
PHYSICAL REVIEW A, 66, 032110 ~2002!

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace
Entanglement in a simple quantum phase transition
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What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such
systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example
of such a system is the one-dimensional infinite-lattice anisotropicXY model. This model is exactly solvable
using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all
pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is
calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising
model, a special case of theXY model, which exhibits a quantum phase transition. It is found that the
next-nearest-neighbor entanglement~though not the nearest-neighbor entanglement! is a maximum at the
critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a
transition in the behavior of the entanglement between a single site and the remainder of the lattice.
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I. INTRODUCTION

It seems to be a truism in quantum physics that stron
entangled systems exhibit complicated behavior which is
ficult to quantify. Two practical examples of this ‘‘principle
are the conventional superconductor@1,2# and the fractional
quantum Hall effect~FQHE! @3#. In both cases, for certain
parameter regimes, the system enters a very interestingen-
tangledstate~the BCS ground state for the superconduc
@4,5#, and the Laughlin ground state for the FQHE@6#!. For
many years these systems resisted attempts to under
them using reasoning based on classical methods@7#. It re-
quired a major breakthrough, the construction of an insig
ful ground-state ansatz, to elucidate the physics of both
FQHE and the superconductor. The key feature of both s
tems, which makes it hard to explain them classically,
pears to be that their ground states arestrongly entangled.

Entanglement is a uniquely quantum property of anynon-
local superposition state of two or more quantum syste
@12–14#. Such states are typified by the Bell stateuC2&
5(1/A2)(u01&2u10&). The many curious features of en
tangled states have motivated considerable research. A
markable consequence of this work is the emerging un
standing of entanglement as aresource@12,15#, like energy,
which can be used to accomplish interesting physical tas

The similarities between entanglement and energy ap
to be more than just superficial. It turns out to be possible
quantify the entanglement present in a given quantum st
This allows the development of quantitative high-level pr
ciples governing the behavior of entangled states, indep
dent of their particular physical representation. These p
ciples can be seen as analogous to the laws
thermodynamics governing the behavior of energy, indep
dent of the specific form in which it is given to us. We ho
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that the quantitative theory of entanglement may provid
powerful unifying framework for the understanding ofcom-
plex quantum systems. This is because, when viewed
terms of their entanglement content, a large number of
parently different states turn out to be equivalent.

This paper is one step in testing the hypothesis@16–19#
that the study of complex quantum systems may be sim
fied by first analyzing the static and dynamic entanglem
present in those systems. We will attempt to perform such
analysis in a representative system chosen from conden
matter physics, specifically, theXY model @20#. The signa-
ture of complexity in this system is the occurrence of a qu
tum phase transition.

Quantum phase transitions~QPTs! are a qualitative
change in the ground state of a quantum many-body sys
as some parameter is varied@21,22#. Unlike ordinary phase
transitions, which occur at a nonzero temperature, the fl
tuations in a QPT are fully quantum. Typically, at thecritical
point in parameter space where a QPT takes place, lo
range correlations in the ground state also develop. The
istence of a QPT in a quantum many-body system stron
influences the behavior of the system near the critical po
with the development of long-range correlations and a n
zero expectation value for an order parameter@21#.

In Ref. @16# it was argued that QPTs are genuinelyquan-
tum mechanicalin the sense that the property responsible
the long-range correlations is entanglement. It was also
gued that the system state is strongly entangled at the cri
point. It would be desirable, to begin with, to show th
systems near quantum critical points can be simply cha
terized in terms of their entanglement content. Unfortunat
such a proof seems very difficult. We need first to underst
the entanglement in such systems before proposing a cl
fication scheme based on entanglement content. At the
ment, the most promising technique to study entanglemen
critical quantum systems appears to be the renormaliza
group, which is the standard way to obtain information ab
systems at and near criticality.
©2002 The American Physical Society10-1
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The renormalization group~RG! is based on the notion
that physics at small length scales~and hence higher energ
scales! should not affect physics at much larger length sca
The RG is, in fact, a family of methods which can be appl
to learn nonperturbative information about strongly intera
ing systems. The development of the renormalization gr
~see, for example, Refs.@23,24# for a review! has shown that
phase transitions areuniversal in the sense that many prop
erties of the system do not depend on the detailed dynam
of the system under consideration. Instead, using RG te
niques, it has been shown that phase transitions depend
on certain global properties, such as symmetry and dim
sion. We would like to apply the ideas of the RG to calcula
entanglement quantities in systems exhibiting a quan
phase transition. To see if this is possible, it is desirable
first carry out exact calculations in order to determine
similar universality properties govern the entanglem
present in such systems. The purpose of this paper is th
fore to do such calculations for theXY model.

Unfortunately the modern theory of entanglement~see,
for example, Refs.@25–28#! is only partially developed, and
at the present time can only be applied in a limited num
of scenarios. In these limited scenarios, well-developed a
lytic tools exist to quantify the structure of entangleme
present in a system. Two important scenarios are~a! the case
of a pure state of a bipartite system, that is, a system c
sisting of only two components; and~b! a mixed state of two
spin-12 particles.

For this reason, we focus our investigation on two typ
of calculation for theXY model. The first calculation is o
the entanglement between a single site in the lattice and
rest of the system, for the ground state of the model. T
second calculation is of the entanglement between two s
of the lattice at arbitrary temperatures and separations, al
ing us to determine whether there are truly quantum featu
present in the two-body correlations in the system. Th
although we do not obtain an understanding of the thr
party and multiparty entanglement present in the system
do calculate significant partial information characterizing
entanglement.

The entanglement present in condensed-matter sys
has been investigated previously by a number of auth
@17,19,29–37#. It was considered by Nielsen@17# who stud-
ied the Heisenberg model on two sites analytically. An e
pression for the ground-state entanglement in the infi
one-dimensional~1D! Heisenberg chain was obtained so
after by Wootters@30#. Numerical calculations of entangle
ment in the Heisenberg model on a small number of s
were carried out by Arnesenet al. @31#. Arnesenet al. iden-
tified parameter regions where there is appreciablethermal
entanglement, which is entanglement present at nonzero te
peratures. Recent studies include the numerical calcula
of entanglement in the transverse Ising model on small n
bers of sites@33#, and analytic computations of entangleme
in the XY model on two sites@29# and three sites@34#. Ad-
ditional studies have been carried out on itinerant ferm
systems@14# and other small condensed-matter systems
lated to theXY model @29,35–37#.

The structure of this paper is as follows. In Sec. II t
03211
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exact solution and calculation of the correlation functions
theXY model is outlined using the Jordan-Wigner transfor
The thermal ground-state properties of this system are c
sidered in Sec. III, focusing on the special case of the tra
verse Ising model, and the role entanglement plays in
quantum phase transition in this model. Thermal entang
ment in the transverse Ising model is then calculated in S
IV. We conclude in Sec. V, and sketch some possible fut
research directions.

