
Trace Semantics for the
Owicki-Gries Theory Integrated with

the Progress Logic from UNITY

Brijesh Dongol
Ian J. Hayes

April 2007

Technical Report SSE-2007-02

Division of Systems and Software Engineering Research
School of Information Technology and Electrical Engineering

The University of Queensland
QLD, 4072, Australia

http://www.itee.uq.edu.au/∼sse

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14986002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Trace Semantics for the Owicki-Gries Theory

Integrated with the Progress Logic from UNITY

Brijesh Dongol and Ian J. Hayes

ARC Center for Complex Systems
School of Information Technology and Electrical Engineering

The University of Queensland
Brisbane, AUSTRALIA

Abstract. The theory of Owicki and Gries has been used as a platform
for safety-based verification and derivation of concurrent programs. It
has also been integrated with the progress logic of UNITY which has
allowed newer techniques of progress-based verification and derivation to
be developed. However, a theoretical basis for the integrated theory has
thus far been missing. In this paper, we provide a theoretical background
for the logic of Owicki and Gries integrated with the logic of progress from
UNITY. An operational semantics for the new framework is provided
which is used to prove soundness of the progress logic.

1 Introduction

The theory of Owicki and Gries [OG76] is a popular platform for the verifi-
cation of concurrent programs. Feijen and van Gasteren have shown that the
theory is also useful for program derivation [FvG99]. However, the theory lacks
a logic of progress which means only safety properties can be formally consid-
ered. To allow progress properties to be considered, Dongol and Goldson [DG06]
integrated it with the progress logic of UNITY [CM88]. This change preserves
the original theory and maintains applicability of the safety-based techniques
of Feijen and van Gasteren. Furthermore, the extended theory has been used
to develop newer techniques for progress-based derivation of concurrent pro-
grams [GD05,DM06a,DM06b,Don06]. In this paper, we provide a theoretical
background for the integrated theory in [DG06], and give it a more rigorous and
formal treatment.

Partial correctness is enough to reason about safety [OG76,FvG99] and al-
though required for progress, Dongol and Goldson [DG06] do not elaborate on
total correctness. Thus, we start by defining total correctness which requires
careful consideration of atomicity, non-termination, and blocking. Then, an op-
erational semantics for the theory in [OG76,FvG99] is provided.

Owicki and Gries [OG76] offer a partial solution for reasoning about the
control state via the use of auxiliary variables. Dongol and Goldson [DG06]
provide a more robust solution by describing how program counters may be
incorporated into the framework, thus providing a full description of control. We

2 Brijesh Dongol and Ian J. Hayes

also provide an operational semantics for the framework in [DG06], with which
we can see that [DG06] is a valid extension of [OG76,FvG99]. The operational
semantics is used to define state traces which allows us to relate our programs
to linear-time temporal logic [MP92] and help formalise reachability, fairness
and leads-to properties. The rules for proving progress in [DG06] then become
theorems (as opposed to definitions [CM88,DG06]) which proves their soundness
with respect to temporal logic. Fairness requirements that are simply assumed
in [CM88,DG06] become more explicit and new theorems for proving progress
are devised.

This paper is organised as follows. Section 2 presents background to our
work. Section 3 describes our extensions to the theory of Owicki and Gries
where describe how to represent the control state of a program. In Section 4, we
present semantics for the new system and in Section 5, we describe how the logic
of progress from UNITY may be incorporated into our extended formalism.

2 Background

2.1 Syntax

Our programming language is based on Dijkstra’s guarded command language
[Dij76], except that in our concurrent context, a selection command with all
guards false is considered to be blocking. To handle progress properties, we will
later introduce labels on all statements, but we begin with unlabelled statements.

Definition 1 (Unlabelled Statement). For unlabelled statements S1, . . . ,Sn ;
boolean expressions B1, . . . ,Bn ; a vector of distinct variables x =̂ x1 . . . xm ; and
a vector of expressions E =̂ E1 . . .Em , the syntax of unlabelled statements is
given by:

UStmt =̂ abort | skip | x := E | S1; S2 |
if B1 → S1[] . . . []Bn → Sn fi | do B1 → S1[] . . . []Bn → Sn od

The following abbreviations are introduced for a two-branch selection and a
single branch iteration.

IF =̂ if B1 → S1[] B2 → S2 fi
DO =̂ do B → S od

The statements IF and DO may be taken as representatives for the more general
form of the selection and iteration, respectively. Thus, we only treat IF and DO
formally as their extension to the full syntax is straightforward.

2.2 Semantics

The values of the variables in a program define its current data state. A state
space Σ has type Σ =̂ Var → Val where Var is a set of variables and Val
a set of values. A state is a member of Σ. A predicate is a member of the set

Integrating Owicki-Gries with UNITY 3

PΣ =̂ Σ → Bool that maps each state to true or false. For state spaces Σ and
Γ , a predicate transformer from Σ to Γ has type PΓ → PΣ, so is a function
that maps predicates over Γ to predicates over Σ. We use the naming convention
where σ, σ′ are states, s , t are sequences of states, E1,E2, . . . are expressions,
x1, x2, . . . are variables, V1,V2, . . . are values, i , j , . . . are labels, and u, v , . . . are
indices.

To formalise our operational understanding of the language, we provide an
operational semantics. Expression evaluation is represented by the function

e
−→: (Expr × Σ) → Val

that takes an expression and a state, and returns the value of the expression
in the given state. Execution of an unlabelled statement is represented by the
relation

us
−→: (UStmt × Σ) ↔ (UStmt × Σ)

which is defined in Fig. 1 using a small-step semantics [Plo04] that expresses the
desired atomicity.

