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Entanglement in a simple quantum phase transition
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What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such
systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example
of such a system is the one-dimensional infinite-lattice anisotigdienodel. This model is exactly solvable
using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all
pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is
calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising
model, a special case of theY model, which exhibits a quantum phase transition. It is found that the
next-nearest-neighbor entanglemétitough not the nearest-neighbor entangleménta maximum at the
critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a
transition in the behavior of the entanglement between a single site and the remainder of the lattice.
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[. INTRODUCTION that the quantitative theory of entanglement may provide a
powerful unifying framework for the understanding @dm-

It seems to be a truism in quantum physics that stronglyplex quantum systems. This is because, when viewed in
entangled systems exhibit complicated behavior which is difterms of their entanglement content, a large number of ap-
ficult to quantify. Two practical examples of this “principle” parently different states turn out to be equivalent.
are the conventional superconduck@r2] and the fractional This paper is one step in testing the hypoth¢&z—19
quantum Hall effec{FQHE) [3]. In both cases, for certain that the study of complex quantum systems may be simpli-
parameter regimes, the system enters a very interesting fied by first analyzing the static and dynamic entanglement
tangledstate(the BCS ground state for the superconductorpresent in those systems. We will attempt to perform such an
[4,5], and the Laughlin ground state for the FQIHE). For  analysis in a representative system chosen from condensed-
many years these systems resisted attempts to understamgtter physics, specifically, théY model[20]. The signa-
them using reasoning based on classical mettidfist re-  ture of complexity in this system is the occurrence of a quan-
quired a major breakthrough, the construction of an insighttum phase transition.
ful ground-state ansatz, to elucidate the physics of both the Quantum phase transition$QPT9 are a qualitative
FQHE and the superconductor. The key feature of both syszhange in the ground state of a quantum many-body system
tems, which makes it hard to explain them classically, apas some parameter is varig2ll,22. Unlike ordinary phase
pears to be that their ground states strengly entangled transitions, which occur at a nonzero temperature, the fluc-

Entanglement is a uniquely quantum property of aoy-  tuations in a QPT are fully quantum. Typically, at ttxical
local superposition state of two or more quantum systemsoint in parameter space where a QPT takes place, long-
[12-14. Such states are typified by the Bell statk ™) range correlations in the ground state also develop. The ex-
=(1/\/§)(|01>—|10>). The many curious features of en- istence of a QPT in a quantum many-body system strongly
tangled states have motivated considerable research. A refluences the behavior of the system near the critical point,
markable consequence of this work is the emerging undemwith the development of long-range correlations and a non-
standing of entanglement asesource[12,15, like energy, zero expectation value for an order paramggdr.
which can be used to accomplish interesting physical tasks. In Ref.[16] it was argued that QPTs are genuinglyan-

The similarities between entanglement and energy appeanm mechanicain the sense that the property responsible for
to be more than just superficial. It turns out to be possible tahe long-range correlations is entanglement. It was also ar-
guantifythe entanglement present in a given quantum stategued that the system state is strongly entangled at the critical
This allows the development of quantitative high-level prin-point. It would be desirable, to begin with, to show that
ciples governing the behavior of entangled states, indepersystems near quantum critical points can be simply charac-
dent of their particular physical representation. These printerized in terms of their entanglement content. Unfortunately,
ciples can be seen as analogous to the laws aofuch a proof seems very difficult. We need first to understand
thermodynamics governing the behavior of energy, indepenthe entanglement in such systems before proposing a classi-
dent of the specific form in which it is given to us. We hopefication scheme based on entanglement content. At the mo-

ment, the most promising technique to study entanglement in

critical quantum systems appears to be the renormalization
*Email address: osborne@physics.ug.edu.au group, which is the standard way to obtain information about
TEmail address: nielsen@physics.uq.edu.au systems at and near criticality.
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The renormalization grougRG) is based on the notion exact solution and calculation of the correlation functions for
that physics at small length scal@nd hence higher energy the XY model is outlined using the Jordan-Wigner transform.
scale$ should not affect physics at much larger length scalesThe thermal ground-state properties of this system are con-
The RG is, in fact, a family of methods which can be appliedsidered in Sec. lll, focusing on the special case of the trans-
to learn nonperturbative information about strongly interactverse Ising model, and the role entanglement plays in the
ing systems. The development of the renormalization grougluantum phase transition in this model. Thermal entangle-
(see, for example, Reff23,24 for a review has shown that ment in the transverse Ising model is then calculated in Sec.
phase transitions areniversalin the sense that many prop- V- We conclude in Sec. V, and sketch some possible future
erties of the system do not depend on the detailed dynamid§search directions.
of the system under consideration. Instead, using RG tech-
nigues, it has been shown that phase transitions depend only Il. EXACT SOLUTION OF THE XY MODEL

on certain global properties, such as symmetry and dimen- hi . ider th luti £ %
sion. We would like to apply the ideas of the RG to calculate In this section we consider the exact solution of X
' model onN sites, which is facilitated by use of the Jordan-

entanglement quantities in systems exhibiting a quantur\"/\/igner transform[38]. The observables that are important

phase transition. To see if this is possible, it is desirable t(?or the calculation of the entanglement are evaluated in the

first carry out exact calculations in order to determine ifIar e-N or thermodvnamidimit. The two fundamental ob-
similar universality properties govern the entanglement 9 y '

present in such systems. The purpose of this paper is theri£Cts constructed in this study are the one- and two-site den-
fore to do such caIcuIatiens for theY model Sity matrices. From knowledge of these matrices it is pos-

