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Abstract 

A numerical study is reported to investigate both the First and the Second Law of 

Thermodynamics for thermally developing forced convection in a circular tube filled by a saturated 

porous medium, with uniform wall temperature, and with the effects of viscous dissipation included. A 

theoretical analysis is also presented to study the problem for the asymptotic region applying the 

perturbation solution of the Brinkman momentum equation reported by [1]. Expressions are reported for 

the temperature profile, the Nusselt number, the Bejan number, and the dimensionless entropy generation 

rate in the asymptotic region. Numerical results are found to be in good agreement with theoretical 

counterparts.  
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Nomenclature 

Be Bejan number 

Be* average Bejan number 

Br Brinkman number 

Br* Darcy-Brinkman number 

cP specific heat at constant pressure 

Da Darcy number, K/R2  

FFI fluid friction irreversibility 

G negative of the applied pressure gradient 

HTI heat transfer irreversibility 

k effective thermal conductivity 

K permeability 

M µeff/µ 

N dimensionless temperature difference (N=(TIN-Tw)/Tw) 

Ns dimensionless entropy generation 

Ns* average value of Ns 

Nu Nusselt number  

Pe Péclet number, Pe=ρcpRU/k  

q" wall heat flux 

R Tube radius 

s (MDa)-1/2 
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genSɺ  entropy generation rate per unit volume 

T* temperature 

Tm bulk mean temperature, 
1

0
ˆ2 *mT uT rdr= ∫   

Tw wall temperature 

u µ u*/(GR2)  

u* filtration velocity 

û  u*/U 

U mean velocity, 
1

0
2 *U u rdr= ∫  

x* longitudinal coordinate 

x x*/PeR 

r* radial coordinate 

r r*/R 

Greek symbols 

θ (T*-Tw)/(TIN-Tw)  

µ fluid viscosity 

µeff effective viscosity in the Brinkman term 

ρ  fluid density 

 

1. Introduction 

Analysis of fluid flow and heat transfer in porous ducts has been a subject of fundamental 

importance for being relevant to a lot of industrial applications [2]. There has been a renewed interest in 

the problem of forced convection through a porous passage for application of hyperporous medium in 

cooling electronic equipment. Meanwhile a great deal of information is available dealing with, and trying 

to minimize, the generated entropy due to heat and fluid flow in a porous passage [3-10]. Entropy 

generation minimization (EGM) is now a popular field of investigation since it aims at minimizing the 

lost work through decreasing the irreversibility of a system and, hence leads to an optimal design feature. 

Aiming at this goal, one should find the sources of entropy generation and correlate them with the known 

and measurable characteristics of the so-called system. One way of tackling the problem is to tie the 

results of the mass, momentum, and thermal energy balance to the Second Law (of Thermodynamics). 

Most of the newly-published articles follow the methodology of Bejan [11-13] to link the First Law and 

the Second Law, which assumes two possible sources of entropy generation being Heat Transfer 

Irreversibility (HTI) and Fluid Friction Irreversibility (FFI). The former is present in almost all of heat 

transfer devices due to heat transfer in finite temperature differences and the latter is responsible for 

dissipation of mechanical power to heat (viscous dissipation divided by the local absolute temperature). 

Modeling viscous dissipation in a porous medium is a controversial issue and there are three alternative 

models [14-17]. Recently, several authors have investigated the problem for forced convection through a 
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circular tube saturated by a porous medium [18-22]. Hooman and co-workers [18-20] have only 

considered the Darcy dissipation term and neglected the velocity derivative terms. One knows that this 

assumption works out when the Darcy number is small [21-22].  

Analytical solution for a thermally developing problem by numerical evaluation of the 

eigenvalues and eigenfunctions are reported in [21] while Haji-Sheikh et al. [22] have applied a Green’s 

function solution to solve the same problem with an unheated entry length when the viscous dissipation is 

modeled similar to what proposed in [14].  