II. EXACT SOLUTION OF THE XY MODEL

In this section we consider the exact solution of theXY
model onN sites, which is facilitated by use of the Jorda
Wigner transform@38#. The observables that are importa
for the calculation of the entanglement are evaluated in
large-N or thermodynamiclimit. The two fundamental ob-
jects constructed in this study are the one- and two-site d
sity matrices. From knowledge of these matrices it is p
sible to calculate the one- and two-party entanglem
occurring in theXY model. The solution of theXY model is
well known, and the procedure outlined in this section
solve it follows the standard method@15,16,39,40#. The main
result in this section is the explicit construction of the on
and two-party density matrices for theXY model at thermal
equilibrium.

The Hamiltonian for the anisotropicXY model on a 1D
lattice with N sites in a transverse field is given by@41#

H52 (
j 50

N21 S l

2
@~11g!s j

xs j 11
x 1~12g!s j

ys j 11
y #1s j

zD ,

~1!

wheres j
a is theath Pauli matrix (a5x, y, or z) at site j , g

is the degree of anisotropy, andl is the inverse strength o
the external field. We assume cyclic boundary conditions
that theNth site is identified with the 0th site. The standa
procedure used to solve Eq.~1! is to transform the spin op
eratorss j

a into fermionic operators via the Jordan-Wign
transform

ci[)
j 50

i 21

@2s j
z#s i

2 , ~2!

ci
†5)

j 50

i 21

@2s j
z#s i

1 , ~3!

where

s i
1[

1

2
~s i

x1 is i
y!, s i

2[
1

2
~s i

x2 is i
y!. ~4!

It is easy to verify thatci satisfy the fermionic anticommu
tation relations

$ci ,cj
†%5d i j , $ci ,cj%50. ~5!

In terms of the fermionic operators, Eqs.~2! and ~3!, the
Hamiltonian Eq.~1! assumes the quadratic form
0-2
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H5S (
i , j 50

N21

ci
†Ai , j cj1

1

2 (
i , j 50

N21

~ci
†Bi , j cj

†1H.c.!D 1N, ~6!

where Ai ,i521, Ai ,i 1152 1
2 gl5Ai 11,i , Bi ,i 1152 1

2 gl,
Bi 11,i5

1
2 gl, and all the otherAi , j and Bi , j are zero. The

quadratic Hamiltonian Eq.~6! may be diagonalized by mak
ing a linear transformation of the fermionic operators,

hq5 (
i 50

N21

~gqici1hqici
†!, ~7!

hq
†5 (

i 50

N21

~gqici
†1hqici !, ~8!

whereq52N/2,2N/211, . . . ,N/221 and thegqi and hqi
can be chosen to be real. By requiring that the operatorshq
obey fermionic anticommutation relations, and that t
Hamiltonian Eq.~1! be manifestly diagonal when express
in terms of the fermionic modeshq , the following two
coupled matrix equations must hold:

~A2B!Fq5vqCq , ~9!

~A1B!Cq5vqFq , ~10!

where the components of the two column vectorsFq andCq
are given by

@Fq# i5gqi1hqi , ~11!

@Cq# i5gqi2hqi . ~12!

The quadratic Hamiltonian Eq.~6!, when expressed in term
of the operatorshq , takes the diagonal form

H52(
q

vqhq
†hq2(

q
vq , ~13!

where

vq5A~gl sinfq!21~11l cosfq!2, ~14!

andfq52pq/N.
Now that theXY Hamiltonian has been diagonalized w

can calculate the one- and two-site density matrices. Muc
the remainder of this paper is concerned with the case w
the system is at thermal equilibrium at temperatureT. The
density matrix for theXY model at thermal equilibrium is
given by the canonical ensembler5e2bH/Z, where b
[1/kBT, and Z5tr(e2bH) is the partition function. The
thermal density matrix is diagonal when expressed in te
of the Jordan-Wigner fermionic operatorshq . Our interest
lies in calculating the quantum correlations present in
system as a function of the parametersb, g, l. In general,
this problem requires knowledge of all the possible sp
correlation functions. These correlators are typically ve
difficult to calculate fromr as it is diagonal in terms of the
hq’s, which are complicated nonlocal functions of the orig
nal spin operators. Fortunately, the only correlation functio
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which we require are the one- and two-point correlati
functions. The evaluation of these functions has been car
out previously@40,42#.

The one- and two-site density matrices may be c
structed from the one- and two-point correlation function
using theoperator expansionfor the density matrix of a
system ofN spin-12 particles in terms of tensor products o
Pauli matrices. For the single-site density matrixr1 for the
first spin—equal, by translational symmetry, to the stater i of
a single spin at an arbitrary site—the operator expans
reads

r15trî ~r!5

(
a50

3

qas i
a

2
, ~15!

where trî is the partial trace over all degrees of freedo
except the spin at sitei , s i

a are the Pauli matrices acting o
the sitei with the conventions i

05I i , and the coefficientsqa

are real. The coefficientsqa are determined by the relation

qa5tr~sa
i r!5^sa

i &. ~16!

To completely specify the single-site density matrix r
quires knowledge of three expectation values (q051 be-
cause r1 must have trace unity!. However, because th
Hamiltonian for theXY model Eq.~1! possesses symmetrie
it is possible to reduce this number to one. First of all, t
Hamiltonian is real, so thatr1* 5r1. As the matrixsy is
imaginary this means thatq2 must be zero. The second sym
metry that theXY Hamiltonian possesses is the global pha
flip symmetry

UPF5 )
j 50

N21

s j
z . ~17!

This symmetry implies that@sz,r1#50, so forcingq3 to be
zero. The single-site density matrixr1 is therefore deter-
mined solely byq1.

For the two-site density matrix, which is the joint state
two spins at sitesi and j, the operator expansion takes th
form

r i j 5tri ĵ ~r!5

(
a,b50

3

pabs i
a

^ s j
b

4
. ~18!

The coefficients are determined by the relation

pab5tr~s i
as j

br i j !5^s i
as j

b&, ~19!

so that if the relevant correlation functions are known it
possible to construct the two-site density matrix complete

The operator expansion Eq.~18! implies that we need
sixteen correlation functions to construct the two-site den
matrix. However, as in the case of the single-site den
matrix, this number can be reduced by appealing to the s
metries of the Hamiltonian. Translational invariance of t
0-3
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lattice means that the density matrix depends only on
distancer 5u j 2 i u between the spins, that is,r i j 5r0r . Re-
flection symmetry about any site also means thatr i j 5r j i .
Also, since the Hamiltonian is real,r i j* 5r i j . Finally, the
global phase-flip symmetry implies that@s i

zs j
z ,r i j #50. The

symmetries of theXY model require that the only nonzer
coefficients in the operator expansion Eq.~18! arep00, p03,
p30, p11, p22, and p33. Furthermore,p0051 because the
density matrix must have trace unity, andp035p30.

