independent of one another) has
been argued to be relevant to understanding the unusual
metallic properties of high-temperature superconductors
[2]. Furthermore, the model has rich mathematical struc-
ture [3]: it is solvable by both the coordinate Bethe ansatz
[4] and the algebraic Bethe ansatz [5], it has a hidden
so�4� symmetry [6], and is integrable in the sense that
it has an infinite family of conserved currents [7]. The
latter is a consequence of the fact that the model can
be derived from a solution of the Yang-Baxter equation
[8]. Integrability is not just of mathematical interest be-
cause it may have implications for dissipationless trans-
port [9], the coherence of interchain transport [10], and
whether the energy level spacing follows a Poisson distri-
bution or the Gaussian orthogonal ensemble distribution
characteristic of quantum chaotic systems [11]. Further-
more, integrability has been essential to recent exact cal-
culations of transport properties in mesoscopic electronic
devices [12].

In this Letter we clarify the algebraic structure under-
lying the integrability of the Hubbard model by using
the Yang-Baxter equation to explicitly construct a single
operator B (known as the ladder operator) which can be
used in a simple recursion relation [Eq. (2) below] to gen-
erate the whole family �t�n��`

n�0 of conserved current op-
erators, i.e., operators that commute with the Hamiltonian
and one another. This result is surprising in light of the
lack of invariance in the model under the lattice version of
the Poincaré group.

For continuum field theories in (1 1 1) dimensions the
generators of the Poincaré group are B, P, and H, being the
generators of Lorentz boosts and translations in space and
time, respectively. (P and H are also the total momentum
operator and Hamiltonian, respectively.) They obey the
closed algebra
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�B, H� � P, �B, P� � H, �H, P� � 0 . (1)

It is extraordinary that a wide range of integrable lattice
models (including the Heisenberg [13,14], Calogero, Toda
[14], and supersymmetric t 2 J [15] models) are invariant
under a generalization of the Poincaré group involving the
entire infinite set �t�n��`

n�0 of conserved currents. They
satisfy the algebra

�B, t�n�� � t�n11�, �t�n�, t�m�� � 0 , (2)

where t�0� and t�1� are the momentum operator P and Ham-
iltonian H, respectively. Here the boost operator acts as a
ladder operator on the infinite sequence of conserved op-
erators. For the XXZ model the boost operator can be
identified with an algebraic element of a lattice Virasoro
algebra [16]. This turns out to be of great practical sig-
nificance because it permits the use of vertex operators for
the determination of the energy spectrum and calculation
of correlation functions [17].

A crucial property in the manifestation of Lorentz in-
variance in the above models is the fact that the R matrix
which is a solution of the Yang-Baxter equation [Eq. (3)
below] has the difference property, R�u, y� � R�u 2 y�,
for the spectral parameters u and y. This is because
the spectral parameter plays the role of rapidity variable.
A uniform shift in both rapidity variables, corresponding
to a change in the Lorentz frame, leaves the R-matrix
invariant. In this sense those solutions with the differ-
ence property are invariant under a lattice version of the
Poincaré group [13].

In contrast, the Hubbard model is not Lorentz invari-
ant [18] since it exhibits gapless excitations with different
velocities. It is for this reason that spin and charge sepa-
rate. As a result, the R matrix associated with the Hubbard
model does not have the difference property and so its in-
tegrability is not as well understood. Although Lieb and
Wu [4] gave a coordinate Bethe ansatz solution in 1968, it
was not until 1986 that Shastry demonstrated the existence
of an infinite family of conserved currents. This involved
© 2001 The American Physical Society
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constructing a two-dimensional model in classical statisti-
cal mechanics with a transfer matrix that commuted with
the Hubbard Hamiltonian [7]. It was achieved by mapping
the model onto a pair of coupled spin chains using the
Jordan-Wigner transformation. Although Shastry conjec-
tured that the R matrix satisfies the Yang-Baxter equation,
it was some time before a convincing proof was available
[8]. Furthermore, the use of the algebraic Bethe ansatz
method to reproduce the solution of Lieb and Wu has only
recently been achieved [5]. A significant consequence of
this algebraic development is that it facilitates the use of
the quantum transfer matrix method for the analysis of the
thermodynamic properties at finite temperature [3,19].

Grabowski and Mathieu [20] claimed that there is no
“matrix” ladder operator satisfying (2) for the model, mo-
tivating them to construct the first seven conserved cur-
rents by “brute force methods.” We now show how for any
model derived from a solution of the Yang-Baxter equation
there is a one parameter family of ladder operators B�y�
such that the conserved currents satisfy (2). In cases where
a solution to the Yang-Baxter equation has the difference
property, the conserved currents have no dependence on
the spectral parameter y. In this instance the construction
for the ladder operator occurs as a particular case of the
more general method we describe below.

