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ABSTRACT

Argumentation is modelled as a game where the payoffs are mea-
sured in terms of the probability that the claimed conclusion is,
or is not, defeasibly provable, given a history of arguments that
have actually been exchanged, and given the probability of the fac-
tual premises. The probability of a conclusion is calculated using a
standard variant of Defeasible Logic, in combination with standard
probability calculus. It is a new element of the present approach
that the exchange of arguments is analysed with game theoretical
tools, yielding a prescriptive and to some extent even predictive ac-
count of the actual course of play. A brief comparison with existing
argument-based dialogue approaches confirms that such a prescrip-
tive account of the actual argumentation has been almost lacking in
the approaches proposed so far.
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1. INTRODUCTION

Over the years a lot of dialogue games of legal argument have
been proposed [24}25]/19} |5, /11}|12]]. These models have shed light
on questions such as which conclusions are (defeasibly) justified,
or how legal procedure should be structured to arrive at a fair and
just outcome.

Other aspects of legal debate have received no or hardly any at-
tention yet, however. One of these is in the common sense obser-
vation that the outcome of a legal debate does not depend solely on
the factual premises of a case, their measure of probability and the
applicable law, but also on the strategies that parties in a dispute ac-
tually adopt. At first sight one may conclude from this observation
that the outcome of a dispute cannot be predicted at all, and content
oneself with setting the rules of the procedure. As illustrated in the
following, however, one can also approach legal argument from a
game theoretical angle, and try to apply the powerful mathemati-
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cal apparatus of that field. As it turns out, then, game theoretical
concepts like strategy dominance can be of great help to predict the
actions the parties will actually take. Given these actions, it is then
also possible to predict the outcome of the game in terms of the
probability that the initial claim is defeasibly provable.

Accordingly, the present approach will start from two principles:
(1) the outcome of a dispute depends on the strategies actually
adopted by parties, but (2) this does not mean that the outcome
can never be predicted because by using game theoretical solution
concepts, the actions themselves can often be found.

Let’s turn to an example. A worker is dismissed for having
caused considerable damage to company property and for having
lost credit from his superiors. The worker challenges the dismissal
in court, claming that it can be voided. He argues that the working
atmosphere has not been affected and that he is highly esteemed as
a colleague. The following four legal rules are in place. The first
says that a dismissal can be voided if considerable damage was
done to company property but the working atmosphere was not af-
fected. The second says that a dismissal can be voided if the worker
lost credit from his superiors but is highly esteemed as a colleague.
The third says that the dismissal cannot be voided if the working
atmosphere was not affected but the worker lost credit from his su-
periors. The fourth rule says that the dismissal cannot be voided if
the worker is highly esteemed as a colleague but did considerable
damage to company property. It is commonly accepted by both the
worker and the employer that it is very probable that the worker is
highly esteemed as a worker, less probable that the working atmo-
sphere has not been affected, even less probable that the damage
was considerable, and the least probable that the worker lost credit
from his superiors.

Which strategy is best for the worker? Should he use the first
rule first and then see what the employer does? And if the employer
uses the third rule, should the worker use the second rule or stick to
the first? Likewise, what should the employer do? More generally,
what will both parties do in the dispute?

For analysing the example it is convenient to introduce atomic
sentences that abbreviate the conclusion that is at stake and the rea-
sons that parties adduced in their arguments (see Table 1).

This paper is organised as follows. First, in Section 2 we briefly
present the logic on which the argumentation system is based. In
Section 3 we define the notion of an argument. In Section 4 we
present the dialectical layer. Section 5 provides the procedural layer
that prescribes how a dialogue can be conducted. In Section 6 we
explain how we weight conclusions in terms of the probability that
they are defasible provable. In Section 7 we apply game theory to
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literal meaning
c dismissal-can-be-voided
working-atmosphere-not-affected
considerable-damage-to-company
lost-credit-from-superiors
highly-esteemed-as-colleague

QSR

Table 1: Literals with their meaning.

the example, in effect demonstrating a means to address the heuris-
tic layer of legal argument [25[]. In Section 8 we suggest an exten-
sion of the game that involves, amongst others, strict derivability
next to its defeasible counterpart. In Section 9 we compare the
present approach to existing and well-known dialogue models of
legal argument in Al and Law, concluding that they have less pre-
scriptive use than ours. In the Conclusion the point on predictive
use is briefly recapitulated, and ways of generalising the present
approach are suggested, for instance by allowing for subjective as-
signments of probability.

2. LOGIC LAYER: DEFEASIBLE LOGIC

Defeasible Logic [21]] is a non-monotonic logic based on a
programming-like language. It is a simple but flexible non-
monotonic formalism suitable for dealing with many different in-
tuitions of defeasible reasoning. It has been applied in many fields
and had been proposed as the appropriate language for executable
regulations [2} [3], contracts [13]], automated negotiation [14] and
for programming cognitive agents [7,|16].

A Defeasible Logic (as formalized by [6]]) theory is a structure
D = (F,R,>) where F is a finite set of factual premises, R a finite
set of rules, and > a superiority relation on R. Factual premises
are factual statements, for example, “John is a minor”’which is for-
mally written as minor(John). Rules can be strict, defeasible or
defeaters. Strict rules are rules in the classical sense; whenever
the premises are indisputable (e.g. factual premises) then so is
the conclusion. An example of a strict rule is “Minors are per-
sons”which is formally written as r1 : minor(X) — person(X). De-
feasible rules are rules that can be defeated by contrary evidence.
An example of a defeasible rule is “persons have legal capacity”;
formally, r2 : person(X) = legalcapacity(X). Defeaters are rules
that cannot be used to draw any conclusion. Their only use is to
prevent conclusions by defeating defeasible rules. An example of
such rules is “minors might not have legal capacity”, which is for-
mally expressed as r3 : minor(X) ~ legalcapacity(X). The idea
here is that even if we know that an individual is minor this fact
is not sufficient evidence for the conclusion that it does not have
legal capacity. The superiority relation between rules indicates the
relative strength of each rule. That is, stronger rules override the
conclusions of weaker rules. For example, if r3 > r2 then r3 over-
rides r2.