We use
us
−→

∗
to denote the reflexive transitive closure of

us
−→, ⊕ for the

functional override operator, and for vectors x , V , we use {x 7→ V } to denote
the mapping {x1 7→ V1, . . . , xm 7→ Vm}.

asgn
(∀u:1..m (Eu , σ)

e
−→ Vu)

(x := E , σ)
us
−→ (skip, σ ⊕ {x 7→ v})

abort
(abort, σ)

us
−→ (abort, σ

′)

seq-I
(S1, σ)

us
−→ (S ′

1, σ
′)

(S1; S2, σ)
us
−→ (S ′

1; S2, σ
′)

seq-II
(skip; S , σ)

us
−→ (S , σ)

seq-III
(abort; S , σ)

us
−→ (abort, σ)

IF-L
(B1, σ)

e
−→ true

(IF , σ)
us
−→ (S1, σ)

IF-R
(B2, σ)

e
−→ true

(IF , σ)
us
−→ (S2, σ)

DO-loop
(B , σ)

e
−→ true

(DO , σ)
us
−→ (S ; DO , σ)

DO-exit
(B , σ)

e
−→ false

(DO , σ)
us
−→ (skip, σ)

Fig. 1. Operational semantics of unlabelled statements

Assignment statement x := E uses the asgn rule where given that each ex-
pression Eu in state σ evaluates to value Vu , the state after the assignment
maps each variable xu to Vu . Execution of statement abort results in an arbi-
trary post state. Sequential composition S1; S2 evaluates S1 first using rule seq-I,

4 Brijesh Dongol and Ian J. Hayes

but if S1 is skip, uses rule seq-II so that S2 may be evaluated. The sequential
composition abort ; S may be evaluated using rule seq-III whereby the result
is the same as evaluating abort by itself. For statement IF , we execute either
S1 or S2 depending on whether B1 or B2 evaluates to true in state σ. If both
B1 and B2 evaluate to true, then either of the rules IF-L or IF-R may be used.
Notice that no rule has been defined for the case that both B1 and B2 evaluate
to false because no transition take place in the system, i.e., the IF statement
blocks. For a DO statement, if B evaluates to true in σ, we evaluate S followed
by DO , otherwise the DO terminates.

The weakest liberal precondition (wlp) for unlabelled statements is defined
inductively as follows. We use notation (x := E).P to denote the textual substi-
tution of each Eu for all free occurrences of xu in P and [P] to denote “P holds
in all states”, i.e., [P] =̂ (∀σ:Σ P .σ). Notation νX : : [X ≡ f (X)] denotes the
greatest fixed point of f (X).

Definition 2 (Weakest Liberal Precondition). The weakest liberal precon-
dition (wlp) of an unlabelled statement S and a predicate P is the weakest pred-
icate that needs to hold before executing S , so that every terminating execution
of S results in a state satisfying P.

1. [wlp.abort.P ≡ true]
2. [wlp.skip.P ≡ P]
3. [wlp.(x := E).P ≡ (x := E).P]
4. [wlp.(S1; S2).P ≡ wlp.S1.(wlp.S2.P)]
5. [wlp.IF .P ≡ [(B1 ⇒ wlp.S1.P) ∧ (B2 ⇒ wlp.S2.P)]]
6. [wlp.DO .P ≡ νY : : [Y ≡ (B ⇒ wlp.S .Y) ∧ (¬B ⇒ P)]]

When only considering safety properties, Feijen and van Gasteren [FvG99]
have already demonstrated that knowledge of partial correctness alone is enough.
However, when reasoning about progress, one is also required to reason about ter-
mination. Thus, we present the weakest precondition (wp) predicate transformer
[Dij76,DS90] which allows us to describe the total correctness of statements. Our
programs are blocking, thus the definition of wp follows Nelson [Nel89]. We use
µX : : [X ≡ f (X)] to denote the least fixed point of f (X).

Definition 3 (Weakest precondition). The weakest precondition (wp) of a
statement S and a predicate P is the weakest predicate that needs to hold before
executing S , so that S is guaranteed to terminate in a state satisfying P.

1. [wp.abort.P ≡ false]
2. [wp.skip.P ≡ P]
3. [wp.(x := E).P ≡ (x := E).P]
4. [wp.(S1; S2).P ≡ wp.S1.(wp.S2.P)]
5. [wp.IF .P ≡ (B1 ⇒ wp.S1.P) ∧ (B2 ⇒ wp.S2.P)]
6. [wp.DO .P ≡ µY : : [Y ≡ (B ⇒ wp.S .Y) ∧ (¬B ⇒ P)]]

Using the wp we define the following terms. Note that a statement that
terminates is not guaranteed to be executed because it might be blocked.

Integrating Owicki-Gries with UNITY 5

Definition 4 (Guard, Enabled, Blocked, Terminates). For an unlabelled
statement S , g.S is the guard of S where

g.S =̂ ¬wp.S .false.

In a state σ, S is enabled if g.S .σ holds and blocked if ¬g.S .σ holds. Statement
S terminates from state σ if t .S .σ holds where

t .S =̂ wp.S . true .

2.3 Theory of Owicki and Gries

A program in our model consists of a number of concurrently executing processes
where each process is just a sequential program. We define PROC to be the set
containing the process identifiers of all processes in the program. Programs are
preceded by predicate Init that describes the allowable initial states where we
require that Init 6≡ false.

An annotation of a program represents the program’s proof outline and con-
sists of a collection of assertions (predicates on the state) at various points of
interference in the program. We use the theory of Owicki and Gries [OG76] to
prove correctness of a program’s annotation. The main difficulty of establish-
ing correctness of assertions in a concurrent environment is interference from
other processes. For this reason, Owicki and Gries required an interference free-
dom proof obligation to ensure that an assertion is correct against execution of
other processes. Feijen and van Gasteren re-interpret this rule as the “global
correctness requirement” [FvG99].

Definition 5 (Locally correct). An assertion {P} occuring in process p is
locally correct if,

– {P} is a precondition of p and [Init ⇒ P], or
– {P} is textually preceded by {Q} S, where {Q} is locally correct and [Q ⇒

wlp.S .P].

Definition 6 (Globally correct). An assertion {P} occuring in process p is
globally correct if for each {Q} S executed by a process (other than p) where
{Q} is correct, [P ∧ Q ⇒ wlp.S .P].

Definition 7 (Correct). An assertion P occuring in process p is correct if it
is both locally and globally correct. An annotation is correct if all assertions in
the annotation are correct.

We do not elaborate the Owicki-Gries theory here, but refer the interested
reader to [OG76,FvG99,DG06] instead.

3 Representing the control state

In this section we present an extension to the programming model to support
reasoning about the control state of a program.

6 Brijesh Dongol and Ian J. Hayes

3.1 Atomicity brackets

To allow finer control over the atomicity of statements, we use pairs of atomicity
brackets ‘〈’ and ‘〉’. That is, given any statement S , execution of statement 〈S 〉
takes place atomically and eliminates all points of interference within S . We refer
to such a statement as a coarse-grained atomic statement. Note that we assume
that skip and assignment statements are atomic, and hence the following hold:

〈skip〉 ≡ skip

〈x := E 〉 ≡ x := E
〈〈S 〉〉 ≡ 〈S 〉.