None of the above articles dealt with the entropy generation analysis of the problem and 

nowhere else one can find a work addressing the issue, to the best knowledge of the authors. Moreover, in 

this paper explicit (without the need to numerical calculations) closed form solutions will be presented for 

both temperature profile and the Nusselt number which has not been reported in any of the above articles.  

Previous work on the effects of viscous dissipation in ducts has been surveyed by Shah and 

London [23] and Magyari et al. [24] for the clear fluid and porous passages, respectively. 

 

2. Analysis 

For the steady-state fully developed situation we have unidirectional flow in the x*-direction 

inside a tube with impermeable wall at r* = R where the wall temperature, Tw, is constant, as illustrated in 

Fig 1-a.     

The Brinkman momentum equation reads  

0*)
*

*

*

1

*

*
(

2

2

=+−+ Gu
Kdr

du

rdr

ud
eff

µµ ,                  (1) 

where µeff is an effective viscosity (here equal to the fluid viscosity µ), K  is the permeability, and G  is 

the negative of the applied pressure gradient. Similar to [1] the dimensionless velocity is defined as u=µ 

u*/(GR2) so that the dimensionless form of Eq. (1) is  

.01
Da

)
1

(
2

2

=+−+ u

dr

du

rdr

ud
M                 (2) 

Making use of the viscosity ratio M (M=µeff/µ) and the Darcy number (Da=K/R2), the porous media shape 

factor is defined as s=(MDa)-1/2 to rearrange Eq. (2) as 

2
2

2

1 1
0

d u du
s u

r dr Mdr
+ − + =  .              (3)   

This equation has been solved subject to no slip boundary condition, i.e. u=0 at r=0, and the symmetry 

condition, i.e. du/dr=0 at r=0 and the asymptotic results are [1] 

2 2 2ˆ 2(1 )[1 (3 1) / 48],     (for large Darcy number case)u r s r= − + −           (4-a) 

1/ 2 (1 )ˆ (1 2 / )(1 ).          (for small Darcy number case)s ru s r e− − −= + −                  (4-b) 

Local thermal equilibrium and homogeneity is assumed. The steady state thermal energy 

equation in the absence of axial conduction and thermal dispersion (see [2] for the criteria based on which 

the above assumptions can come true) is  
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2
2* * * *

* ( * ) ( ( ) )
* * * * *p

T k T u du
c u r

x r r r K dr

∂ ∂ρ µ
∂ ∂

∂= + +
∂

.          (5) 

Introducing the Brinkman number Br= µ U2/(k(TIN-Tw)), the dimensionless thermal energy equation is 

2
2 2 2

2

ˆ1
ˆ ˆBr( ( ) )

du
u s u

x r r drr

θ θ θ∂ ∂ ∂= + + +
∂ ∂∂

.                                (6) 

The appropriate boundary conditions to solve the above equation are  

Inlet) :e(Streamwis                             1.r)(0,

)(Crosswise  0,,1)( and 0)0,(

=

==
∂
∂

θ

θθ
xx

r                                         (7-a,b) 

Finally, the Nusselt number is defined as 

)(

2
Nu

mw TTk

qR

−
′′

= .                      (8) 

 

3. Thermal Entrance Region  

An implicit finite difference scheme is applied to solve the thermal energy equation in the 

developing region, i.e. to solve Eq. (6) subject to the boundary conditions (7-a,b). The SY subroutine of 

[25] is applied to solve the tridiagonal system of algebraic equations resulting from our backward/central 

discretization in streamwise/transverse direction. The computational domain is a 1x1 box one which 

simulates the upper half of the tube shown in Fig. 1-a (due to symmetry above the tube centerline, i.e. r=0 

line). One knows that this length is enough for the flow to become thermally fully developed [26]. One 

also notes that for this case the hydrodynamic entrance length is O(K/ε)1/2, where ε is the porosity of the 

porous media. In most practical cases this is a small number and the problem is hydrodynamically fully 

developed through most of the flow region considered, for more details one can consult [27]. It was 

observed that a 91x91 mesh will lead to accurate results [19-22]. For s=316.227 (Da=10-3) and s=1, 