Given a set R of rules, we denote the set of all strict rules in
R by Ry, the set of strict and defeasible rules in R by Ry, the set
of defeasible rules in R by Ry, and the set of defeaters in R by
Rys:. R[q] denotes the set of rules in R with consequent g. In the
following ~ p denotes the complement of p, that is, ~ p is —q if
p=gq, and ~ pis q if p is —g. For a rule r we will use A(r) to
indicate the body or antecedent of the rule and C(r) for the head
or consequent of the rule. A rule r consists of its antecedent A(r)
(written on the left; A(r) may be omitted if it is the empty set) which
is a finite set of literals, an arrow, and its consequent C(r) which is
a literal. In writing rules we omit set notation for antecedents.

Conclusions are tagged according to whether they have been de-

rived using defeasible or strict rules. So, a conclusion of a theory
D is a tagged literal having one of the following four forms:

1. +Agq, which means that g is stricly provable in D;

2. —Aq, which means that g is not stricly provable in D;

3. +dgq, which means that q is defeasibly provable in D;

4. —dq, which means that g is not defeasibly provable in D.

Provability is based on the concept of a derivation (or proof) in
D. A derivation is a finite sequence P = (P(1),...,P(n)) of tagged
literals. Each tagged literal satisfies some proof conditions. A proof
condition corresponds to the inference rules corresponding to one
of the four kinds of conclusions we have mentioned above. P(1..i)
denotes the initial part of the sequence P of length i. Here we state
the conditions for strictly and defeasibly derivable conclusions:

If P(i+1) = +Aq then
(1)geF,or
(2) r € Rylq],Va € A(r) : +Aa € P(1..i).

If P(i+ 1) = +dq then
(1) +Aq € P(1..i), or
(2) 2.1)3reRylg|VacA(r):+da € P(1..i) and
(2.2) —~A~ g € P(1..i) and
(2.3) Vs € R[~ g] either
(2.3.1)Ja € A(s) : —da € P(1..i) or
(2.3.2) 3t € Ryylg) Va € A(r) :
+da € P(1..i)and t > s.

A positive defeasible derivation consists of three phases: an ar-
gument in favour of the literal we want to prove is proposed. In
the simplest case, this consists of an applicable rule for the conclu-
sion (a rule is applicable if its antecedent has already been proved).
Second, all counter-arguments are examined (rules for the opposite
conclusion). Third, all the counter-arguments have to be rebutted
(the counter-argument is weaker than the pro-argument) or under-
cut (some of the premises of the counter-argument are not prov-
able).

Observe that all factual premises in F are strictly derivable ac-
cording to the definition, and are therefore defeasibly derivable as
well. Conversely, basic factual premises which do not appear as a
consequent of any rule (see later on) must be strictly derivable if
they are defeasibly derivable. A theory containing among its rules
only the rule a = b, for instance, must contain a among the fac-
tual premises if a is to be defeasibly derivable. In other words,
for such basic factual premises the notions of strict and defeasible
derivability coincide. Later on we will assign probabilities to the
defeasible derivability of basic factual premises, as input informa-
tion for calculating the probability of the defeasible derivability of
conclusions. In light of the equivalence for basic factual premises
of strict and defeasible derivability, the probabilities thus assigned
to their defeasible derivability also hold for their strict derivability.

Let’s illustrate the proof conditions with the following theory

Ddismissal B

F ={a,b,d,e}
R={rl:a,b=c,
r2:d,e=c,
r3:a,d = —c,
rd:b,e = —c}
>=0



All the rules are applicable so we get —dc and —dc. Hereafter,
the superiority relation between rules is disregarded in order to
avoid unnecessary technicalities. This restriction does not affect
the generality of the approach: a modular transformation given in
[1] enables to empty the superiority relation. The transformation
takes a theory D = (F,R,>) as input and builds from it a theory
D' = (F,R',0) with the desired properties. Note that such a trans-
formation may change the game’s characteristics in terms of the
arguments exchanged, though.

In the following, we briefly present the argumentation system
that provides an argumentation semantics of Defeasible Logic. This
system is fully studied in [[15]].

3. THE ARGUMENT LAYER

The argument layer defines arguments. An argument for a lit-
eral is a proof tree (or monotonic derivation) of that literal. Nodes
are literals and arrows connecting nodes correspond to ground in-
stances of rules.

Definition 1. An argument for a literal y based on a set of rules
R is a (possibly infinite) tree with nodes labelled by literals such
that the root is labelled by @ and for every node labelled by :

1. If ay,...,a, label the children of B then there is a ground
instance of a rule in R with body o, ..., o, and head 3.

2. If this rule is a defeater then f3 is the root of the argument.

3. The arcs in a proof tree are labelled by the rules used to ob-
tain them.

Condition 2 specifies that a defeater may only be used at the
top of an argument, or in other words, no chaining of defeaters is
allowed.

A (proper) sub-argument of an argument A is a (proper) sub-tree
of the tree associated to A. A literal y is a conclusion of an
argument A if and only if y labels a node of A. A more intuitive
alternative would be to regard only the root of an argument as the
unique conclusion of an argument, but this choice would make
the other definitions more complex. Given a defeasible theory D,
the set of arguments that can be generated from D is denoted by
Argsp. For example, the set ArgsSpyismissai Of arguments that can
be generated from D jjgissqr 18 illustrated in Figure 1.

Figure 1: The available arguments in the game.