We take the view that an atomic statement that blocks partway through its
execution is semantically equivalent to one that blocks at the start. In practice,
implementation of such an atomic statement is not possible, however statement
of the form 〈S1; if B → S2 fi〉, may be rewritten to move the guard to the front
by rewriting the statement as 〈if wp.S1.B → S1; S2 fi〉 so that blocking takes
place at the start. Note that blocking forever is different from non-termination
(cf Definition 11).

Atomicity brackets may also be placed around guard evaluations, for exam-
ple if 〈B1 → S1〉 [] 〈B2 → S2〉 fi. Here, the evaluation of guards B1 and B2,
and execution of statement S1 or S2 (depending on which guard holds) takes
place atomically. We point out the awkward nature of our notation as the pair
of atomicity brackets suggest two atomic guard evaluations, however, it is impor-
tant realise that this is not the case and guard evaluation takes place atomically.
In particular, the statement if 〈B → S1〉 [] 〈¬B → S2〉fi is non-blocking as
long as both S1 and S2 are non-blocking. A more general form of statement IF
is:

if 〈B1 → S1〉 T1 [] 〈B2 → S2〉 T2 fi

where B1 and B2 are evaluated atomically, and depending on whether B1 or B2

holds, S1 or S2 is executed atomically with the guard evaluation. After execution
of S1 control is transferred just before T1, and after S2 is executed, control is
transferred to just before T2. Thus, there is no point of interleaving between
evaluation of B1 and execution of S1 (similarly between B2 and S2), and fur-
thermore B1 and B2 are evaluated atomically. Similarly, a more general form of
statement DO is:

do 〈B → S 〉 T od.

A further concern when using atomicity brackets is that the atomic state-
ment defined may not terminate. We take the view that a non-terminating atomic
statement is equivalent to abort. The implications of this are discussed through-
out the paper.

Integrating Owicki-Gries with UNITY 7

3.2 Labelled statements

The first step towards describing the control state of a process requires being able
to refer to the next atomic statement to be executed. We do this by assigning a
unique label to each atomic statement in the process.

The label at the start of a statement is called the initial label of that state-
ment. In addition, a label is assigned to the end of the statement which is called
the final label of the statement. A final label of a statement always labels the
initial atomic statement of the statement that follows it. However, if there is no
following statement, then the final label does not refer to any atomic statement,
but simply marks the end of the process. Effectively, this scheme labels all the
points of interference in a process. We define the type of labels to be PC and
use PCp to denote the set of labels of process p. We assume that τ 6∈ PCp for
each process p.

Definition 8 (Labelled statement). For unlabelled statements S ,S1, . . . ,Sn ,
labelled statements T ,T1, . . . ,Tn , boolean expressions B ,B1, . . . ,Bn , a vector of
distinct variables x =̂ x1 . . . xm , and a vector of expressions E =̂ E1 . . .Em , the
syntax of a labelled statement takes the following form:

LStmt =̂ i : 〈S 〉 j : | T1; T2

| i : if 〈B1 → S1〉 T1[] . . . []〈Bn → Sn〉 Tn fi k :
| i :do 〈B1 → S1〉 T1[] . . . []〈Bn → Sn〉 Tn od k :

When we write i :S j :, we mean that the initial and final labels of S are i
and j , respectively. Notice abort does not have a final label, and that the label
before and after skip are different. For the sequential composition T1; T2 of
labelled statements T1 and T2, we require the final label of T1 to be equal to
the initial label of T2, otherwise the sequential composition is not well-formed.
Furthermore, we use i :S1 ; j :S2 k : as shorthand for i :S1 j : ; j :S2 k :. We define
the following statements to be representatives of a labelled selection and iteration
statements, respectively.

IFL =̂ i : if 〈B1 → S1〉 j1:T1 [] 〈B2 → S2〉 j2:T2 fi k :
DOL =̂ i :do 〈B → S 〉 j :T od k : .

We use pi to denote “the atomic statement with initial label i in process p”.

3.3 Modelling program counters

The desire to make a conservative extension to the theory of Owicki and Gries,
prompted by the desire to retain the calculational nature of wlp, has led us
to use auxiliary variables to reason about the control state. Consequently, we
formalise a program’s control state by introducing an auxiliary variable pcp for
each process p in a way that models its ‘program counter’, i.e., the value of this
variable indicates the active point of interference in the process, which is just
the label of the next atomic statement to be executed, or the final label of the

8 Brijesh Dongol and Ian J. Hayes

process if no such statement exists. Program counter pcp must be updated at
every atomic statement in p in a way that assigns pcp the final label of that
statement. This is done by superimposing an auxiliary assignment to pcp on
every atomic statement in p except skip.

Since every atomic statement in process p updates pcp , explicitly mentioning
updates to pcp unnecessarily adds clutter to our programs. Hence, we follow the
convention that execution of each statement in process p implicitly updates pcp
to reflect the change in control state. Furthermore, we add the restriction that
pcp may not appear in any statement, although it may appear in the annotation.

4 Semantics of labelled statements

4.1 Operational semantics

Providing an operational semantics for our new programming model is compli-
cated because we allow atomicity brackets. We re-iterate a previous point: if
statement 〈S 〉 blocks partway through its execution, it is regarded as being se-
mantically equivalent to blocking at the start. In order to make implementation
of the statement possible, we may move the blocking to the start of the state-
ment. However, when writing 〈S 〉 it is still possible for S to abort, for example,
if S is a non-terminating loop.

When defining an operational semantics for labelled statements, because la-
belled statements are an extension of unlabelled statements, it is easiest to define
an additional layer between the semantics for labelled and unlabelled statements.
It is also useful to define an identity statement. However, we are unable to use
skip as the identity because it has property of updating the program counter.
Hence, we include statement id in our system with the following restrictions

– the label before and after id are the same,
– id may not appear in any program, and
– id is the identity of sequential composition, i.e., id; S = S = S ; id for

any labelled statement S .