In the thermodynamic limit,N→`, sums that appear in
the expectation values are replaced by integrals, and the
relation functions for theXY model can be reduced t
quadratures@20,40,42,43#. The calculations are rather in
volved, and we merely summarize the results here. In th
mal equilibrium, for arbitraryg andl, the transverse mag
netization^sz& is given by@40#

^sz&52
1

pE0

p

df~11l cosf!

tanhS 1

2
bvfD

vf
, ~20!

where we abuse notation and writevf[vq to indicate the
replacement offq with the continuous variablef which
results from the thermodynamic limitfq→f.

The two-point correlation functions are given by@42#

^s0
xs r

x&5U G21 G22 ••• G2r

G0 G21 ••• G2r 11

A A � A

Gr 22 Gr 23 ••• G21

U , ~21!

^s0
ys r

y&5UG1 G0 ••• G2r 12

G2 G1 ••• G2r 13

A A � A

Gr Gr 21 ••• G1

U , ~22!

^s0
zs r

z&54^sz&22GrG2r , ~23!

where

Gr5
1

pE0

p

df cos~fr !~11l cosf!

tanhS 1

2
bvfD

vf

2
gl

p E
0

p

df sin~fr !sin~f!

tanhS 1

2
bvfD

vf
. ~24!

Summarizing, in the thermodynamic limit we may wri
the single-site density matrixr1 entirely in terms of the
transverse magnetization, Eq.~20!,

r15
I 1^sz&sz

2
. ~25!
03211
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Similarly, the two-site density matrixr0r can be written en-
tirely in terms of the correlation functions Eq.~21!, Eq. ~22!,
Eq. ~23!, and the transverse magnetization,

r0r5

I 0r1^sz&~s0
z1s r

z!1 (
k51

3

^s0
ks r

k&s0
ks r

k

4
. ~26!

III. GROUND-STATE ENTANGLEMENT FOR THE
TRANSVERSE ISING AND XY MODELS

In this section we discuss the quantum correlations occ
ring in the ground state of lattice systems undergoing a qu
tum phase transition. We argue that the critical point cor
sponds to the situation where the lattice iscritically
entangled, where, somewhat loosely, we define critically e
tangled to mean that entanglement is present on all len
scales. In Sec. III A we outline the properties of the grou
state of the transverse Ising model, which is a simple s
class of the anisotropicXY model. In Sec. III B the contri-
bution to the ground-state correlations from one- and tw
party entanglement in theXY model is calculated explicitly
in order to illustrate the sharp peak in the entanglement at
critical point. Finally, in Sec. III C we discuss how the pro
erties of shared entanglement may be related to critical qu
tum lattice systems.

In Ref. @16# it was argued that the physical origin of th
correlations which occur in systems exhibiting a quant
phase transition is quantum entanglement. We reproduce
argument of Ref.@16# here in order that this study be sel
contained. For concreteness, we restrict our attention t
lattice of spin-12 particles.

Suppose the ground state of a quantum lattice system
not entangled, that is, it is a product state. Then a sim
calculation shows that the spin-spin correlation functi
^s i

as j
b&2^s i

a&^s j
b& is identically zero. Thus, if the correla

tion function is nonzero then the ground state must be
tangled. Furthermore, we conjecture that large values of
correlation function imply a highly entangled ground state
is an interesting open problem to prove a precise form of
conjecture.

For general quantum lattice systems the correlation fu
tion decays exponentially as a function of the separationu i
2 j u when the system is far from criticality@21#. When the
system is at a critical point, the correlations decay only a
polynomial function of the separation. At this point a fund
mental change in the ground state has occurred.

We believe that when a system approaches a critical po
the structure of the entanglement in the ground state un
goes a transition. Further, we conjecture that the nature
this transition is governed by a change in the spatial exten
the entanglement. The entanglement between a single
and the rest of the lattice away from the critical point mu
be bounded in finite regions because the correlations
damped exponentially. At the critical point correlations d
velop on all length scales, and the physical property resp
sible for these correlations, entanglement, should beco
present at all length scales as well. We believe that a fun
0-4
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mental transition in the nature of the entanglement in
system occurs at this point; in some sense, at the crit
point the state is delocalized, compared to the local natur
the entanglement away from the critical point. If this phy
cal picture is correct, there should be evidence of entan
ment developing on all length scales in the one- and tw
party entanglement results.

As described in detail below, the ground state of theXY
model exhibits the features we have described in the pr
ous paragraphs. That is, maximality of the entanglemen
criticality, and evidence that a transition in the entanglem
structure takes place at the critical point. Although mu
work remains to be done to flesh out this physical picture,
believe that further research will show that these are gen
properties of critical quantum systems.

A. Properties of the transverse Ising model ground state

The ground state of theXY model is very complicated
with many different regimes of behavior@40,42#. For the
sake of clarity, we focus most of our discussions on the tra
verse Ising model, which arises as the zero-anisotropy l
g→1 in Eq. ~1!. The reason for this particular choice
because the transverse Ising model is the simplest quan
lattice system to exhibit a quantum phase transition@21#. The
central goal in this section is to illustrate the intimate re
tionship between the entanglement structure of the gro
state and the quantum phase transition. In particular, the
culations for the transverse Ising model provide the clea
evidence for the conjecture that the critical point correspo
to the situation where the lattice is most entangled.

The Hamiltonian for the transverse Ising model may
obtained from theXY model Hamiltonian, Eq.~1!, by setting
g51,

H52 (
j 50

N21

~ls j
xs j 11

x 1s j
z!. ~27!

The structure of the transverse Ising model ground s
changes dramatically as the parameterl is varied. The de-
pendence of the ground state onl is quite complicated.
However, it is possible to investigate thel50 and l→`
limits exactly.

When l approaches zero, the transverse Ising mo
ground state becomes a product of spins pointing in the p
tive z direction,

u0&l→0'•••u↑& j u↑& j 11•••. ~28!

In thel→` limit the ground state again approaches a pr
uct of spins pointing in the positivex direction,

u01&l→`'•••u→& j u→& j 11•••. ~29!

The l→` limit is fundamentally different from thel50
case because the corresponding ground state is doubly
generate under the global phase flip, Eq.~17!, where

u02&l→`[UPFu01&l→`'•••u←& j u←& j 11••• ~30!
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is a second ground state. Thel50 ground state is invarian
under the global phase flip. We note that in both limits t
ground state approaches a product state.

Using the solutions obtained for the limiting cases ofl
we can qualitatively describe the ground state asl is varied.
When l is small, the exchange terms j

xs j 11
x may be re-

garded as a perturbation, and perturbation theory may
used. In this case the ground state becomes a superpos
of the unperturbed ground state and low-lying excitations
such a way that the small-l ground state remains invarian
under the global phase flip.