Sometimes we need to differentiate between arguments, depend-
ing on the rules used. A supportive argument is a finite argument
in which no defeater is used. A strict argument is an argument in
which only strict rules are used. An argument that is not strict is
called defeasible.

4. THE DIALECTICAL LAYER

The previous section defined the argument layer and isolated the
concept of argument. This section presents the dialectical layer

which is concerned with relations amongst arguments. It defines
the notion of support and attack, and focuses on the interaction
amongst arguments. The dialectical layer is not meant primarily
to give an alternative to the proof theory defined earlier. Instead it
is meant to introduce some basic notions such as attack, which are
used later in the definition of the game that is presented in the next
section on the procedural layer. Firstly, we introduce the notion of
support:

Definition 2. A set of arguments S supports a defeasible argu-
ment A if every proper sub-argument of A is in .

Note that, in our setting, the atomic arguments, constituted of a
factual premise or a rule of the theory, are supported by the empty
set. At the opposite of the notion of support, stands the notion
of attack. Roughly, an argument attacks another argument if the
former supports a literal in conflict with a literal of the latter.

Definition 3. An argument A attacks an argument B iff a conclu-
sion in A is the complement of a conclusion of B, and that conclu-
sion of B is not part of a strict argument of B.

Defeasible reasoning differentiates traditionally between rebuttal
and undercutting. We stick to the tradition and define the notion of
undercutting as follows:

Definition 4. A defeasible argument B is undercut by a set of
arguments S if § supports an argument A attacking a proper sub-
argument of B.

Comparing arguments by pairs is not enough since an attacking
argument can in turn be attacked by other arguments (‘reinstate-
ment’, [25]]). As a remedy, the notion of the status of arguments is
defined on the basis of all ways in which arguments interact. Based
on the concept of an acceptable argument, it is possible to define
justified arguments and justified conclusions, that is conclusions
that may be drawn even taking conflicts into account.

Definition 5. An argument A is acceptable w.r.t. a set of argu-
ments S, if A is finite and

1. A is strict, or

2. every argument attacking A is undercut by S.

Based on this concept we proceed to define justified arguments
and justified literals. That an argument A is justified means that it
resists every refutation. The following definition is based on [24]
definitions of fixed point semantics.

Definition 6. The set of justified arguments in a defeasible the-
ory D is JArgsp = UL Jp,i with

1. JD70 =@ and
2. Jpi+1 ={A € Argspl|A is acceptable w.r.t. Jp ;}.

Definition 7. A literal 7 is justified by JArgsp iff it is the con-
clusion of an argument in JArgsp.

A literal that is justified means that it is provable (+d). How-
ever, Defeasible Logic permits to express when a conclusion is not
provable (—d). Briefly, that a conclusion is not provable means that
every possible argument for that conclusion has been refuted. In the
following, this notion is captured by assigning the status rejected to
arguments that are refuted. Roughly speaking, an argument is re-
jected if it has a rejected sub-argument or it cannot overcome an



attack from a justified argument. Given an argument A, a set S of
arguments (to be thought of as arguments that have already been
rejected), and a set 7' of arguments (to be thought of as justified
arguments that may be used to support attacks on A), we assume
the following definition of the argument A being rejected by S and
T:

Definition 8. Let S and T be two sets of arguments. Then an
argument A is rejected by S and T iff A is not strict and either a
proper sub-argument of A is in § or it is attacked by an argument
supported by 7.

Definition 9. The set of rejected arguments in a defeasible the-
ory D w.rt. T is RArgsp(T) = U5 Rp,i(T) with

1. RD’()(T) =@ and
2. RD,i+l (T) = {A € Argspl A is rejected by RD,i-H (T) and T'}.

Definition 10. A literal yis rejected by T iff there is no argument
in Argsp — RArgsp(T) that ends with a supportive rule for 7.

More generally, we say that an argument is rejected if it is re-
jected w.r.t. JArgsp. and a literal is rejected if it is rejected by
JArgsp. A skeptical argumentation semantics can now be pro-
vided, i.e., defeasible and definite conclusions of Defeasible Logic
are characterised in argumentation terms:

THEOREM 1. Let D be a defeasible theory and y be a literal.
o Dt +Ayiff there is a strict argument for 7y in Argsp;
o D —Ayiff there is no strict argument for Y in Argsp,
e D& +9viff vy is justified by JArgsp;
e DF —9vyiff yis rejected by JArgsp.

This argumentation semantics is consistent with the proof condi-
tions of Defeasible Logic in the sense that conclusions get similarly
tagged as proved in [[15]. It follows that for any defeasible theory,
no argument is both justified and rejected, and thus no literal is both
justified and rejected. Eventually, if the set JArgsp of justified ar-
guments contains two arguments with conflicting conclusions then
both arguments are strict. That is, inconsistent conclusions can
be reached only when the strict part of the theory is inconsistent.
Therefore we can call a defeasible theory consistent if and only if
the strict part of theory is consistent.

S. THE PROCEDURAL LAYER

We now proceed with our definition of the protocol of our game
to address the procedural layer. The protocol is not meant to be
sound and complete w.r.t. the argumentation semantics of the previ-
ous section. Instead it merely aims at representing actual discourse,
whereby the logic introduced in the foregoing serves the purpose of
calculating the payoffs of the game, that is, probabilities of defea-
sible derivability.

As in most dialogue models of legal argument (e.g. [[19]), there
are two players in the game, the proponent (P) of some initially
claimed conclusion, and the opponent (O) of the claim. It is the
proponent’s purpose to maximise the probability that the claimed
conclusion is defeasibly provable, while it is the opponent’s pur-
pose to minimise this probability. In other words, the payoffs in the
game are measured in terms of probability of defeasible derivability
(see next section).