We define relation

t
−→: (UStmt × Σ) ↔ ({id,abort} × Σ)

that evaluates unlabelled statements atomically. Recall that by Definition 4, an
unlabelled statement is guaranteed to terminate if t .S holds. Thus, given an
unlabelled statement S and state σ, if t .S .σ holds, we return a state that follows
from the reflexive, transitive closure of

us
−→. If an atomic statement does not

terminate, it is essentially equivalent to abort. Thus, we obtain the terminating
semantics in Fig. 2.

Labelled statements are evaluated using the family of relations

ls
−→:PROC → ((LStmt × Σ) ↔ (LStmt × Σ))

Integrating Owicki-Gries with UNITY 9

term
t .S .σ (S , σ)

us
−→

∗

(skip, σ
′)

(S , σ)
t

−→ (id, σ
′)

abort
¬t .S .σ

(S , σ)
t

−→ (abort, σ)

Fig. 2. Terminating semantics

which for each process represents a single atomic step of execution in the process.
We provide the operational semantics for labelled atomic statements in Fig. 3.

When evaluating the coarse-grained atomic statement 〈S 〉, the unlabelled state-
ment S is evaluated according to the semantics in Fig. 2, whereby we obtain an
S ′ that is either skip (if S terminates) or abort (if S does not terminate). If S
blocks in state σ, none of the rules in Fig. 3 apply.

CG
(S , σ)

t
−→ (S ′

, σ
′)

(〈S〉 j : , σ)
ls

−→p (S ′
, σ

′ ⊕ {pcp 7→ j})

Fig. 3. Labelled atomic statements

The rules for non-atomic labelled statements are straightforward and are

presented in Fig. 4. Once again, we recall that following a
t

−→ evaluation, we
either obtain an id or abort depending on whether or not the atomic statement
terminates from state σ. Thus, in Fig. 4, A ∈ {id,abort}.

4.2 Weakest (liberal) precondition semantics

In this section, we define the wp and wlp of labelled statements. Since the update
to pcp occurs implicitly, we must parameterise both the wp and wlp by the
identifier of the executing process.

Definition 9 (Weakest liberal precondition). The weakest liberal precon-
dition (wlp) of a labelled statement in process p to establish predicate P is:

1. [wlpp .(i :abort).P ≡ true]
2. [wlpp .(i : id i :).P ≡ P]
3. [wlpp .(i : skip j :).P ≡ (pcp := j).P]
4. [wlpp .(i : x := E j :).P ≡ (x , pcp := E , j).P]
5. [wlpp .(i : 〈S〉 j :).P ≡ wlp.(S ; pcp := j).P)]
6. [wlpp .(i :S1; j :S2 k :).P ≡ wlpp .(i :S1 j :).(wlpp .(j :S2 k :).P)]
7. [wlpp .IFL.P ≡ (B1 ⇒ wlp.(S1; pcp := j1).(wlpp .(j1:T1 k :).P))

∧ (B2 ⇒ wlp.(S2; pcp := j2).(wlpp .(j2:T2 k :).P))

8. [wlpp .DOL.P ≡ νY : : [Y ≡ (B ⇒ wlp.(S ; pcp := j).(wlpp.(j :T i :).Y))
∧ (¬B ⇒ (pcp := k).P)]]

Definition 10 (Weakest precondition). The weakest precondition (wp) of a
labelled statement in process p to establish predicate P is defined as:

10 Brijesh Dongol and Ian J. Hayes

seq-I
(S1, σ)

ls
−→p (S ′

1, σ
′)

(S1; S2, σ)
ls

−→p (S ′

1; S2, σ
′)

seq-II
(id; S2, σ)

ls
−→p (S2, σ)

abort
(abort, σ)

ls
−→p (abort, σ

′)

IF-L
(B1, σ)

e
−→ true (S1, σ)

t
−→ (A, σ

′)

(IFL, σ)
ls

−→p (A; T1, σ
′ ⊕ {pcp 7→ j1})

IF-R
(B2, σ)

e
−→ true (S2, σ)

t
−→ (A, σ

′)

(IFL, σ)
ls

−→p (A; T2, σ
′ ⊕ {pcp 7→ j2})

DO-true
(B , σ)

e
−→ true (S , σ)

t
−→ (A, σ

′)

(DOL, σ)
ls

−→p (A; T ; DOL, σ
′ ⊕ {pcp 7→ j})

DO-exit
(B , σ)

e
−→ false

(DOL, σ)
ls

−→p (id, σ
′ ⊕ {pcp 7→ k})

Fig. 4. Labelled non-atomic statements

1. [wpp .(i :abort).P ≡ false]

2. [wpp .(i : id i :).P ≡ P]

3. [wpp .(i : skip j :).P ≡ (pcp := j).P]

4. [wpp .(i : x := E j :).P ≡ (x , pcp := E , j).P]

5. [wpp .(i : 〈S〉 j :).P ≡ wp.(S ; pcp := j).P)]

6. [wpp .(i :S1; j :S2 k :).P ≡ wpp .(i :S1 j :).(wpp .(j :S2 k :).P)]

7. [wpp .IFL.P ≡ (B1 ⇒ wp.(S1; pcp := j1).(wpp .(j1:T1 k :).P))
∧ (B2 ⇒ wp.(S2; pcp := j2).(wpp .(j2: T2 k :).P))

8. [wpp .DOL.P ≡ µY : : [Y ≡ (B ⇒ wp.(S ; pcp := j).(wpp .(j :T i :).Y))
∧ (¬B ⇒ (pcp := k).P)]]

Note that we are able to assert correctness of pcp = i as a precondition of
statement pi . Local correctness of pcp = i follows from the definition of wlpp ,
and global correctness follows because pcp is a local variable of p. This means
we are free to interpret predicate pcp = i to mean that ‘control in p is at pi ’
because pcp = i is a correct precondition of pi and because labels are unique
within a process.

Definition 11 (Guard, Termination). For a labelled statement S in process
p, the guard of S denoted gp .S, is the predicate ¬wpp .S .false and the termination
of S denoted tp .S is the predicate wpp .S . true .

Integrating Owicki-Gries with UNITY 11

4.3 Relating the semantics

The relationship between the operational and weakest liberal precondition se-
mantics is established via the following theorem which may be proved using
induction on the structure of S .

Theorem 1. For a labelled statement S in process p and predicate Q, the fol-
lowing holds:

(∀σ:Σ wlpp .S .Q .σ ≡ (∀σ′:Σ (S , σ)
ls

−→
∗

p (id, σ′) ⇒ Q .σ′)).