As an application of our general result we then consider
a one parameter family of Hamiltonians which includes
the Hubbard model as a special case (y � 0). Our
approach has the further appeal that we work directly with
the fermion operators of the model (rather than a two-
dimensional statistical mechanics model) and that the
so�4� invariance of the model is manifest throughout.

The Yang-Baxter equation (or star-triangle relation) is
central to exactly soluble models because it is a sufficient
condition for the validity of the Bethe ansatz [21,22]. The
corresponding equations for (1 1 1)-dimensional quantum
field theories are also known as the factorization equations
because they imply that all possible decompositions of the
N-particle scattering �S� matrix give the same result as a
product of two-particle S matrices [23]. Consider a lattice
model defined on L sites, each of which has a Hilbert space
V . The matrix R�u, y� acts on the tensor product space
V ≠ V and satisfies the Yang-Baxter equation [21,22]

R12�u, w�R13�u, y�R23�w, y� � R23�w, y�R13�u, y�

3 R12�u, w� , (3)

where the subscripts refer to the embedding of R�u, y� on
the threefold space V ≠ V ≠ V . From a solution to this
equation we define a transfer matrix

t�u, y� � tr0�R0L�u, y� . . . R02�u, y�R01�u, y�� ,
where tr denotes the trace over V (when V is a superspace
we use the supertrace; i.e., the trace over the bosonic states
minus the trace over the fermionic states). It follows from
the Yang-Baxter equation (3) that

�t�u, y�, t�w, y�� � 0 (4)

for all values of the parameters u and w.
An assumed feature of the R matrix is the regularity

property, i.e., R�u, u� � P, with P being the permuta-
tion operator. (A phase of 21 is gained whenever two
fermionic states are interchanged.) Using this property,
the Hamiltonian is defined to be

H�y� � 2T21 ?
≠t�u, y�

≠u

Ç
u�y

, (5)

where T � t�u, u� � P1L . . . P13P12 is the translation op-
erator. This yields

H�y� �
LX

j�1

hj� j11��y� (6)

with the local Hamiltonian given by

h�y� � 2P
≠R�u, y�

≠u

Ç
u�y

.

Above and throughout periodic boundary conditions are
imposed. For later use, it is convenient to consider the
series expansion for the R matrix

R�u, y� � P�I 1 �y 2 u�h�y� 1 1�2�y 2 u�2f�y�

1 1�6�y 2 u�3g�y� 1 . . .� . (7)

Expressing the logarithm of the transfer matrix in a
power series expansion

lnt�u, y� �
X̀
n�0

�u 2 y�n

n!
t�n��y� , (8)

it is apparent, in view of (4), that

�t�n��y�, t�m��y�� � 0, ; m, n

and, in particular,

�H�y�, t�n��y�� � 0 .

Consequently, the Hamiltonian H�y� is integrable since
the set of operators �t�n��y�� provides a set of conserva-
tion laws for the system. Note that in the case where the
R matrix does not have the difference property, we have
the generic feature that the Hamiltonian and higher con-
served charges will always have nontrivial dependence on
the variable y, as can be seen from (8).

We now construct the parameter-dependent ladder op-
erator B�y�. Differentiating the Yang-Baxter equation (3)
with respect to w, then setting w � y and premultiplying
by the permutation operator Pj� j11�, yields an analog of
the Sutherland equation [24]
�hj� j11��y�, R0� j11��u, y�R0j�u, y�� � R0� j11��u, y�
≠R0j�u, y�

≠y
2

≠R0� j11��u, y�
≠y

R0j�u, y� . (9)
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An immediate consequence of (9) is that

�H�y�, t�u, y�� � 0 ,

which also follows from (4).
The ladder operator B�y� is defined in terms of the local

Hamiltonians hj � hj� j11��y� through the relation

B�y� � 2

LX
j�1

jhj 1
≠

≠y
, (10)

where j are the elements of the integers modulo L. A
consequence of the generalized Sutherland relation (9) is
now

�B�y�, t�u, y�� � 0 . (11)

The relation (11) permits us to deduce the recurrence rela-
tion (2) from (8).

The definition of the ladder operator here is different
from the cases considered in [13–16] by the inclusion of
the differential operator. This term is not required for those
cases with the difference property since it is apparent from
(8) that the conserved currents t�n� have no dependence on
y and hence (2) still holds. However, in this instance (11)
becomes

�B, t�u 2 y�� �
≠t�u 2 y�

≠u
,
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which can be integrated to

t�u 1 l� � exp�lB�t�u� exp�2lB� .

The parameter u characterizes the Lorentz frame for the
transfer matrix t�u�, showing that B is the generator of
Lorentz boosts in this context [13]. This is clearly not the
case for the Hubbard model where Lorentz invariance is
not present.