Kuznetsov et al. [21] reported Nu=7.88 and Nu=8.206 while our fully developed Nu is 7.885 and 8.208, 

respectively. Besides, while with s=1 and s=10 Haji-Sheikh et al. [22] found Nu =8.209 and 6.172, our Nu 

is 8.208 and 6.169, respectively. With s=0 we found Nu=9.601 which is close to Nu=9.6 reported in [23]. 

Moreover, it was verified that the results are mesh independent since moving from a 91x91 mesh to a 

121x121 one, Nu did not change within three significant figures.  

 

4. Perturbation solutions 

For large values of x, where the temperature shows no change with x, i.e. in the asymptotic 

region, the problem reduces to the following ordinary differential equation (subject to the boundary 

conditions (7-a))  

2
2 2 2

2

ˆ1
ˆBr( ( ) ) 0,

du
s u

r r drr

θ θ∂ ∂+ + + =
∂∂

                 (9) 

 

4.1 Large Darcy Number Case 

For large Darcy numbers the velocity profile is given by Eq. (4-a) and the energy equation reads 
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( )( ) .1s        with 0386s12
3

41 22422
2

2

<<=+−+++ rrr
Br

dr

d

rdr

d θθ
                   (10) 

The solution to the above equation (by twice direct integration) subject to the boundary conditions (7-a) is  

4 2 6 4 2 4(1 s (2 6 9 5) / 9) (s ).Br r r r r Oθ = − + − + − +                            (11) 

The dimensionless bulk temperature may be found as 

).s(6/)s3483.21(5 42 OBrm ++=θ                          (12) 

To the first approximation, the dimensionless bulk temperature is θm=5Br/6 and the value Br=6/5 can be 

supposed as the threshold value beyond which viscous dissipation effect completely dominates over the 

wall heat transfer rate as a result of isothermal heating, for large Darcy number case.  

Finally, the Nusselt number may be found as 

Nu=48(1-2.515s2)/5+O(s4).                             (13) 

With large Da, i.e. when s→0, the velocity profile tends to be a parabolic one, which is known to be the 

plane Poiseuille flow solution, and θ→Br(1-r4). In the asymptotic region, Nu→48/5 similar to what 

reported in [23]. 

 

4.2 Small Darcy Number Case 

For small Darcy numbers the velocity profile is given by Eq. (4-b) and the energy equation reads  

2
0.5 (1 ) 0.5 (1 )

2

1
*(1 2 (4 7 ) / ) 0     with    s 1.s r s rd d

Br r e r e s
r drdr

θ θ − − − − − −+ + − + − = >>        (14) 

where Br*  is the Darcy-Brinkman number related to the clear fluid Brinkman number applied so far as 

Br*= Brs2. The solution to the above equation subject to the boundary conditions (7-a) is  

).()1)(
4

1(
4

* 22 −+−+= sOr
s

Brθ                          (15) 

This solution is obtained by twice direct integration by part [28] with the dimensionless bulk temperature  

).()
6

1(
8

* 2−++= sO
s

Br
mθ                          (16) 

For small Darcy numbers the dimensionless bulk temperature is approximately θm=Br* /8 and the value 

Br*=8 can be supposed as the threshold value beyond which viscous dissipation effect completely 

dominates over the wall heat flux as a result of isothermal wall heating.  

One finds the Nusselt number as 

Nu=8(1-2/s).               (17) 

As a check on our solution, we recover the known analytical solution for the limiting cases when Da is 

very small. Very small Da is equivalent to say for large values of s (s→∞), the velocity tends to a slug 

one, and θ→0.25 Br*(1-r2) with Nu→8 which are in good agreement with those of Darcy model [20-22].  