Hence, if the wlp of S to establish Q holds in state σ and the reflexive,

transitive closure of
ls
−→p results in (skip, σ′), i.e., a terminating execution of S

results in state σ′, then Q must hold in σ′. The following theorem relates the

termination of statement S to its operational description. We use (S , σ)
ls
−→

∞

p

to denote that evaluation of (S , σ) diverges, i.e., generates an infinite sequence.

Theorem 2. For a labelled statement S in process p, the following holds:

(∀σ:Σ tp .S .σ ≡ ¬(∃σ′ :Σ (S , σ)
ls

−→
∗

p (abort, σ′)) ∧ ¬((S , σ)
ls

−→
∞

p)).

Hence, if tp .S holds in state σ, no evaluation of S in σ is aborting or diverging.
The weakest precondition may be related to the operational semantics using
Theorems 1 and 2, together with the following equation from [Dij76]:

wpp .S .P ≡ wlpp .S .P ∧ tp .S .

Note that we cannot guarantee that S can be executed just because wpp .S .P
holds in state σ. To ensure that S can be executed, we use the next theorem.

Theorem 3. For a labelled statement S in process p, the following holds:

(∀σ:Σ gp .S .σ ≡ (∃σ′ :Σ,S ′:LStmt (S , σ)
ls
−→p (S ′, σ′))).

4.4 Execution semantics

Using operational semantics from the sequential part of our programming lan-
guage, we are able to formalise the execution model of concurrent programs.
Defining Prgm to be the set of all possible programs, the state transition rela-
tion

↪→:Prgm → (Σ ↔ Σ)

represents a single step of execution of the program (Fig. 5).
According to rule par, a program makes an atomic transition from state σ to

σ′ if there is a process in the program that takes an atomic step from σ to σ′.
Using this, we define a trace of a program as follows.

Definition 12 (Trace, Complete Trace). A possibly infinite sequence of states
s is a trace of program A if InitA.s0 ∧ (∀u:dom(s)−{0} su−1 ↪→A su). Trace s is
complete if either dom(s) = N ∨ ¬(∃σ:Σ last(s) ↪→A σ) holds.

Thus, a complete trace represents either a terminating, deadlocked, or infinite
execution of a program. For a program A, we let TA denote the set of all complete
traces of the program.

12 Brijesh Dongol and Ian J. Hayes

par
p ∈ PROCA (S , σ)

ls
−→p (S ′

, σ
′)

σ ↪→A σ
′

Fig. 5. Execution semantics

5 A logic of progress

As we now have the means to reason about the control state of a program,
we are in a position to extend the theory to support reasoning about progress
requirements.

5.1 Trace semantics

In this section, we present a trace semantics for our model which allows us to
review the logic of Manna and Pnueli [MP92] and formalise concepts such as
fairness. For a sequence of states s and formula F , we use s ` F to mean “s
satisfies F”.

Definition 13 (Always, Eventually, Unless). [MP92] For predicates P and
Q and sequence of states s, we define

s ` 2P ≡ (∀u:dom(s) P .su)
s ` 3P ≡ (∃u:dom(s) P .su)
s ` P W Q ≡ (∃v :dom(s) Q .sv ∧ (∀u:0..v−1 P .su)) ∨ (∀u:dom(s) P .su)

Thus, s ` 2P iff all states in s satisfy P , s ` 3P iff some state in s satisfies
P , and s ` P W Q iff there either exists a state in s that satisfies Q and P holds
until Q does, or P always holds, in which case Q may never be established.

Definition 14 (Satisfiable, Valid). Given a set T =̂ {s | s ∈ seqΣ}, a tem-
poral formula F is satisfiable in T iff (∃s:T s ` F) holds and valid in T iff
(∀s:T s ` F) holds.

For a set of sequences T , we use notation T |= F to denote that formula F is
valid in T .

Definition 15 (Invariant, Reachable). For a set T =̂ {s | s ∈ seqΣ} and
predicate P, P is invariant in T iff T |= 2P and P is reachable in T iff 3P is
satisfiable in T.

Temporal logic makes it easy to specify progress properties, however, prov-
ing this specification can be difficult. In [DG06,CM88], progress is proved using
the ‘leads-to’ relation which is defined without using temporal logic. Instead one
proves ‘leads-to’ in a calculational manner without reasoning about state traces.
However, it is not easy to be convinced that the definition of ‘leads-to’ indeed
captures its intended temporal meaning. Furthermore, two of the required con-
ditions in the definition of ‘leads-to’ (cf theorems 4 and 5) are actually theorems
of temporal logic.

Integrating Owicki-Gries with UNITY 13

Definition 16 (Leads-to). For predicates P and Q, P leads-to Q (written
P Q) iff 2(P ⇒ 3Q).

Theorem 4 (Transitivity). For predicates P and Q, P Q holds if for some
predicate R, (P R) ∧ (R Q).

Proof. For an arbitrary sequence of states s , we show that if s ` P R and
s ` R Q holds, then s ` P Q holds. The proof makes use of the following
properties from [MP92].

2P ∧ 2Q ≡ 2(P ∧ Q) (T1)

(P ⇒ Q) ⇒ (3P ⇒ 3Q) (T2)

33P ≡ 3P (T3)

We now have the following calculation:

(s ` P R) ∧ (s ` R Q)
≡ {definition of }

(s ` 2(P ⇒ 3R)) ∧ (s ` 2(R ⇒ 3Q))
≡ {logic}

s ` 2(P ⇒ 3R) ∧ 2(R ⇒ 3Q)
⇒ {properties (T1) and (T2)}

s ` 2((P ⇒ 3R) ∧ (3R ⇒ 33Q))
⇒ {property (T3)}{transitivity of ⇒}

s ` 2(P ⇒ 3Q)
≡ {definition of }

s ` P Q 2

Theorem 5 (Disjunction). For predicates P and Q if P ≡ (∃m:W P .m), for
any set W , given that m does not occur free in Q, P Q if (∀m:W P .m Q).

Proof. Assuming P ≡ (∃m:W P .m) and m is not free in Q , for an arbitrary
sequence of states s , we show that s ` P Q holds provided (∀m:W s ` P .m
Q) holds. In this proof, we use the following property from [MP92].