Whenl is much greater than one, 1/l is a small param-
eter and perturbation theory may again be used to show
the now-degenerate ground states are a superposition o
unperturbed ground statesu01,2& and low-lying excitations.
The degeneracy of the ground state under the global ph
flip remains forl large. ~This degeneracy, along with th
invariance of the ground stateu0& underUPF may be estab-
lished nonperturbatively@21#.!

When l51 a fundamental transition in the form of th
ground state occurs. The symmetry under the global ph
flip breaks at this point and the system develops a nonz
magnetization̂ sx&5” 0 which grows asl is increased. The
magnetization is theorder parameterwhich identifies the
existence of a new phase.

Now that we have outlined the structure of the grou
state for the transverse Ising model as a function ofl, we
have a basic physical picture with which to interpret the e
act results.

The calculation of the entanglement between a single
and the rest of the lattice requires construction of the sing
site density matrix for the ground state. While the single-s
density matrix for the thermal state was constructed in S
II, there is a distinction between the zero-temperature limi
the thermal density matrix and the ground state, becaus
the possible ground-state degeneracy. In the following, w
referring to theground stateof the system, we suppose th
system to be in one of the possible degenerate eigens
u01& or u02& rather than any other linear combination.
does not matter which of the two is chosen to be ‘‘th
ground state because all the entanglement quantities ca
lated in this paper do not depend on the choice, due to
local symmetry connecting the two states. Therefore, with
loss of generality, when the system is in the ground state
choose the system to be in the eigenstateu01& for l.1 and
u0& for l<1. For simplicity, we will identifyu01& with u0&
whenl is greater than or equal to one.

The zero-temperature state, r0, of theXY model may be
found by taking the limitb→` of the canonical ensemble

r05 lim
b→`

e2bH

Z . ~31!

When the ground state is nondegenerate the zero-temper
state is the same as the ground state of the systemr0
5u0&^0u. However, if the ground state is degenerate
zero-temperature ensemble becomes an equal mixture o
0-5
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the possible ground states. For the transverse Ising mode
zero-temperature state may be written

r05
1

2
u01&^01u1

1

2
u02&^02u. ~32!

In order to differentiate between the actual ground stateu0&
of theXY model and the zero-temperature ensemble we r
to r0 as thethermal ground state.

In general, the canonical ensembler possesses the sam
symmetries as the Hamiltonian Eq.~1!. This is a simple con-
sequence of the identity@U,H#50, whereU is some unitary
or antiunitary operator representing the symmetry operat
The invariance follows from@U,r#50, so thatUrU†5r.
In particular, while each individual degenerate ground eig
state may not possess the same symmetries as the H
tonian, the thermal ground stater0 has all the same symme
tries.

The quantum phase transition in the transverse Is
model separates two different phases, theparamagnetic
phase where the magnetization^sx& is zero, and theferro-
magneticphase where the magnetization becomes nonz
Associated with the development of a nonzero value for
order parameter̂sx& is the breaking of the phase-flip sym
metry. The symmetry breaking present in the ground s
u0& is a key feature of the quantum phase transition, an
responsible for the development of nonzero order param
^sx& associated with the ferromagnetic phase.~In practice,
small external perturbations force spontaneous symm
breaking of the phase flip symmetry, and the system w
choose one or the other ground state, so this order param
is, in principle, observable.! This symmetry breaking canno
occur in the thermal ground state. For this reason, we wil
most interested in properties ofu0& rather thatr0. For each
of the degenerate ground eigenstatesu01& and u02& the glo-
bal phase-flip symmetry is broken, so the terms that were
to zero in the operator expansion Eq.~18!, as a consequenc
of the symmetry Eq.~17!, may become nonzero.

The single-site density matrixr1 for the ground state o
the Ising model is obtained by taking a partial trace over
but one site ofu0&^0u. In general, because the global phas
flip symmetry may be broken, the operator expansion forr1

is only constrained by the reality conditionr1* 5r1. There-
fore, typically, two parameters are required to specifyr1
completely, the magnetization̂sx& and the transverse mag
netization^sz&,

r15
I 1^sx&sx1^sz&sz

2
. ~33!

It is difficult to calculate the magnetization̂sx& of the
ground state explicitly because its expression in terms
Jordan-Wigner fermions is nonlocal, but it is possible to o
tain ^sx& from the large-r limit of the correlation function
^s j

xs j 1r
x & @43#, yielding

^sx&5H 0, l<1

~12l22!1/8, l.1.
~34!
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The transverse magnetization^sz& is given by the integral
Eq. ~20! which reduces to an elliptic integral forg51 and
b→`,

^sz&5
1

pE0

p

df
11l cosf

A11l212l cosf
. ~35!

Armed with knowledge of the appropriate correlation fun
tions we can now proceed to the calculation of the entan
ment in the ground state of theXY and transverse Ising mod
els.

B. Ground-state entanglement in the transverse Ising model

Given the modern understanding of entanglement a
physical resource, it makes sense to askhow muchentangle-
ment there is in a given multipartite state. In order to answ
this question the notion of anentanglement measurehas been
developed. A review of work on entanglement measures m
be found in Refs.@25–28#.

The study of entanglement measures is far from co
pletely developed. There is currently no consensus as to
best method to define an entanglement measure for all
sible multipartite states. There are, however, situations wh
there is an unambiguous way to construct suitable measu
It is these situations that we study in this paper.

When a bipartite quantum systemAB is in a pure state
there is an essentially unique measure of the entanglem
between the subsystemsA andB given by thevon Neumann
entropy S@12,44–46#. The von Neumann entropy is calcu
lated from the reduced density matrixrA or rB according to
the formula

S[2tr~rA log2rA!52tr~rB log2rB!. ~36!

When either subsystemA or B is a spin-12 system,S varies
from 0 ~product state! to S51 ~maximally entangled state!.
For the ground state of the transverse Ising model we reg
a single site as subsystemA and the rest of the lattice a
subsystemB.

When a bipartite systemAB is in a mixed state there ar
a number of proposals for measures of the entanglemen
the state, including, theentanglement of formation@12,27#,
thedistillable entanglement@12,47#, and therelative entropy
of entanglement@48,49#. Each of these measures has t
property that, for pure states ofAB, they reduce to the von
Neumann entropy. The entanglement of formationF(A:B) is
the best understood of the mixed-state entanglement m
sures. For this reason, in this paper, we use the entangle
of formation to measure the mixed-state entanglement in
XY model.

The entanglement of formationF(r) for a bipartite
mixed-stater measures the minimum expected amount
entanglement~as measured by the von Neumann entropyS)
required to preparer @50#. Mathematically, this is expresse
by the formula

F~r!5 inf
$qj ,uc j &%

^E&$qj ,uc j &%
, ~37!
0-6
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where$qj ,uc j&% is a pure-state decomposition forr ~i.e., r
5( jqj uc j&^c j u) and

^E&$qj ,uc j &%
5(

j
qjS„trB~ uc j&^c j u!… ~38!

is the expected entanglement required to formr from the
pure-state decomposition$qj ,uc j&%. The infimum in Eq.~37!
runs over all pure-state decompositions ofr.