First the game theoretic notion of a history is introduced [22].
Informally, a history is a sequence of actions taken by the players.
Formally, a history (denoted ) is a sequence (Ay)i—1., of argu-
ments Ay € Argsp. The usual convention is used that if 4 denotes
a history and A an argument, then (h,A) denotes the history that
results if history / is followed by argument A ([22], p. 90).

Moreover, there is a player function (denoted P) that assigns to
every history the player whose turn it is after that history. More
formally, after each history & = (Ag)g=1., it is player P(h)’s turn
to move, whereby P(h) = P (proponent, see above) or P(h) = O
(opponent). The proponent starts the game, after which players
take turns.

At each subsequent move only arguments are allowed that defeat
the latest argument, a requirement that intuitively ensures that as a
matter of efficiency, the debate remains focused on the initial claim
(cf. [24] on dialogues, pp. 21f.).

In sum, the player function and the allowed histories & =
(Ag)k=1.n in the game adhere to the following protocol (cf. the
‘dialogues’ in [24]), pp. 21f.):

1. A, € Argsp; and
2. P(h)=Pifnisodd and P(h) = O if n is even; and
3. Ay attacks A;_q.

By definition the game ends after a terminal history. Informally,
a history will be defined terminal if and only if it ends with an
action that does not introduce any new premises into the debate. For
defining terminal histories formally, let Prem(h) denote the union
of all premise sets of all arguments appearing in 4:

Prem(h) = U Prem(X)
Xeh

Formally, a history (h,X) is then terminal if and only if
Prem(h,X) = Prem(h). Note that in particular, a history is terminal
if the same argument occurs twice in it.

The intuitive reason for defining terminal histories in this way is
twofold. First, if no new premises are introduced, the final argu-
ment’s premises are accepted by both players, so that on the con-
dition that the debate has reached the terminal history, both have
to concede its conclusion. Second, a player can thus always end
a debate at a point where that player is content with its outcome.
In particular, that player may do so by repeating an argument the
player made earlier.

Technically it is not necessary to define terminal histories in this
way, however. More ‘liberal’ (cf. [23] on liberal protocols) termi-
nation criteria are also possible here, and one may even allow for
infinite histories such as (C,E,C,E,...). As it turns out, however,
such a termination criterion does not essentially change the solution
to the game, because at some point in the game it is always best not
to introduce new premises anyway. The intuitive reason for this is
that introducing premises gives the other player more opportuni-
ties for defeating counterarguments. Accordingly, for keeping the
game simple the present account will stick to the termination crite-
rion that an argument did not introduce any new premises.

6. WEIGHTING CONCLUSIONS

As remarked above, the payoffs in the game are measured in
terms of the probability that the initially claimed conclusion is de-
feasibly provable. It is proponent’s purpose to maximise this prob-
ability while opponent’s purpose is to minimise it.

Intuitively, the probability that a statement is defeasibly deriv-
able is the likelihood that it is accepted by people. As a practical



matter this likelihood could be estimated, for instance, by studying
case law on the relative frequency with which a premise was con-
sidered true by a judge. More formally, a probability is a function
p that associates a unique number between 0 and 1 to the state of
affairs that some statement ¥ is defeasibly provable (+d7), or not
defeasibly provable (—dy). The probability of argument premise
a, for instance, is denoted p(+da). If p(+da) = 0.9, for example,
then this intuitively means that there is a 90% chance that premise a
is going to be accepted. The mechanism with which the probability
of a conclusion is derived from the probability of the premises is
based on standard probability calculus. More sophisticated meth-
ods for representing uncertainty are, for instance, to be found in
possibility theory [9}29] or the Dempster-Shafer theory (8| [28].

Accordingly, every assignment of probability is assumed to ad-
here to a probabilistic principle of the excluded middle, to the effect
that the probability that some statement is defeasibly provable, and
the probability that it is not defeasibly provable, add up to one.
More formally, this principle holds that for any conclusion Y, we
have p(+dy) + p(—dy) = 1. This is in line with the following re-
sult for standard Defeasible Logic [[1]:

THEOREM 2. Let D be a defeasible theory and let # denote any
derivability in {A,d}. Then there is no literal 'y such that D \ +#y
and D - —#y.

The above theorem in fact states that no literal is simultaneously
provable and demonstrably non provable; thus it establishes the co-
herence of Defeasible Logic.

The probabilities of different premises are assumed to behave
like probabilities of independent events. In other words, the prob-
ability of a set of premises is obtained simply as the product of
the probabilities of the individual premises. If the probability of
premise a equals 0.9 and that of b equals 0.1, for instance, then
the probability of both a and b equals 0.9 x 0.1 = 0.09. Below
this principle of independence is used to obtain the probability of
a conclusion under some argument, given the probabilities of the
argument’s premises. Note that such a principle of independence
constrains assignment of probability to literals that do not appear
in the head of any rule of the theory. A theory containing the facts
a and b and the rule a = b, for instance, does not allow an indepen-
dent assignment of probability to the defeasible derivability of the
factual premises a and b. A possible generalisation of the present
approach would be to allow for such dependency among premises.

Note also that the approach can be generalised in another way,
namely by allowing different players to assign different subjective
probability to factual premises, and thus different subjective prob-
ability to the main conclusion. To model the situation as a game
with complete information regarding payoffs (cf. [4], Ch. 1 and 2),
it suffices that these subjective probabilities are common knowl-
edge ([22], p. 73) among the players, that is, each player knows the
other player’s probabilities, knows that the other player knows the
former’s probabilities, and so on.