(∀x :T 2P) ≡ 2(∀x :T P) (D)

We have:

(∀m:W s ` P .m Q)
≡ {definition of }

(∀m:W s ` 2(P .m ⇒ 3Q))
≡ {trace property}

s ` (∀m:W 2(P .m ⇒ 3Q))
≡ {property (D)}

s ` 2(∀m:W P .m ⇒ 3Q)
⇒ {m not free in Q}

s ` 2((∃m:W P .m) ⇒ 3Q)
≡ {definition of }{P ≡ (∃m:W P .m)}

s ` P Q 2

14 Brijesh Dongol and Ian J. Hayes

Lemma 6 (Contradiction). For predicates P and Q,

P Q ≡ (P ∧ ¬Q) Q .

By incorporating temporal logic directly into the framework, we are able
to formalise properties such as fairness. Our definitions are closely related to
the formalisation of fairness in [Lam02], however, a stronger definition of strong
fairness is provided in order to establish a more intuitive link between weak and
strong fairness than Lamport [Lam02].

Definition 17 (Weakly fair, Strongly fair). For a program A, a trace s ∈ TA
is weakly fair iff

(∀p:PROCA
(∀i:PCA,p

s ` 23(pcp 6= i ∨ ¬gp .pi))).
Trace s ∈ TA is strongly fair iff

(∀p:PROCA
(∀i:PCA,p

s ` 2(23(pcp = i ∧ gp .pi) ⇒ 3(pcp 6= i)))).

Thus, for a program A, trace s is weakly fair iff for each su , there is a future
state sv for which (pcp 6= i ∨ ¬gp .pi).sv holds, i.e., if gp .pi is continuously true,
then pcp 6= i must hold. Note that by Lemma 6 (contradiction), s is weakly fair
iff s ` (pcp = i ∧ gp .pi) (pcp 6= i ∨ ¬gp .pi). Trace s is strongly fair iff for
every su it is always the case if pcp = i ∧ gp .pi always eventually becomes true,
then eventually pcp 6= i holds. Note that because 2(P ⇒ Q) ⇒ (2P ⇒ 2Q),
if s is strongly fair then s ` 23(pcp = i ∧ gp .pi) ⇒ 3(pcp 6= i) holds. Lemma
7 demonstrates why we do not use this weaker version as a definition.

We use notation WFA and SFA to respectively denote the weakly fair and
strongly fair traces of program A. The formal definitions of weak and strong fair-
ness allows one to describe different conditions under which a progress property
might hold. For example, given a formula F and program A, proving WFA |= F
and SFA |= F shows that F holds for weakly fair and strongly fair traces of A,
respectively. Note that WFA ⊆ TA by the definition of WFA.

Lemma 7. SFA ⊆ WFA.

Proof. We have the following calculation:

23(pcp = i ∧ gp .pi) ⇒ 3(pcp 6= i)
≡ {logic}{¬2P ≡ 3¬P}

32(pcp 6= i ∨ ¬gp .pi) ∨ 3(pcp 6= i)
≡ {3(P ∨ Q) ≡ 3P ∨ 3Q}

3(2(pcp 6= i ∨ ¬gp .pi) ∨ pcp 6= i)
⇒ {2P ⇒ P}{logic}

3(pcp 6= i ∨ ¬gp .pi)

Thus, we get,

2(23(pcp = i ∧ gp .pi) ⇒ 3(pcp 6= i))
⇒ {2 is monotonic}

23(pcp 6= i ∨ ¬gp .pi)

which proves that a strongly fair trace is also weakly fair. 2

Integrating Owicki-Gries with UNITY 15

5.2 The progress logic

We now present our progress logic and prove its soundness with respect to linear
time temporal logic. The basis of the progress logic in [CM88,DG06] is the unless
(un) relation which is defined as follows.

Definition 18 (Unless). Given a program A, predicates P and Q, P unA Q
holds iff

(∀p:PROCA
(∀i:PCA,p

[P ∧ ¬Q ∧ pcp = i ⇒ wpp .pi .(P ∨ Q)])).

Thus, a program satisfies P unA Q if for each atomic statement S in the
program, execution of S from a state that satisfies P ∧ ¬Q is guaranteed to
terminate in a state that satisfies P ∨ Q . Note that Definition 18 considers all
states in the program, including those that are not reachable. Hence, a proof
of TA |= P W Q does not constitute a proof of P unA Q because the proof of
TA |= P W Q will only consider reachable states.

Furthermore, given a program A, if TA |= P W false holds, then TA |= 2P
must be true. However, if P unA false holds, then we cannot conclude that P
holds initially. For P to be an invariant of A, we require that both P unA false
and [InitA ⇒ P] be true. This difference is highlighted by the following lemma.
Given sequences s and t , we use notation s � t and s ≺ t to respectively denote
that s is a prefix and proper prefix of t .

Lemma 8. Given a program A, if P and Q are predicates such that

[InitA ⇒ P ∨ Q] (1)

P unA Q (2)

then TA |= P W Q .

Proof. Given a program A that satisfies (1) and (2) and a trace t ∈ TA, we show
that t ` P W Q by induction over prefixes of s of t .

For the base case we consider the prefix of length one, i.e., s � t such that
size(s) = 1. Note that this gives us the state of the system after initialisation.
We have the following calculation:

s ` P W Q
≡ {Definition 13}{as size(s) = 1}

(Q .s0 ∧ true) ∨ P .s0
≡ {logic}

(P ∨ Q).s0
⇐ {logic using (1)}

InitA.s0
≡ {s � t}

InitA.t0
≡ {t ∈ TA}

true

16 Brijesh Dongol and Ian J. Hayes

Our inductive hypothesis assumes that the result holds for trace s such that
s ≺ t ∧ size(s) = k , i.e., we assume (∃v :dom(s) Q .sv ∧ (∀u:0..v−1 P .su)) ∨
(∀v :dom(s) P .sv) holds. Note that s does not represent a complete trace of A
because s ≺ t , hence, a state σ such that last(s) ↪→A σ exists. By logic, we may
use the following equivalent assumption

(∃v :dom(s) Q .sv ∧ (∀u:0..v−1 P .su)) ∨ (∀v :dom(s) (P ∧ ¬Q).sv) (3)

Using this, we would like to show that for all traces s ′ such that s ≺ s ′ � t ∧
size(s ′) = k + 1 holds, the following is true:

(∃v :dom(s′) Q .s ′v ∧ (∀u:0..v−1 P .s ′u)) ∨ (∀v :dom(s′) P .s ′v) (4)

The implication is proved by case analysis on the disjuncts of (3). The first case

(∃v :dom(s) Q .sv ∧ (∀u:0..v−1 P .su)) ⇒ (4)

is trivial. For the second case, we have:

(∀v :dom(s) (P ∧ ¬Q).sv)
⇒ {logic: s ≺ s ′}

(∀v :dom(s) (P ∧ ¬Q).s ′v)
⇒ {logic: as P unA Q}{s ≺ s ′, thus s ′k+1 exists}

(∀v :dom(s) (P ∧ ¬Q).s ′v) ∧ (P ∨ Q).s ′k+1

⇒ {by logic and sequence property}
(∃v :dom(s′) Q .s ′v ∧ (∀v :0..k P .s ′v)) ∨ (∀v :dom(s′) P .s ′v) 2

Note that P unA Q does not guarantee that Q will ever hold, for (an ex-
treme) example, true unA Q holds for all Q , including false. To guarantee that
a property is eventually established via the execution of a single statement,
Chandy and Misra [CM88] define the ensures relation which appears as the im-
mediate progress rule in [DG06]. In [CM88,DG06], this relation forms the base
case for the definition of leads-to which we have defined using temporal logic (cf
Definition 16).

Unlike transitivity and disjunction [CM88,DG06], the immediate progress
rule (or ensures in UNITY) is bound to the program under consideration, as op-
posed to being a property of temporal logic. Thus, we present immediate progress
as a theorem where P Q holds whenever the conditions required by the the-
orem hold. Our treatment turns out to be more favourable than [CM88,DG06]
because conditions hidden away in [CM88,DG06] such as the weak-fairness re-
quirement are more visible, and furthermore, we are able to prove that the con-
ditions are sound. Later, we present a version of immediate progress that holds
for strongly fair traces (cf Theorem 10), and a version that does not require any
fairness conditions (cf Theorem 11).

Theorem 9 (Immediate progress). Given a program A, for predicates P and
Q, WFA |= P Q holds if P unA Q holds, and

(∃p:PROCA
(∃i:PCA,p

[P ∧ ¬Q ⇒ pcp = i ∧ gp .pi ∧ wpp .pi .Q])). (5)

Integrating Owicki-Gries with UNITY 17

To make sense of the Theorem 9 (immediate progress) we provide these
interpretative notes. WFA |= P Q is justified on the basis of being able to
execute a continually enabled atomic statement that establishes Q . To see how
the theorem formalises this, since P unA Q must hold, we can be assured that P
remains true as long as ¬Q is true. Second, we establish that control of process
p is at an atomic statement pi , that pi is enabled when P ∧ ¬Q is true, and that
execution of pi makes Q true. It follows from P unA Q that pi is continually
enabled as long as ¬Q is true and because we are assuming weak fairness, that
pi must eventually be executed whereby Q is established.

Proof. 1 We prove that WFA |= P Q holds if the conditions for immediate
progress hold. By Lemma 6 (contradiction), we may equivalently prove WFA |=
P ∧ ¬Q Q .

Suppose s ∈ WFA and for some k , (P ∧ ¬Q).sk holds. By (5) there exists p ∈
PROCA and there exists an i ∈ PCA,p such that (pcp = i ∧ gp .i ∧ wpp .pi .Q).sk
holds. Note that by Theorem 3, because s is a complete trace the transition
sk ↪→A sk+1 exists.

Now consider process q different from p. If transition sk ↪→A sk+1 follows

from (S , sk)
ls

−→q (S ′, sk+1), because P unA Q holds, so does (P ∨ Q).sk+1.
If Q .sk+1 holds we are done. So, we assume that no q transition establishes Q
which means for all v > k that follows from a q transition, (P ∧ ¬Q).sv holds.
We now have

(P ∧ ¬Q).sk
⇒ {s ∈ WFA}

(∃v :dom(s) v > k ∧ (pcp 6= i ∨ ¬gp .pi).sv)
⇒ {assumption: every q transition establishes P ∧ ¬Q}

(∃v :dom(s) v > k ∧ (s [k ..v − 1] ` 2(P ∧ ¬Q)) ∧ (pcp 6= i ∨ ¬gp .pi).sv)
≡ {P ∧ ¬Q ⇒ pcp = i ∧ wpp .pi .Q}

(∃v :dom(s) v > k ∧ Q .sv) 2

Having formalised fairness, in addition to previously known theorems, we
are able to present a version of immediate progress that holds for strongly fair
traces (Theorem 10), and a version that does not require any fairness conditions
(Theorem 11).

Theorem 10 (Immediate progress under strong fairness). Given a pro-
gram A, for predicates P and Q, SFA |= P Q if P unA Q holds, and

[P ∧ ¬Q ⇒ (∃p:PROCA
(∃i:PCA,p pcp = i ∧ gp .pi ∧ wpp .pi .Q))]. (6)

1 On proving Theorem 9, we discover an error in the definition of un in [DG06]. In
[DG06], P un

A
Q holds if P ∧ ¬Q ⇒ wlp.S .(P ∨ Q) holds for all statements S

in A. However, partial correctness provided by wlp is not enough to guarantee that
P Q holds. For Theorem 9, until pi is executed, all processes q different from
p must establish P ∨ Q . However if P un

A
Q is defined using the wlp, then a

statement in q might not terminate whereby P Q will not hold.

18 Brijesh Dongol and Ian J. Hayes

The theorem states that P ∧ ¬Q needs to imply that there is a enabled
statement that establishes Q and that control is currently at that statement.
Thus, execution of a process q different from p may disable pi as long as it
enables some other statement that can establish Q . Condition (6) required by
Theorem 10 is weaker than condition (5) required by Theorem 9, however, by
weakening this condition, Theorem 10 only holds for strongly fair traces of the
program.

Theorem 11 (Immediate progress under no fairness). Given a program
A, for predicates P and Q, TA |= P Q if

[P ∧ ¬Q ⇒ (∀p:PROCA
(∀i:PCA,p

pcp = i ∧ gp .pi ⇒ wpp .pi .Q))
∧ (∃p:PROCA

(∃i:PCA,p
pcp = i ∧ gp .pi))].