 

4.3 Entropy Generation  

The entropy generation rate per unit volume can be found as 

FFIHTISgen +=ɺ ,           (18) 
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where HTI and FFI may be found as 

2*. * / * ,

/ *.

HTI k T T T

FFI Tµφ
= ∇ ∇
=

                                        (19-a,b) 

The Bejan number, a measure of irreversibility due to heat transfer, is defined to be 

Be=HTI/(HTI+FFI).           (20) 

Applying the dimensionless variables, the dimensionless entropy generation rate, Ns, and the Bejan 

number, Be, can be found as  

 
( )2 2 2 2 2

2

2

ˆ1
ˆ( ) ( ) 1 ( ( ) )

( 1/ )

Br du
N s u

x r N drPeNs
N

θ θ θ

θ

∂ ∂+ + + +
∂ ∂=

+
,         (21-a) 

( )2 2 2 2 2 2 2 2 2 2ˆ
ˆ(( ) ( ) ) /(( ) ( ) 1 ( ( ) ))

Br du
Be Pe Pe Pe N s u

x r x r N dr

θ θ θ θ θ∂ ∂ ∂ ∂= + + + + +
∂ ∂ ∂ ∂

.     (21-b) 

where N is the dimensionless temperature difference N=(TIN-Tw)/Tw.  

Average values of Ns and Be are defined as Ns*=< Ns> and Be*=<Be> (the angle brackets show 

an average taken over the flow region). 

Applying the asymptotic velocity and temperature profiles, one finds Ns and Be for very small s as 

4 2
6 2 8 6 4 2

2
4 4 6 4 2

6 2 8 6 4

4 2
6 2 8 6 4 2

(1 ) 1 s
16( ) ( 96 194 78 87 29)

16 9 ,
1 1 s

( 1 )(( 1 ) (4 12 18 10))
9

s (2 4 3 ) / 3
.

(1 ) 1 s
( ) ( 96 194 78 87 29)

16 144

r BrN
r r r r r r

BrNNs

r r r r r
BrN BrN

r r r r
Be

r BrN
r r r r r r

BrN

− ++ + + − + − + +
=

+ − + − + − + −

− − +=
− ++ + + − + − + +

               (22-a,b) 

On the other hand, for very large values of s one finds Ns and Be as 

2 2

2

4 16
1

* *4 ,
4(1 4 / )

(1 )
*

.
4 16

1
* *

NBr NBr sNs
s

r
NBr

r
Be

NBr sNBr

+ −
=

−− +

=
+ −

                           (23-a,b) 

  

5. Results and Discussion 

In this problem there are a large number of parameters to vary so that we restrict our results to 

the Nusselt number, the dimensionless entropy generation rate, and the Bejan number. Figure 1-b shows 

the developing Nusselt number for some values of the Darcy-Brinkman number and two values of s. One 

observes that while the asymptotic Nusselt number is independent of Br*  it depends on the value of s. It is 

also interesting that when one neglects the viscous dissipation effects the Nusselt number increases with 

an increase in s. On the other hand, for non-zero Br*  the Nusselt number decreases with an increase in s, 

similar to [29] which concerned flow through a parallel plate porous channel. Figure 1-c shows the 

asymptotic Nusselt number versus s for non-zero Br*  values. One observes that in the limit of very small 
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or very large s values, our perturbation solution for Nu is in good agreement with the thermal entrance 

solution obtained numerically. Moreover, one notes that Nu stands between 8 and 48/5 for slug and clear 

flow case, respectively. Viscous dissipation changes the nature of the asymptotic flow and also the limits 

of the Nusselt number to the aforementioned values instead of 3.66 for plane Poiseuille flow and 5.78 for 

the Darcy model, as noted by Nield and Hooman [30] for similar problems.  