From (2) the operators t�n��y� may be calculated itera-
tively. We find the following expressions for the leading
terms

t�0� � lnT , t�1� � 2H,

t�2� �
X
ij

j�hj , hi� 2 H 0

�
X
j

j�hj , hj11 1 hj21� 2 H 0

�
X
j

j�hj , hj11� 1
X
j

� j 1 1� �hj11, hj� 2 H 0

� 2
X
j

�hj , hj11� 2 H 0,

where the prime denotes a derivative with respect to y.
The computation of t�3� can be simplified by invoking the
generalized Reshetikhin condition (cf. [22])
�h12 1 h23, �h12, h23�� 1 �h12, h0
12� 1 �h12, h0

23� 1 �h23, h0
12� � x23 2 x12 (12)
with the two site operator given by

x � 2h3 1 g 2 3hf 1 2�h0, h� 2 h00.

The Reshetikhin relation is obtained by applying
≠3�≠u2≠w to (3) and using (7). Omitting the details, this
yields the result

t�3� � cH 1 2
X
j

�hj , �hj22, hj21� 1 h0
j21�

1
X
j

�hj , �hj21, hj� 2 h0
j11�

1
X
j

�h3
j 2 gj 2 hj ? h0

j 2 2h0
j ? hj� .

Above, c is a constant determined by the normalization of
R�u, y�. It can always be chosen to be zero. Before turning
to the particular case of the Hubbard model we stress that
the above construction of the ladder operator is valid for
any solution of the Yang-Baxter equation (3).

Consider the four-dimensional local Hilbert space V
spanned by the states

j0	, j "	, j #	, j "#	 .

Introduce the spaces W�s� with basis �j0	, js	�, s �"#, so
that V � W�"� 3 W�#�. For each tensor space W�s� ≠
W�s� there is a solution of the Yang-Baxter equation (with
difference property) given by
Rs
ij�u 2 y� � cos�u 2 y� �1 2 nis 2 njs�

1 sin�u 2 y� �nis 1 njs 2 2nisnjs�

1 c
y
iscjs 1 c

y
jscis .

Here c
y
js and cjs are the creation and annihilation opera-

tors with spin s�� ", #� at site j and njs � c
y
jscjs is

the density operator. The associated Hamiltonian obtained
through (5) is that for free fermions.

It has recently been shown [25] that the following R
matrix is also a solution of the Yang-Baxter equation acting
on V ≠ V ,

Rij�u, y� �R
"
ij�u 2 y�R#

ij�u 2 y�

2
cos�u 2 y�
cos�u 1 y�

tanh�u�u� 2 u�y��

3 R
"
ij�u 1 y�R#

ij�u 1 y� �1 2 2ni"� �1 2 2ni#�

(13)

with u�u� defined through the relation

sinh2u�u� �
U sin2u

4
.

An important consequence of (3) is that it allows for the
construction of a generalized Hubbard model (with spectral
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parameter dependence) as noted in [25]. The identification
of this generalized model is paramount in the construction
of the ladder operator. Explicitly, the local Hamiltonians
read

hij�y� � 2
X

s�"#

�cy
iscjs 1 c

y
jscis�

1
U

4 cosh2u�y�
Gij"�y�Gij#�y� , (14)

where

Gijs�y� � cos2y�1 2 2nis� 2 sin2y�1 2 2njs�

1 sin2y�cy
iscjs 2 c

y
jscis� . (15)

It is clear that (6) with (14) reduces to the usual Hubbard
model when y � 0. In particular, we find

h0
ij�0� � U�2��1 2 2ni"� �cy

i#cj# 2 c
y
j#ci#�

1 �1 2 2ni#� �cy
i"cj" 2 c

y
j"ci"�� , (16)

which plays an important role in the explicit construction
of the higher conserved operators discussed previously. It
is important to note that there is no way of determining
h0�0� directly from the usual Hubbard model.

Substituting g [which is obtained through (7) and (13)]
and Eqs. (15) and (16), all evaluated at y � 0, into the
above expressions for t�2� and t�3�, we recover the expres-
sions found previously for the first [7] and second [20,26]
nontrivial conserved currents (modulo a constant term and
multiple of H). A well known feature of the Hubbard
model is that all the integrals of motion, except for the
translation operator, are invariant with respect to the so�4�
Lie algebra when the lattice length is even [25]. Signifi-
cantly, the ladder operator (10) in the case of the Hubbard
model is also so�4� invariant for an even length lattice.

To conclude, a systematic method for obtaining the con-
served currents in the Hubbard model has been described
which employs the use of a ladder operator. We emphasize,
however, that the construction presented here is entirely
general and may be applied to any Yang-Baxter integrable
system.
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