At the current time, there is no simple way to calculate
entanglement of formation Eq.~37! for mixed states of bi-
partite systemsAB where the dimension ofA or B is three
and above. However, for the case where both subsystemA
andB are spin-12 particles there exists a simple formula fro
which the entanglement of formation can be calculated@51#.
In this case the entanglement of formation is given in ter
of another entanglement measure, theconcurrence C
@27,51,52#. The entanglement of formation varies monoto
cally with the concurrence.

The entanglementS between a single site and the rest
the lattice represents the collective contibutions of the
tanglement between the given site and all other sites in
lattice. Unfortunately, the single-site entanglement does
tell us how the entanglement is shared out. For examplS
51 could mean that the site in question is maximally e
tangled with a neighboring site,or, entangled with many
sites. In the transverse Ising model it appears thatS is related
to the onset of correlations in a fairly direct way~see below!,
and to reflect this we speak ofS as ‘‘measuring’’ how en-
tangled the lattice is.

We should point out that this situation is by no mea
typical. It is quite common for the ground state of
condensed-matter system to possess strong nearest-nei
entanglement and no long-range correlations~see, for ex-
ample, the models constructed by Affleck, Kennedy, Li
and Tasaki~AKLT ! discussed in Ref.@53#!. Analysis of the
entanglement in various AKLT models carried out by t
authors has shown that, in fact, the single-site entanglem
is constantfor all parameter values even though long-ran
correlations develop and vanish. The entanglement in th
models ~and many other condensed-matter systems! is, in
general, not revealed from knowledge of the single-site d
sity matrix. What is really needed—but which has not y
been developed—to study these models is an entangle
measure which can take account of the way entangleme
shared out.

At the critical point,lc51, of the transverse Ising mode
there is a fundamental transition in the structure of
ground state. The correlation function^s i

as j
b&2^s i

a&^s j
b&

decays polynomially as a function of separation at this po
~the dominant term has exponent2 1

4 ) while for all other
values ofl this decay is exponential. Interestingly, one cou
argue that the correlation function itself actually constitu
an entanglement measure for pure states as it transforms
tensor under local unitary operations and is zero for prod
states. As argued earlier, the change in the correlation fu
tion signals a fundamental change in the entanglem
present in the ground state. This change is reflected in
single-site entanglementS for the ground state which appea
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in Fig. 1. The single-site entanglement varies from zero
l50, where the ground state is a product, to a maximum
the critical pointl51. As the limit l→` is approachedS
also approaches zero because the ground state again
proaches product form. The single-site von Neumann
tropy for the thermal ground state of the transverse Is
model is also shown in Fig. 1. Unlike the ground-state ca
the entropy approaches unity in the limitl→`. This is be-
cause the thermal ground state approaches an equal mi
of two pure states~the eigenstatesu01& and u02&) in this
limit. The single-site entropy is not measuring the entang
ment content of the thermal ground state in this limit, rath
it is measuring the degree of mixedness of the therm
ground state.

It is an intriguing fact that systems with quite differe
microscopic dynamics may behave equivalently at critical
Further, their behavior depends only on the dimension of
system and the symmetry of the order parameter. The c
acter of this behavior is captured by a small number ofuni-
versal quantities whose behavior at criticality is complete
described in terms of a uniquesinglenumber, acritical ex-
ponent. The equivalence of physically different systems a
their simple dependence on certain global properties at c
cality is known asuniversality. One of the triumphs of twen-
tieth century physics was the development of the RG, wh
provided an explanation for the emergence of universality
critical systems.

If we are to suppose thatS is a universal quantity which
could be studied via the RG then we should be able to fin
critical exponent forS. In other words, near the critical poin
we should be able to write something like

S}ul2lcug, ~39!

whereg is the critical exponent forS. Unfortunately, this is
not possible. As we describe below, the single-site entan
ment is two sided, so thattwo numbers are needed to speci
S like Eq. ~39! near the critical point, one for each of the tw
ways of approachinglc51. In this way we see that the
single-site entanglement isnot a universal quantity.

FIG. 1. Single-site entropyS for the thermal ground stater0

~solid line! and the single-site entanglement for the ground st
u01& ~dashed line! of the transverse Ising model.
0-7
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The two-sided behavior of the single-site entanglem
arises because the single-site density matrix depends on
the magnetization and the transverse magnetization. In
region nearl<1 only the transverse magnetization is no
zero and the single-site entropy rises linearly. At the criti
point the magnetization becomes nonzero and increase
l1/8. This becomes the dominant term in the expression
the single-site entanglement, and so the decay of the sin
site entanglement is faster than linear in the region n
l.1.

If there exist universal quantities related to the entang
ment in critical quantum systems, then it is likely that th
are derived from entanglement measures that satisfy a
tional properties beyond the set usually regarded as ‘‘es
tial’’ for an entanglement measure~see, for example, Refs
@45,48#!. There are two main reasons why we make this
sertion. The first arises from the inability of the single-s
entanglement to distinguish between neighboring and dis
uted entanglement. In order to distinguish between these
fering scenarios, a good entanglement measure for cri
quantum systems should take account of how the entan
ment is shared out. The second reason is that, as we a
below, the single-site entanglement is notrescalable. If a
quantity is to be renormalizable it is necessary that it
rescalable. That is, it must be possible to collect degree
freedom together, calculate the collective value of the qu
tity, and then rescale~or ‘‘renormalize’’! the collective value.
A renormalizable entanglement measure should be resca
in this way.

We should be a little more precise in our definition
rescalability for entanglement measures. Say we wish to
culate the bulk entanglement of a block of spi
s1 ,s2 , . . . ,sm in a lattice with the rest of the lattice,L. If the
entanglement measureG ~for example,G could be the en-
tanglement of formation! used to calculate this entangleme
is to be rescalable then, in the very least, it must satisfy
extensivity relation

G~s1 ,s2 , . . . ,sm :L !>G~s1 :L !1•••1G~sm :L !. ~40!

This inequality expresses the idea that the entanglement
collection of spins with the rest of the lattice should beat
least as greatas the sum of the entanglements of each s
with L. If an entanglement measure does not satisfy the
tensivity relation Eq.~40! then it is not clear how to rescal
the bulk value of the entanglement.