In the course of the game the probability of the main conclu-
sion is updated in accordance with the arguments that have actually
been played out by parties. To do so, we reconstruct the theory in
Defeasible Logic on which the arguments are based by consider-
ing the set R(h) of strict and defeasible rules and the set FP(h) of
factual premises (expressed by literals) introduced during the his-
tory h. For any subset of the factual premises and the set R(h) of
rules one has a theory from which one can build an extension to
see which conclusions follow. Note that this can be done in a time
linear in the size of the theory [20]. We then consider cases that
can occur according to the reconstructed theory by means of the
following constructions:

e The defeasible theory D(h) after history h is
(FP(h),R(h),0);

e the set of basic factual premises after history & is BFP(h) =
FP(h) —{ylr e R(h), y=C(n)};

e Pow(BFP(h)) is the power set of BFP(h) and BF P;(h) de-
notes an element of PowBF P(h);

e acase after history % is an ordered pair of sets of basic factual
premises of the form (BF P;(h),(BFP(h) — BFP;(h)));

e for any literal y, a case (BFP;(h),(BFP(h) — BFP;(h)))
is a case™? (respectively a case ?Y) if and only if
(BFP;(h),R(h),0) F 40y (respectively (BFP;(h),R(h),0) -
—ap).

Note that the definition of a case does not refer to a conclusion. In
this respect it is different from Roth’s cases [27]], where conclusions
were treated as facts about cases that were as such included in the
case representation.

We define the notion of the probability of a case as follows. A
case is a combination of defeasible derivabilities of the basic factual
premises of a theory. Furthermore, for these basic factual premises
the notions of defeasible and strict derivability coincide and can be
replaced just with derivability. Finally, the probability of a case is
then simply the probability that all basic factual premises in it are
derivable, while all others are not derivable. Given our assump-
tion that basic factual premises behave like independent events, the
corresponding probability is obtained as a product:

Definition 11. The probability of a case (BFP;(h),(BFP(h) —
BFP;(h)) is the product of the probabilities of derivability of the
basic factual premises in BFP;(h), and the probabilities of non-
derivability of the basic factual premises in (BF P(h) — BFP;(h)).

A complete set of cases w.r.t. a history / is the set of all possible
cases after a history 4. A complete set of cases w.r.t. a history £ is
denoted S(h).

When we are interested in examining a complete set of cases w.r.t
a history A, it is perhaps more perspicuous to represent it using a
table where each column represents a different case. For example,
suppose a history % in which the worker has played the argument
a,b = ¢ and the employer b,e = c. The complete set S(k) of cases
w.r.t. to & can be represented in the format of Table 2.

X |Cl|C2|C3|C4|C5|C6|CT|C8
a 1 0 1 0 1 0 1 0
b 1 1 0 0 1 1 0 0
e 1 1 1 1 0 0 0 0
c 0 0 0 0 1 0 0 0
-c| 0 1 0 0 0 0 0 0

Table 2: Cases with their conclusions.

The rows indicate the defeasible provability (+d) and non-
provability (—d) of literals respectively by 1 and 0. The columns
indicate a particular case composed of the different tagged literals.
For example the column C5 corresponds to the case ({a,b},{e}),
which is a case™¢ and a case™?7¢.

We now turn our attention to the calculus of the probability of a

conclusion w.r.t. a complete set of cases.

Definition 12. The probability p(+d"y) of a conclusion +d7y
w.r.t. a complete set of cases S(h) is the sum of the probabilities
of all cases case=?7 in S(h).



literal meaning probability
a working-atmosphere-not-affected 0.8
b considerable-damage-to-company 0.7
d lost-credit-from-superiors 0.6
e highly-esteemed-as-colleague 0.5

Table 3: Literals with their meaning and probability.

Turning to the example, it was considered highly probable that
the worker was highly esteemed as a colleague, somewhat less
probable that the working atmosphere had been affected, even less
probable that considerable damage was done to company property
and the least probable that the superiors lost credit in their worker.
Putting this all together in a table and choosing numerical values
for these probabilities we get Table 3.

Suppose a history & = (B, E) in which the worker has played the
argument B (r1 : a,b = c) and the employer E (r4 : b,e = ¢).

According to the complete set S(h) (see Table 2), the probability
p(+0BE)¢) that the dismissed can be voided is:

p(+9PE)c) = p(+da) x p(+9b) x p(—de)
= p(+da) X p(+9db) x (1 — p(+de))
=0.8x0.7x(1-0.9)
=0.056

Note that the algebraic expression of the probability of a conclusion
to be (un)provable w.r.t to a set of cases may be manipulated. For
example, develop the right hand side and simplify it. However, we
constrain those manipulations by forbidding to move a term from
the right hand side to the left hand side and vice versa of algebraic
expressions in order to keep track of the sense of causality.

Finally, the payoffs ([4], pp. 8f.) for both parties are defined
as follows. Since it is proponent’s (P) purpose to maximise the
probability of the initially claimed conclusion, that player’s payoff
resulting from some terminal history will be defined as the prob-
ability of the conclusion after that history. Likewise, since it is
opponent’s (O) aim to minimise the probability that the conclusion
is defeasibly provable, that player’s payoff will be defined as the
probability that the conclusion is not defeasibly provable.

Note that this approach can easily be generalised for situations
with several possible claims, each having a certain ‘value’ or ‘pref-
erence’ to the players. In addition, we could use the distinction
between strict and defeasible conclusions and assign different pref-
erences or values to the modes through which each conclusion is
obtained (see Section 8). In such situations the payoff for propo-
nent could be defined as the expected value of the outcome, under
the appropriate probability measure over the different claims. Such
an approach could, for instance, also allow for the possibility of
strategic choices between different claims that can be made. For
present purposes, though, it suffices to consider only the probabil-
ity of the one main disputed conclusion.

This concludes the discussion of the formalism proper. In the
next section the example will be thoroughly analysed using this for-
malism, in combination with some game theoretical notions such as
strategy dominance (cf. [22], pp. 59), which are widely accepted
and applied in that field.