(7)

Thus, P Q holds for all traces in the program if P ∧ ¬Q implies all enabled
processes establish Q and one of these processes is enabled. Condition (7) is
stronger than (5), but Theorem 11 does not impose any fairness requirements.
Note that (7) may equivalently be written as

[P ∧ ¬Q ⇒ (∀p:PROCA
gp .ppcp

⇒ wpp .ppcp
.Q) ∧ (∃p:PROCA

gp .ppcp
)].

6 Conclusion and related work

The framework used in [OG76,FvG99,DG06] provides an approach where con-
current programs are modelled as a number of sequential processes executing in
parallel. In [DG06], the safety logic of Owicki and Gries [OG76] is integrated
with the progress logic from UNITY [CM88] where immediate progress, transi-
tivity and disjunction are presented as the definition of . Techniques for the
progress-based derivation of concurrent programs that use the progress logic
from [DG06] have already been developed [GD05,DM06a,DM06b], however, a
theoretical backing for the logic has thus far not been provided.

Although is a liveness property, the presentation in [CM88,DG06] does not
refer to temporal logic [MP92]. Jutla et al [JKR89] describe the weakest leads-to
predicate transformer which is related to the progress logic of UNITY and to
branching-time temporal logic [EH86], however, the relationship between UNITY
and branching-time temporal logic is not established. Furthermore, their proofs
assume wp = wlp. Gerth and Pnueli [GP89] show how UNITY could have been
obtained as a specialisation of transition logic and linear-time temporal logic
[MP92], thus providing a theoretical backing for UNITY.

This paper expands on [GP89] and proves soundness of the UNITY logic
integrated into a fundamentally different programming model. An operational
description of the programming model from [DG06] is provided, which allows
temporal logic to be encoded directly into the framework. Progress properties
are then described at a temporal level and the definitions from [DG06] are re-
formulated as theorems which validate their soundness. The new presentation
separates theorems of temporal logic from theorems of the progress logic more
clearly and requirements such as weak fairness that are implicit in [CM88,DG06]

Integrating Owicki-Gries with UNITY 19

are now explicitly stated within the theorems. The usefulness of this is demon-
strated by our ability to devise new theorems (Theorems 10 and 11) that describe
the conditions necessary for P Q to hold under various fairness assumptions.

Owicki and Lamport [OL82] present a proof system in which the temporal
operators 2 and 3 have been incorporated into the Owicki-Gries formalism.
One of the drawbacks of their system is that blocking statements have not been
described, and one must simulate these using the looping construct. Their logic
is also missing ‘unless’ operator. Furthermore, keywords, ‘at’, ‘after’ and ‘in’ are
used to describe the control state of the program, and temporal logic has been
encoded directly (as opposed to axiomatically) into their logic. This has meant
that the method needs to stay within the realms of logical reasoning, as opposed
to algebraic calculation, which Feijen and van Gasteren [FvG99] point out, is
not suitable in the context of program derivation. Lamport [Lam02] describes
a framework that encodes temporal logic into a logic of actions, however, the
framework is only suitable for describing specifications not programs.

As for further work, Chandy and Misra [CM88] suggest that ensures, transi-
tivity, and disjunction are complete, in that, any proof of P Q can be proved
via a finite number of applications of ensures, transitivity, and disjunction. Com-
pleteness of the UNITY logic is addressed in [Pac92] and in [GP89], UNITY is
proved to be relatively complete to transition logic with linear-time temporal
logic. We have not yet managed to obtain a completeness result and leave a
more rigorous proof of completeness as a topic for further investigation.

References

[CM88] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley Longman Publishing Co., Inc., 1988.

[DG06] B. Dongol and D. Goldson. Extending the theory of Owicki and Gries with
a logic of progress. Logical Methods in Computer Science, 2(6):1–25, March
2006.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
[DM06a] B. Dongol and A. J. Mooij. Progress in deriving concurrent programs: Em-

phasizing the role of stable guards. In Tarmo Uustalu, editor, 8th Interna-
tional Conference on Mathematics of Program Construction, volume 4014 of
LNCS, pages 140–161. Springer, 2006.

[DM06b] B. Dongol and A. J. Mooij. Streamlining progress-based derivations of con-
current programs. Technical Report SSE-2006-06, University of Queensland,
Australia, 2006.

[Don06] B. Dongol. Derivation of Java monitors. In Australian Software Engineering
Conference (ASWEC), pages 211–220. IEEE Computer Society, 2006.

[DS90] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, 1990.

[EH86] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited:
On branching time versus linear time temporal logic. Journal of the ACM,
33(1):151–178, 1986.

[FvG99] W. H. J. Feijen and A. J. M. van Gasteren. On a Method of Multiprogramming.
Springer Verlag, 1999.

20 Brijesh Dongol and Ian J. Hayes

[GD05] D. Goldson and B. Dongol. Concurrent program design in the extended theory
of Owicki and Gries. In M. Atkinson and F. Dehne, editors, CATS, volume 41
of CRPIT, pages 41–50. Australian Computer Society, 2005.

[GP89] R. Gerth and A. Pnueli. Rooting unity. In Proceedings of the 5th International
Workshop on Software Specification and Design, pages 11–19, Pittsburgh,
Pensylvania, USA, 1989. ACM Press.

[JKR89] C. S. Jutla, E. Knapp, and J. R. Rao. A predicate transformer approach to
semantics of parallel programs. In Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Computing, pages 249–263. ACM
Press, 1989.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[MP92] Z. Manna and A. Pnueli. Temporal Verification of Reactive and Concurrent
Systems: Specification. Springer-Verlag New York, Inc., 1992.

[Nel89] G. Nelson. A generalization of Dijkstra’s calculus. ACM Trans. Program.
Lang. Syst., 11(4):517–561, 1989.

[OG76] S. Owicki and D. Gries. Verifying properties of parallel programs: An ax-
iomatic approach. Commun. ACM, 19(5):279–285, 1976.

[OL82] S. Owicki and L. Lamport. Proving liveness properties of concurrent pro-
grams. ACM Trans. Program. Lang. Syst., 4(3):455–495, 1982.

[Pac92] Jan K. Pachl. A simple proof of a completeness result for leads-to in the
UNITY logic. Inf. Process. Lett., 41(1):35–38, 1992.

[Plo04] Gordon D. Plotkin. The origins of structural operational semantics. J. Log.
Algebr. Program., 60-61:3–15, 2004.