Figures 2-3 show Be and Ns. We fixed the value of N to be small (N=0.01) so that the effects of 

property variation can be neglected. Besides, though Pe did not affect our temperature distribution, it will 

enter our calculation when it comes to investigate the Second Law aspects of the problem through the 

axial conduction term. We assumed Pe=10 knowing that moving form Pe=10 to Pe=100 will not alter Nu 

significantly [21], and [31-33]. However, more work is needed to examine relative importance of each 

term (for different flow and geometry conditions) in the thermal energy equation on top of recent 

numerical progress in the field of convection in porous media, see for example [34-42]. 

Figures 2-a/b show Ns/Be versus r at some axial locations with some Br values for s=10 while 

Figs. 3-a-c do the same for a smaller value of s corresponding to a hyperporous medium case, i.e. s=1. 

For a better understanding of the problem two separate figures are presented to show the Be plots, being 

Figs. 3-b,c. According to Fig. 2-a, Ns decreases from a high value at the wall (where both temperature 

and velocity gradients attain their maximum values) passes through a minimum, and then increases 

toward the tube center. It is worthy of noting that the minimum in Ns is associated with a maximum in 

Be as shown in Fig. 2-b. The streamwise variations of Ns become more pronounced as Br increases. 

However, for Br=10 the situation changes in such a way that Ns decreases form the wall to a minimum 

taking place at the tube centerline. This change in the trend of Ns is justified when one observes that 

when Br=10 the Bejan number is higher than those corresponding to smaller Br values. Moreover, for 

this case one verifies that Be>0.5 in the near wall region (r>0.7) that means HTI>FFI.  However, for 

r<0.7 one realizes that HTI<FFI since the transverse temperature gradient will vanish while the Darcy 

dissipation rate reaches its maximum value at the tube center which is far away from the walls. Another 

feature of considerable interest is that when Br→0, not only 1≠Be but also the Be value becomes very 

small. This is justified when one observes that for the asymptotic region the temperature profile is a 

linear function of Br, i.e. with Br=0 both HTI and FFI would vanish and this can be verified using the 

corresponding plots of Ns in Fig. 2-a. 

Based on Fig. 3-a, one observes that Ns plots show a monotonic increase from the tube center to the wall 

but the streamwise changes in Ns values are not very significant. A similar trend is observed in Be plots 

in Figs. 3-b,c. However, for Br=0.1 the situation changes in such a way that Be decreases down the 

channel unlike the other two cases with higher Br values. This means that for this value of Br, HTI<FFI 

down the channel.  

Figures 4-a,b show an increase in Ns* or Be* with an increase in either s or Br. The only 

exception is the case s=1 where Be* decreases slightly when Br increases from 0.1 to 1. This fact is in 

line with Fig. 3.  
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Figure Captions: 

Figure 1-a Definition sketch 

Figure 1-b Developing Nu versus x for some values of s and Br*. 

Figure 1-c The asymptotic Nusselt number versus s for non-zero Br* values 

Figure 2-a/b Ns/Be versus r at some axial locations with some Br values (s=10) 

Figure 3-a Ns versus r at some axial locations with some Br values (s=1) 

Figure 3-b,c Be versus r at some axial locations with some Br values (s=1) 

Figures 4-a/b Ns*/Be* versus Br for some values of s  
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Fig. 1-a Definition sketch 
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Fig. 1-b Developing Nu versus x for some values of s and Br*. 
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Fig. 1-c The asymptotic Nusselt number versus s for non-zero Br* values 
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b) 

Fig. 2-a/b Ns/Be versus r at some axial locations with some Br values (s=10) 
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Fig. 3-a Ns versus r at some axial locations with some Br values (s=1) 
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b) Br=10 
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c) Br= 0.1 , 1 

Fig. 3-b,c Be versus r at some axial locations with some Br values (s=1) 
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Fig. 4-a/b Ns*/Be* versus Br for some values of s  

 