7. ANALYSIS OF THE EXAMPLE

The question now is how parties are going to act in the game. In
other words, the question is which strategies the players are likely
to adopt. Technically, a strategy of a player is a prescription of how
to act at each decision node where it is that player’s turn to move

([22], pp. 92). In the game tree depicted in Figure 2, for instance,
one can see that the worker has a decision node at the beginning
of the game but that there are many more, such as the node after
the history (C,D). The employer has decision nodes as well, for
instance those after the histories (C,D,B) and (B,C,E). How can
one isolate the combination of strategies that the players are most
likely to adopt? This can be done easily in this example by using
backwards induction ([4]], pp. 50f.). Briefly, backwards induction
means that one starts at a player’s final decision nodes to see what a
player will do there, and then reason backwards to tell which action
is best for the other player. There are a number of nodes at which it
is the employer’s turn to move, and where the employer can end the
game with a maximal payoff for himself. Examples are the nodes
after the history (C, D, B) and the history (B,D,C).

Obviously the worker will avoid histories ending in such a node.
He can do this by ending the game before such a decision node for
the employer is reached, for instance by playing C after (C,D) or B
after (B, D).

The employer, in turn, will know this. He will expect, for in-
stance, to end up in history (C,E,C) if he chooses to play E after
history (C), and in history (B,D,B) if he chooses to play D after
history (B).

The worker, in turn, knows that the employer knows that the
game will end in this way. He will therefore infer that the employer
will prefer history (B, E, B) to history (B,D, B), the former having
a higher payoff (0.944) for the employer than the latter (0.776).
Likewise, the employer will prefer history (C,D,C) (payoft 0.892)
to history (C,E,C) (payoff 0.838). In sum, the employer will play
E after history (B) and D after history (C).

The worker, knowing this, will therefore choose to play C first
because that leads to history (C,D,C) with a payoff 0.108 for the
worker, higher than the worker’s payoff of 0.056 associated with
history (B, E,B). In sum, the game will be played following history
(C,D,C) with payoffs of 0.108 and 0.892 for worker and employer,
respectively.

A number of interesting observations on this result can now
be made. First, observe that both the worker and employer will
not end up with the best overall result they could get. For the
worker this best result is 0.332 associated, for instance, with his-
tory (B,D,C,D), for the employer it is 0.944 with history (B, E,B)
leading to it. In other words, both players have to compromise to
some extent, and in this sense there is no winning strategy for ei-
ther of them. As the solution of the game shows, however, there
are strategies that are dominant in the game theoretical sense, that
is, strategies that are at least as good as any other strategy, for each
strategy the other player may choose. This point will return later
on in the discussion of related work (next section).

A second observation is that the players will not play the argu-
ments that are a priori the strongest, that is, considering the prob-
abilities of their premises in isolation, irrespective of the histories
in which they appear. Consider, for instance, the worker’s actions
C and B. Consider the a priori probability of conclusion ¢ on the
basis of each of these arguments:

p(+0C)¢) = p(+9d) x p(+de) = 0.6 X 0.9 = 0.54
p(+9B)c) = p(+da) x p(+9b) = 0.8 x 0.7 = 0.56

In other words, this means that argument B seems a priori a stronger
argument than argument C since p(+0(®)c) exceeds p(+9©)c).
However, as the game solution shows, the worker will neverthe-
less play the latter argument rather than the former. The reason for
this is that if the worker plays out the a priori stronger argument B,



(.162; .838)

(.034; .966)(.034; .966) (.034;.966) (.034;.966)

776)
(.224; .776)

B

(.034; .966)(.034; .966) (.034; .966)(.034; .966)

Figure 2: Game tree with moves and probabilities. Note that the game ends if no new premises have been introduced in the last move,
in accordance with the termination criterion. The payoffs for Worker, Employer are the probabilities at the end nodes.

then thanks to the introduction of that argument’s premise b the em-
ployer can respond all the more strongly by playing out argument
E, which apart from b only relies on the very probable premise e.

Likewise, the employer’s argument E seems a priori stronger
than argument D:

p(—9P)¢) = p(+a) x p(+9d) = 0.8 x 0.6 = 0.48
p(=9'E)¢) = p(+9b) x p(+de) = 0.7 x 0.9 = 0.63.

In other words p(—dP)¢) is smaller than p(—3E)¢). As the game
solution shows, however, the employer will still play argument D
rather than E. That is because argument E is only stronger a priori
because of its highly probable premise e, which is available anyway
in response to the worker’s argument C. At the same time, however,
argument’s D’s relative improbable premise d has then also become
available to the employer.

What these observations show is that for determining which ar-
guments to play the arguments cannot be assessed in isolation from
other arguments. Rather, the complete strategic interaction between
the players has to be taken into consideration, as was done to arrive
at the game solution. In particular, each player has to take into
account which premises are being given away by playing out an ar-
gument, because these premises in part determine the opportunities
for counterargument.

8. FUTURE EXTENSIONS

In the previous sections we have considered a game of defeasible
provability. In other words, we analysed, within a game-theoretical
perspective, when payoffs are measured in terms of the probabil-
ity that the claimed conclusion 7 is, or is not, defeasibly provable,
i.e., whether +dy or —dv. In isolation, a similar procedure can
be devised for strict derivation, namely, when +Ay and —Ay are

under consideration. The interesting issue is when the two games
are jointly analyzed, thus playing a game of generic provability.
Consider the following theorems [/1]]:

THEOREM 3. Let D be an acyclic defeasible theory. For any
literal y, DF+dyand D& 49 ~ yiff DF +Ayand D+ +A ~ ¥.

This theorem gives the consistency of Defeasible Logic. In par-
ticular, it affirms that it is not possible to obtain conflicting literals
unless the information given about the environment is itself incon-
sistent. Thus, in the case of consistent theories, the following corol-
lary holds:

COROLLARY 1. Let D be a consistent defeasible theory. For
any literal y, if D+ 407, then D+ —d ~ .