Summarizing, the failure of the single-site entanglem
to be universal may be due to the facts that:~a! it does not
distinguish localized from distributed entanglement; and~b!
it is not rescalable, in a sense that we can now make exp
To do this, note first that it has previously been shown t
the entanglement of formation does not satisfy Eq.~40! @54#.
If we regard the single-site entanglementS as the entangle
ment of formationS5F(s1 ,L) between a single spins1 and
the rest of the latticeL, it seems unlikely that it will be a
universal quantity.@There do exist other entanglement me
sures which reduce to the von Neumann entropy for p
states@12,15,48,49#. It is an open question whether they sa
isfy Eq. ~40!.#
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There are indications@54#, however, that thesquareof the
concurrenceis extensive. Perhaps a suitable generalization
the concurrence will turn out to be the best quantity
studying universal properties of entanglement. Evidence
this is the case has recently been obtained by Osterlohet al.
@55# where they found that a quantity related to the conc
renceis universalfor the transverse Ising andXY models. It
would be interesting to investigate this behavior and see
arises because of the possible extensivity properties of
concurrence. Note, incidentally, that universal behavior
the concurrence does not necessarily imply universal beh
ior for the entanglement of formation, for the latter is only
function of the former in the special case of a two-qu
system.

The determination of what entanglement is shared by
sites in the lattice requires a measure of the two-party
tanglement present in mixed states. We will henceforth
the concurrenceC to measure the two-party mixed-state e
tanglement between two spins. The concurrence of two s
1
2 particles may be calculated from their density matrix% via
the formula

C~% !5max@0,l12l22l32l4#, ~41!

where thel i are the eigenvalues in decreasing order, of

Hermitian matrix R[AA%%̃A%, and %̃5(sy
^ sy)%* (sy

^ sy). The concurrence varies fromC50 for a separable
state toC51 for a maximally entangled state@56#.

The two-site density matrices for the ground state of
XY model are difficult to calculate when there is groun
state degeneracy. This is because the magnetization^sx& be-
comes nonzero as the phase-flip symmetry is broken, an
becomes necessary to include the correlation func
^s0

xs r
z& in the operator expansion Eq.~18!. The ^s0

xs r
z& cor-

relation function is nonlocal when expressed in terms of
Jordan-Wigner fermionic operators and there is no sim
way to derive it from other correlators. As a result of th
difficulty we do not calculate the two-site density matrix f
the ground state, instead, all two-site calculations are p
formed with respect to the thermal ground state. Howev
because the thermal ground state for the transverse I
model takes the special form Eq.~32!, it is possible to place
bounds on the entanglement that can occur between two
in a degenerate ground state.

The entanglement between pairs of sites for the ther
ground state of the transverse Ising model shares many o
same features of the single-site entanglement. The entan
ment, as measured by the concurrence, between neighb
sites and next-nearest neighboring sites is shown in Fig
and Fig. 3, respectively. All other pairs have zero two-pa
entanglement because the correlation functions drop be
the threshold for a positive concurrence. In both cases
entanglement rises from zero in the limitsl50 andl→` to
a maximum value near the critical pointl51. When l
<1, the ground state coincides with the thermal ground s
so that the two-site entanglement results are the same in
case. Note that the maximum does not occurexactlyat the
critical pointl51. At first site this may appear to contradi
our earlier conjecture that we expect entanglement to be
0-8
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greatest at the critical point. In fact, as explained in S
III C, the reason for this is that the results here are for tw
site entanglement, and are not inconsistent with the con
ture that thetotal entanglement in the lattice is a maximum
the critical point.

The entanglementE0 j between any two sites, 0 andj, and
the rest of the lattice, can also be calculated for the param
regimes where the ground state of theXY model is unique
~e.g.,l,1, g51). We have not included the results of su
calculations as we are not able to calculateE0 j outside of the
region l,1, g51. In addition, qualitatively, forl,1, g
51 the results forE0 j are very similar to single-site en
tanglement results in Fig. 1.

It is interesting to see what effect the ground-state deg
eracy has on the two-site entanglement in the ground s
As mentioned, it is not possible to study the two-site e
tanglement forl.1. Despite this difficulty, forl above the
critical value, we can place a lower bound on the two-s
entanglement in a degenerate ground state. This may
achieved by observing that the concurrence measureC is
convex@51#, which means that

CS (
i 51

n

pir i D<(
i 51

n

piC~r i !, ~42!

FIG. 2. Nearest-neighbor concurrenceC at zero temperature fo
the transverse Ising model.

FIG. 3. Next-nearest-neighbor concurrenceC at zero tempera-
ture for the transverse Ising model.
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wherepi is any probability distribution andr i a set of two-
site density matrices. If we apply this inequality to the th
mal ground state, Eq. ~32!, we obtain C(r0r)
< 1

2 C„tr0r̂(u01&^01u)…1 1
2 C„tr0r̂(u02&^02u)…. The global

phase flip is a local unitary operation, so that the concurre
of each term in the right-hand side~RHS! of the inequality is
the same, that is

C~r0r !<C„tr0̂r~ u01&^01u!…. ~43!

In this way we see that the two-party entanglement in
ground state is at least as large as the two-party entangle
in the thermal ground state.

C. Critical quantum systems and the constraints
of shared entanglement

The maximum value of the concurrence between nei
boring sites does not occur at the critical point. This see
ingly contradicts the idea that the strength of the correlati
is proportional to the entanglement, and that therefore
entanglement should be maximal at the critical point. Ho
ever, as we will discuss in this subsection, there are reas
based on the properties of shared entanglement to expec
this maximum should occur away from the critical point.

It is well known that there are limitations to the amount
entanglement that may be distributed amongst three or m
subsystems@30,54,57–61#. This class of problem, that is, th
determination of how much two-party entanglement can
distributed amongst a given number of parties, is known
an entanglement-sharingproblem. The simplest example o
this is the situation of three partiesA, B, and C. If A is
maximally entangled withB then it is not possible forA and
C or B andC to share any two-party entanglement. Entang
ment sharing is relevant to the quantum phase transitio
the transverse Ising model as it provides a fundame
bound on the amount of entanglement that may be dist
uted amongst the sites. The existence of such a bound m
that as the overall entanglement in the lattice is increas
some sites become pairwise more disentangled. An exam
where this occurs is in a system approaching a critical po

As the critical point is approached in the transverse Is
model the correlation length begins to increase. What occ
physically is that each site develops entanglement with
neighboring sites. When the system gets closer to the crit
point each site begins to develop entanglement with its n
nearest neighbors and so on. When the system is not a
critical point the entanglement between a single site and
rest of the lattice is localized within some region because
correlations are exponentially damped for large enough se
ration. At the critical point this is no longer the case; the
are appreciable correlations between a single site and e
other site. However, the entanglement associated with
correlation must be distributed in such a way that it satis
the constraints of entanglement sharing.

We conjecture that saturating the constraints of sha
entanglement is a natural symmetry for critical quantum s
tems. There are many ways to saturate the constraint
shared entanglement. One way is to saturate the const
expressed by Eq.~40!. Another way is to maximize the av
0-9
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TOBIAS J. OSBORNE AND MICHAEL A. NIELSEN PHYSICAL REVIEW A66, 032110 ~2002!
erage of the two-party entanglements between all pairs
the second case the saturating state forn qubits has been
constructed@60# ~the two-party entanglement is given byC
52/n for all pairs!.