Another basic theorem is the following:

THEOREM 4. Let D be a consistent defeasible theory. For any
literal y, if D& +AY, then D - +-07.

On the basis of Corollary 1 and Theorem 4, we can state that the
probability of a strict derivation for a literal y does not exceed the
probability of a defeasible derivation for y. In addition, the prob-
ability of proving that there is no defeasible derivation in favour
of ~ v is smaller than the probability of a defeasible derivation for
v and greater than the probability of proving that there is no strict
derivation for ~ 7:

THEOREM 5. Let D be a consistent defeasible theory. For any
literal vy, the following conditions hold:

p(+Ay) < p(+97y) and p(—dy) < p(—Ay)



However, arguably a rational player should look first for strict
arguments in support of the wanted conclusion, as these cannot
be defeated. More generally, one can consider strict and defeasi-
ble derivability in combination with a conclusion or its opposite.
Specifically, if the wanted conclusion is 7, the player’s preference
relation over these combinations is arguably as follows:

FAY - 40y -0~y —A~y

Hence, if we play a game of generic derivability, we have to bal-
ance, for example, the fact that probability for +AY is smaller than
that for +dy with the fact that the goal +Ay should be preferred.
In the simplest case, this would require to assign a preference value
also to the different modes through which conclusions are obtained,
so that the payoffs would be measured in terms of the product of
the probability that the claimed conclusion is, or is not, provable
with the preference value assigned to the mode through which the
conclusion is claimed to be proved. This extension is left for future
research.

9. RELATED WORK

Prakken and Sartor’s Formal Dialogue Game [24] is a dialecti-
cal model of legal argument, in the sense that arguments can be
attacked with appropriate counterarguments.

The building blocks of arguments are rules, that is, conditional
statements that assign a conclusion to a set of conjunctive condi-
tions. Arguments are formed by chaining rules, where each of a
rule’s conditions is the conclusion of some rule appearing earlier in
the chain (p. 10). Arguments can defeat other arguments in a num-
ber of ways, the commonest and best known of which are rebutting
and undercutting. An argument rebuts another if it contains a rule
with a conclusion opposite to that of a rule in the rebutted argu-
ment. Arguments can thus rebut each other, but if one of the rules
involved has priority over the other, the argument with the higher
priority rule may be not defeated (p. 16). The second way in which
an argument can defeat another is by undercutting it. This way of
defeating an argument comes down to attacking an assumption be-
hind a rule. Unlike a condition, an assumption can normally be left
out of consideration for the purpose of applying the rule. Techni-
cally, assumptions are represented by weak negation (p. 8), which
has the informal meaning that there is no evidence to the contrary
of the assumption. If an argument defeats another but not the other
way round, then the former is said to defeat the latter strictly.

There are two players in the Dialogue Game, the proponent of a
claimed legal conclusion and the opponent. The aim of the propo-
nent is to prove that its initial argument is justified, which roughly
means that it can be upheld against all possible defeating coun-
terarguments. The aim of the opponent is to show that the initial
argument is not justified because it can be successfully attacked.

A dialogue is a sequence of arguments (p. 21), regulated by a
protocol that restricts the set of allowed arguments at each stage
of the debate. The proponent of a claimed conclusion starts the
dialogue and then the players take turns. To reflect the dialectical
asymmetry between proponent and opponent, the former’s argu-
ments are required to be strictly defeating while the latter’s may be
merely defeating.

A dialogue terminates if the set of available arguments becomes
empty, so that the player whose turn it is cannot move any more. A
player that can leave the other in that position is said to win the di-
alogue, while the player who cannot move anymore loses it. A dia-
logue tree is a tree of dialogues, with the property that the opponent
seized all its opportunities for defeat at each of that player’s turns.
In this way it is ensured that the initial claim is tested against all
possible attacks, making dialogue trees good candidates for being

dialectical proofs of conclusions. A conclusion is justified, then, if
it is a conclusion of the initial argument of some dialogue tree that
is won by the proponent. A player is said to win a dialogue tree,
finally, if the player wins all the dialogues in the tree.

How does Prakken and Sartor’s model compare to the present
approach? For a start they regard the factual premises of their
arguments as indisputable since they treat them as strict rules with
empty antecedents. Accordingly, they do not allow for an approach
in which the premises are assigned probabilities that are less than
one. Furthermore, the outcome of the dialogue game does not
depend on the way in which it is actually played, since the status of
a claim as justified or overruled is defined in terms of all dialogues
involving all possible defeating arguments of the proponent. In
accordance with this, their model does not attempt to formulate
strategic or predictive criteria for which arguments are actually
going to be made, in contrast to the present approach.

The Pleading’s Game [11} [12] is a normative formalisation and
computational model of civil pleading. Its purpose is to regulate
pleading between parties engaged in a legal conflict, which is meant
to identify the issues at dispute before the case is tried in court. Af-
ter pleading the court is then only confronted with issues on which
no agreement could be reached. Gordon’s model is normative in
the sense that it prescribes the procedural rules of pleading as they
should be according to standards like efficiency and fairness.

There is no judge or referee and there are only two players in-
volved in Gordon’s Game, namely the proponent of the main claim
and the opponent. Before the actual pleading starts the main claim
is known, as well as a set of statements for each player. Statements
can be seen as utterances concerning a formula of some logic (con-
ditional entailment, a kind of default logic, see [10]), for instance
the statement that some formula is claimed or that a set of formu-
las is a argument for some formula (p.126). Pleading comes down
to making assertions about statements, formula sets or rules, for
instance conceding a statement or declaring a rule (p.127). Such
assertions can be considered the moves of Gordon’s Game.

Each player has a set of open statements, a set of denied state-
ments and one of conceded statements. The open statements are
the ones that have not yet been responded to by the other party,
while the denied and conceded statements are the ones that have
been denied and conceded, respectively. The rules of the game (pp.
131-133 and pp. 137-140) say under which conditions the dif-
ferent moves are allowed and which effects each move has on the
players’ sets of open, denied or conceded statements.