We now provide an example of the type of heuristic th
one might adopt to motivate the saturation conjecture.
order to do this we need to use ideas based on the renor
ization group. The RG works by successively collecting
gether subsystems of a lattice and eliminating degree
freedom from these collections. For example, suppose a
tem A is composed ofn qubits A5A1 , . . . ,An . A typical
RG step would involve collecting together two qubitsAj and
Aj 11, and discarding two degrees of freedom from t
AjAj 11 subsystem~i.e., renormalizing AjAj 11). The renor-
malized system is a single qubit, writtenAj8 . This type of
RG step is often performed simultaneously on all the pairs
A. It is known @23,24# that quantum critical points corre
spond tofixed pointsof the RG, i.e., where the state of th
system is symmetric under a RG step. For this reason,
state of a system at a quantum critical point is said to
scale invariantor self-similar.

Suppose that a systemA is composed of four qubits
A1 , . . . ,A4. Consider the extensivity relation Eq.~40!
~which we assume to be generally true! for the first qubitA1,

G~A1 :A2A3A4!>G~A1 :A2!1G~A1 :A3!1G~A1 :A4!.
~44!

We are going to provide a speculative argument that asA is
renormalized this inequality will tend toward saturation.

To do this we suppose the following two facts.
~1! The left-hand side of Eq.~44! does not change if a

pair, sayA2A3, is renormalized,A2A3°A28 , i.e.,

G~A1 :A2A3A4!5G~A1 :A28A4!. ~45!

~2! The renormalized entanglementG(A1 :A28) is given by
the expression

G~A1 :A28!5G~A1 :A2A3!5G~A1 :A2!1G~A1 :A3!

1G~A1 :A2 :A3!, ~46!

where G(A1 :A2 :A3) is an associated measure of pure
three-party entanglement@62#.

The additional assumption we make in~2! is that if the
purely three-party entanglement, as measured
G(A1 :A2 :A3), is added to the RHS of the extensivity rel
tion, Eq.~40!, for three qubits then the inequality becomes
equality. For further details on why this should be the ca
see Ref.@54#.

Consider thedeficit D between the left and right sides o
the extensivity relation before a renormalization step,

D[G~A1 :A2A3A4!2G~A1 :A2!2G~A1 :A3!2G~A1 :A4!.
~47!
03211
In

t
n
al-
-
of
s-

f

he
e

y

n
e

If the pair A2A3 is renormalized the deficitD8 between the
left- and right-hand sides of Eq.~44! after the RG step will
be less than the original deficit, i.e.,D8<D. This follows
from

D85G~A1 :A28A4!2G~A1 :A28!2G~A1 :A4!,

5G~A1 :A2A3A4!2G~A1 :A2A3!2G~A1 :A4!,

5G~A1 :A2A3A4!2G~A1 :A2!2G~A1 :A3!

2G~A1 :A4!2G~A1 :A2 :A3!,

5D2G~A1 :A2 :A3!. ~48!

If there is three-party entanglement then the only fixed po
is D50, i.e., saturation of the extensivity relation.

Generalizing this argument to an infinite lattice, we s
that as RG steps are continually applied, the deficit betw
left and right sides will continue to decrease until it reach
zero at a fixed point of the RG~a quantum critical point!, that
is, saturation of the entanglement sharing inequality.

There is a lot that is questionable with the preceding
gument. For example, the two assumptions 1 and 2 we m
about the behavior of entanglement under renormaliza
may not be correct. The biggest problem our saturation c
jecture faces is that, as we will show, the entanglement s
ing inequality isnot saturated for the critical transverse Isin
model. Nonetheless, we believe that a more rigorous a
ment similar to the one we have made here will provide
correct picture of the entanglement distribution at a quant
critical point.

We should mention that the RG procedure we have e
ployed to discuss the saturation conjecture is well known
the condensed-matter literature where it is referred to as
real-space renormalization group~RSRG! @39#. When the
RSRG is applied, in the way we have described it, to stu
the critical transverse Ising model it is known that it does n
generate a very good approximation to the state of the
tem at criticality@39#. Improvements to the scheme involv
collecting larger blocks of subsystems instead of just pa
To account for this obviously requires a refinement of o
argument. This means that the failure of the entanglem
sharing inequality to be saturated at the critical point may
an artifact of the renormalization scheme we have chose

In the light of this interpretation it is interesting to com
pare the entanglement calculations for the transverse I
model at criticality to the lattice calculations of Wootters a
O’Connor @30,57#. In the critical caselc51 the correlation
functions for the transverse Ising model are known explic
as functions ofr @43#,

^s0
xs r

x&5S 2

p D r

22r (r 21)
H~r !4

H~2r !
, ~49!

^s0
ys r

y&52
^s0

xs r
x&

4r 221
, ~50!
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^s0
zs r

z&5
4

p

1

4r 221
, ~51!

^sz&5
2

p
, ~52!

where H(r )51r 212r 22
•••(r 21). The concurrence at th

critical point is nonzero for bothr 51 andr 52 where it is
given by, respectively, 0.1946 and 0.0044. These val
should be compared with the values obtained by O’Con
and Wootters in their study@57# of the concurrence in chain
and rings of qubits. They maximized the entanglement
tween nearest neighbors of a translationally invariant ring
spin-12 degrees of freedom. Wootters and O’Connor were
tempting to saturate the bounds of entanglement sharing
maximizing the entanglement of nearest-neighbors subje
the symmetry of translational invariance. They found a ma
mal nearest-neighbor concurrence value of 0.4345 for an
finite ring, which is greater than the critical value for th
transverse Ising model. This result alone does not imply
the critical transverse Ising model is less entangled than
ring considered in Refs.@30,57#, indeed, if the conjecture
made in the preceding paragraph is true then the ring wo
be much less entangled than the critical transverse I
model. The reasoning for this is that the critical transve
Ising model is conjectured to maximize the entanglem
between all pairs subject to translational invariance while
chains and rings of Wootters and O’Connor only maxim
entanglement between nearest neighbors. One means o
termining whether this is the case would be to calculate
correlation function for the ring. On the basis of the arg
ments made in this study, we expect that the correlations
decay exponentially with separation for the ring.

The entanglement in the thermal ground state of the g
eral XY model may be calculated simply, following th
method outlined in Sec. II. Following Barouch@42#, which is
where the correlation functions Eq.~21!, Eq. ~22!, and Eq.
~23! were calculated, only the region 0<g<1 is considered
here. The concurrence between nearest-neighbor and
nearest neighbor sites is shown in Fig. 4 and Fig. 5, resp
tively. The concurrences are a complicated function of

FIG. 4. Nearest-neighbor concurrenceC at zero temperature fo
the XY model.
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parameters, reflecting the competition between the vari
different noncommuting terms in the Hamiltonian as the p
rameters are varied.