Pleading ends if all relevant statements have been answered by
an appropriate assertion, such as denying or conceding a claim.
Briefly, a statement is relevant if its subject formula is an issue with
respect to the main claim, or if it is the denial of a relevant state-
ment (p. 141). Stated very roughly and briefly, an issue is a claimed
formula that is not known to be derivable given the conceded state-
ments, that is, neither the subject of a conceded statement nor en-
tailed by formulas known to be derivable (cf. p. 130 for the tech-
nical meaning of ‘known’ in this context). Furthermore, the issue
must be relevant to the claim in the sense that it plays a role in an
argument for or against the claim, or for or against another issue
with respect to the claim (see p. 164 for an exact definition).

The conceded statements of both parties together establish a set
of claims conceded as facts, and rules whose declaration is con-
ceded (pp. 128-129). The proponent of the main claim has now
won the game in the end if there are no issues left and the claim is
entailed by the agreed facts and rules. The legal reward of winning
the pleading is that the proponent is entitled to a summary judg-
ment, that is, a judgment that is made routinely in favour of the



proponent. The opponent wins if there are no issues left and the
main claim is not entailed. If neither player wins the game ends in
a draw and the case has to be tried by the court.

How does Gordon’s model compare to the present approach?
The model does not allow for treating premises as having a
probability that does not equal one, unlike the present approach.
The purpose of the game is to identify the issues that have to be
tried by a judge. In a sense, then, both players are winners since
both benefit from clarifying the issues that divide them. Gordon
focuses on defining dialogue rules that guarantee a fair and just
procedure, rather than on prescribing or even predicting the actual
course of pleading. This is in contrast to the present approach
where such an attempt is made.

Lodder’s DiaLaw [19] is a (Prolog implemented) dialogue model
of legal justification, incorporating the idea of the pure procedure
approach [26] in which there is nothing but the procedure itself
to arrive at justification. The model takes the form of a dialogue
game between two players. It is the purpose of the game to con-
vince one’s opponent of that some claim is justified. The actions
that can be taken are illocutionary acts with a propositional content
that is expressed by some sentence of a logical language (extended
somewhat, pp. 47f.; [18]]). There are four types of speech act that
can be made, namely claiming a sentence, questioning a sentence,
accepting a sentence, or withdrawing a sentence claimed earlier.

A dialogue is a sequence of moves, where each move also in-
cludes the player that makes it. There are dialogue rules that deter-
mine the moves that can be made at each stage of the dialogue.

The dialogue ends as soon as the termination criterion is fulfilled,
which informally says that there are no disputed (or ‘open’, p. 36)
sentences left (recall that the purpose is persuasion). To define the
set of disputed sentences a commitment store is used, telling which
players are committed to which sentences. The commitment store
starts empty (p. 36). There are rules that govern the way commit-
ments can change after each move (p. 40 and pp. 50f.), such as
the rule that a player becomes committed to a sentence he claimed
himself. Special commitment rules concern forced changes in com-
mitment, based on a logic of legal reasoning with rules [[17,|18]]. An
example is that by being committed to a legal rule’s validity and to
that rule’s condition one also becomes committed to the sentence
that the rule is applicable (p. 53).

Given the commitment store the set of disputed or sentences is
defined as the set of sentences occurring in the commitment store,
with the property that only one of the players is committed to it
(p- 36). The dialogue ends, then, if the set of disputed sentences
is empty. This can happen only if the original claim is accepted by
the other player, or if the claim is withdrawn.

A player can be said to win the dialogue if the initial claim is
accepted by the other player, and to lose the game if forced to with-
draw the initial claim. In the former case the initial claim is justi-
fied, in the latter it is not.

How does Lodder’s DiaLaw relate to the present work? As was
the case for Prakken and Sartor’s and Gordon’s approach, Lodder
does not assign probabilities to the factual premises involved in the
debate. His purpose is to define the rules of legal debate in such a
way that it can serve as a model of legal justification through per-
suasion. Again, in a sense both players involved can be considered
winners, since both are guaranteed a fair procedure. Accordingly,
no attempt is made to prescribe or even predict the actual course of
play, contrary to the present approach.

10. CONCLUSIONS

We have treated legal argumentation as a game in its game the-

oretical sense, allowing for an account that enables us to prescribe
and to some extent even predict the arguments that are actually go-
ing to be played out by the parties. A primitive notion thereby is
probability, which intuitively is a measure of strength of the defea-
sible proof for a conclusion. We used Defeasible Logic in com-
bination with standard probability calculus that a defeasible proof
holds, on the basis of the probabilities assigned to factual premises.
This probability of a claim was then interpreted in the game the-
oretical sense as the payoff for the proponent of the claim. This
allowed us to analyse an example and prescribe the strategies that
players should adopt in the example.

A brief survey of existing argument games in Al and Law
showed that the approach with probabilities has been almost lack-
ing from these approaches so far, and that the same holds for the
prescriptive and predictive character of the present account, which
comes to light in the fact that the strategies the parties adopt are
found by a game theoretical analysis.

A number of ways of generalising the present approach have
suggested themselves along the way. First, one could allow the
probabilities to be subjective or party-dependent in the sense that
different players may assess the probability of the factual premises
differently. The only requirement then is that each player’s assign-
ment of probability be common knowledge among both players. A
second generalization would be to allow for different claims being
raised at the same time, each of them having a different subjective
preference value for the players. Then the final payoff for players
could be obtained as an expected value of a variable that ranges
over the set of valued claims raised. A third generalisation would
be to incorporate also strict derivability next to its defeasible coun-
terpart, into the definition of payoffs. These extensions are left for
future research.
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