The completely isotropic limit,g50, is the most interest-
ing parameter region besides the transverse Ising model
rect calculation along the lines already presented shows
two-party entanglement exists between all pairs for all se
rations at this point. Wootters@63# has made a study of th
correlations in one- and two-dimensional lattices and he
found interesting connections between the two-party corr
tions in the isotropicXY model and the bounds of entangl
ment sharing. Further investigations along these lines co
provide evidence that critical quantum lattice systems
maximally entangled in the sense of entanglement sharin

IV. THERMAL ENTANGLEMENT IN THE TRANSVERSE
ISING MODEL

In this section we discuss the entanglement present in
thermal state of the transverse Ising model. We find that
largest amount of entanglement is present in the param
region close to the critical point. This region is found
correspond with thequantum criticalregion introduced by
Sachdev~p. 58 of Ref.@21#!. We also find parameter value
for which the entanglementincreasesas the temperature i
increased. Finally, we discuss the persistence of quantum
fects in the thermal state as the temperature is increased

It is desirable to determine when a condensed-matter
tem will behave quantum-mechanically. This is particula
important because the validity of various ansatz methods
pends on whether they take account of possible quan
effects. When a system is in its ground state, quantum eff
will certainly be important, as evidenced by the quantu
phase transition in theXY model. The zero-temperature ca
culations of the last section represent a highly idealized s
ation, however, it is unclear whether they have any releva
to the system at a nonzero temperature. It turns out that
properties of a quantum system for low temperatures
strongly influenced by nearby~in parameter space! quantum
critical points@21,22#. It is tempting to attribute the effect o
nearby critical points to persistent mixed-state entanglem
in the thermal state. In order to investigate this, we calcu
the two-party entanglement present at a nonzero tempera
T.

FIG. 5. Next-nearest-neighbor concurrenceC at zero tempera-
ture for theXY model.
0-11
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The two-site density matrices constructed in Sec. II
valid for all temperatures. Using these matrices it is poss
to study the purely two-party entanglement present at th
mal equilibrium because the concurrence measure of
tanglement can be applied to arbitrary mixed states. The
gions where there is appreciable two-party entanglem
give at least a partial indication of where quantum effe
may be important. We again emphasize the transverse I
model for this section. The influence the critical point has
the entanglement structure at nonzero temperatures is
ticularly clear for this model.

The entanglement between nearest-neighbor and n
nearest-neighbor sites in the Ising model at nonzero temp
ture appears in Fig. 6 and Fig. 7, respectively. The entan
ment is nonzero only in a certain region in thekBT2l plane.
It is in this region that quantum effects are likely to domina
the behavior of the system. The entanglement is largest in
vicinity of the critical pointl51, kBT50. This region cor-
responds, approximately, to thequantum critical regime
identified by Sachdev@21#. Sachdev found, by using a ver
different argument, that quantum effects would be import
in this regime. The correspondence of these two regions
vides evidence that the entanglement content plays an im
tant role in the emergence of quantum behavior in natur
occurring quantum systems.

There are two notable features of the two-site therm
entanglement results. The first feature is that, for certain
ues ofl, the two-site entanglement can increase as the t

FIG. 6. Nearest-neighbor concurrenceC at nonzero temperatur
for the transverse Ising model.

FIG. 7. Next-nearest-neighbor concurrenceC at nonzero tem-
perature for the transverse Ising model.
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perature is increased~e.g., l51.4, Fig. 6!. This effect has
previously been observed in finite-size calculations@17,31#
for the Heisenberg model. The occurrence here of the s
effect implies that it is not an artifact of the truncation of
lattice. The second feature is the existence of apprecia
entanglement in the system for temperatureskBT above the
ground-state energy gapD. It has been argued@22# that
quantum systems behaveclassically when the temperature
exceeds all relevant frequencies. For the transverse I
model the only relevant frequency is given by the groun
state energy gapD[\v. The presence of entanglement
the system for temperatures above the energy gap indic
that quantum effects may persist past the point where t
are usually expected to disappear.

A comparison should be made between the results
tained here and the numerical calculations of concurrenc
the Ising model on a finite number of sites@33#. The calcu-
lations that were performed in Ref.@33# were implemented
on a maximum of seven sites. The concurrence betw
nearest neighbors obtained by Gunlyckeet al. ~Figs. 2 and 5
of Ref. @33#! is in qualitative agreement with the results o
tained here. However, as there is no phase transition for
finite-size Ising model the dominance of the critical po
was not as sharp in the calculations of Ref.@33#.

V. SUMMARY AND FUTURE DIRECTIONS

The one- and two-party entanglement present in
ground and thermal states of theXY model has been calcu
lated. It should be stressed that the calculations in this st
are analytic and, furthermore, they are for the thermo
namic limit of a quantum lattice system.

We have argued that the critical point of a quantum latt
system corresponds to the situation where the lattice is m
mally entangled. Evidence for this conjecture was found
the single-site entanglement results for the ground state
the transverse Ising model. We have also argued that
constraints of shared entanglement are important for crit
quantum systems, and we have found possible evidenc
such constraints playing a role in the two-party entanglem
results for the transverse Ising model. The entanglem
present at thermal equilibrium was also studied, and an
proximate correspondence between the quantum critica
gime identified by Sachdev and the regions where the t
party entanglement is nonzero was found. Parameter va
where the entanglement increases as the temperature
creased were also found.

We have focused on the transverse Ising model throu
out this study, although the calculations presented also co
the XY model. The transverse Ising model is interesting b
cause it is the simplest system to exhibit a quantum ph
transition, and it is relatively easy to identify the structure
the entanglement present in this system. The importanc
the critical point in this system is also particularly clear. T
XY model has many parameter regimes where it beha
differently, so it is very likely that more interesting phenom
ena may be found in other parameter regions.

Entanglement calculations in this study have been
stricted to time-independent scenarios. However, the
0-12
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namic correlation functions have been calculated for
Ising andXY models for certain values ofl. It is possible
and may be interesting to calculate the time evolution of
entanglement in these models and thus identify truly qu
tum dynamics.

The calculations in this study are intended as a poin
reference for the development of an understanding of
entanglement in critical quantum systems. Rather frust
ingly, the present incomplete understanding of entanglem
measures has prevented us from performing many of the
culations we would like to do in order to check the ma
conjectures made in this paper. Further progress on the
eral quantitative theory of entanglement should enable th
conjectures to be checked in the future. We believe that
tanglement plays a central role in the emergence of lo
range correlations at the critical point of such systems,
that a fruitful interplay between the theory of entanglem
and critical quantum phenomena may result from furt
h
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s
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.
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study. In particular, it would be interesting to makeuniversal
statements about the character of entanglement at the cr
point, and to examine whether the constraints of entan
ment sharing impose physical limitations on the behav
that can occur in such a system.

Note added. Recently we learned of related work don
independently by Osterlohet al. @55#.
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