Unfortunately the modern theory of entanglemeésie sible to calculate the one- and two-party entanglement

for example, Refs;25—28) is only partially developed, and occurring in theX'Y model. The solution of thX'Y model is
. C S well known, and the procedure outlined in this section to

at the present time can only be applied in a limited numbersolve it follows the standard meth¢5,16,39,40 The main
of scenarios. In these limited scenarios, well-developed ana- S Do L LT
lytic tools exist to quantify the structure of entanglementresu“ in this sect|on is the.expllut construction of the one-
present in a system. Two important scenarios(ar¢he case 2n3”ti\évr%%arty density matrices for they model at thermal
of a pure state of a bipartite system, that is, a system con—q_l_he Harn'lton'an for the anisotropiY model on a 1D
sisting of only two components; arfd) a mixed state of two . ramiftonian ' PIRY M
spin particles. lattice with N sites in a transverse field is given p41]

For this reason, we focus our investigation on two types N-1
of calculation for theXY model. The first calculation is of H=— >, <_[(1+ Y)UJ_XUJ_X+1+(1_ y)g}lgjyﬂ]jugjz ,
the entanglement between a single site in the lattice and the =012
rest of the system, for the ground state of the model. The (1)
second calculation is of the entanglement between two sitesh 3 s theath Pauli matrix = t sitei
of the lattice at arbitrary temperatures and separations, allowN€recj is theath Pauli matrix @=x, y, orz) at sitej, y
ing us to determine whether there are truly quantum featurel$ the degree of anisotropy, andis the inverse strength of

present in the two-body correlations in the system. Thusthe external field. We assume cyclic boundary conditions, so

although we do not obtain an understanding of the threef-hat theNth site is identified Wi_th the Oth site. The st_andard
party and multiparty entanglement present in the system, W@rocedurﬁe used to solve EQ) is to transform the spin op-
do calculate significant partial information characterizing the®ratorsoy into fermionic operators via the Jordan-Wigner
entanglement. transform

The entanglement present in condensed-matter systems i1
has been investigated previously by a number of authors c-EH [ oo 2
[17,19,29-37. It was considered by Nielsdi 7] who stud- ' %o ;e
ied the Heisenberg model on two sites analytically. An ex-
pression for the ground-state entanglement in the infinite i-1
one-dimensiona(1D) Heisenberg chain was obtained soon C?IH [—ajz]oi*, 3
after by Wootterd30]. Numerical calculations of entangle- 1=0
ment in the Heisenberg model on a small number of site§Nhere
were carried out by Arnesegt al. [31]. Arnesenet al. iden-
tified parameter regions where there is apprecididemal
entanglementwhich is entanglement present at nonzero tem- o=
peratures. Recent studies include the numerical calculation
of entanglement in the traneverse Ising model on small numg 5 easy to verify that; satisfy the fermionic anticommu-
_bers of site$33], and analytlc computations o_f entanglementisiion relations
in the XY model on two site$29] and three sitef34]. Ad-

<
(o +idg)), o

N| =
Il
N -

(of—ia]). @

ditional studies have been carried out on itinerant fermion {c; ’CjT}:aij , g ,cj}=0. (5
systemd 14] and other small condensed-matter systems re-
lated to theXY model[29,35-37. In terms of the fermionic operators, Eq®) and (3), the

The structure of this paper is as follows. In Sec. Il theHamiltonian Eq.(1) assumes the quadratic form
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N-1 N-1 which we require are the one- and two-point correlation
H= Z clA, iCit > E (cl Bi,; J+H c)|+N, (6) functions. The evaluation of these functions has been carried
hi=0 b out previously[40,42.

The one- and two-site density matrices may be con-
structed from the one- and two-point correlation functions,
using theoperator expansiorfor the density matrix of a
system ofN spin+ particles in terms of tensor products of
Pauli matrices. For the single-site density majsixfor the

where A i=—1, Ajj1=—3YA=Ai41;, Bijz1=—3W\,
Bi+1;=3%\, and all the othe’; ; and B, ; are zero. The
quadratic Hamiltonian Eq6) may be diagonalized by mak-
ing a linear transformation of the fermionic operators,

N-1 first spin—equal, by translational symmetry, to the siatef
7q= > (gqui+hquiT), (7)  a single spin at an arbitrary site—the operator expansion
i=0 reads
N—-1 3
= 2, (9qiC/ +hgic), (8) 2, d.of
p1=1tri(p)= 5 (15)

whereq=—N/2,—N/2+1, ... N/2—1 and thegy; and hy;
can be chosen to be real. By requiring that the operajqrs \yhere tr is the partial trace over all degrees of freedom

obey fermionic anticommutation relations, and that the

except the spin at si are the Pauli matrices acting on
Hamiltonian Eq.(1) be manifestly diagonal when expressed ptine Sp 1o U.' o_ > acting
. e . the sitei with the conventiors; =1;, and the coefficientg,,
in terms of the fermionic modesy,, the following two are real. The coefficients, are determined by the relation
coupled matrix equations must hold: : Ba y

(A=B)Dy=0q¥,, ) Ao =tr(o,p) =(0y). (16

_ To completely specify the single-site density matrix re-
A+B)V = w P 10 . -
( Wo=o (10 quires knowledge of three expectation valueg=<1 be-
where the components of the two column vectbgsand¥, ~ Causep, must have trace unily However, because the

are given by Hamiltonian for theXY model Eq.(1) possesses symmetries
it is possible to reduce this number to one. First of all, the
[Pqli=0qit+ hgi (11 Hamiltonian is real, so thap} =p;. As the matrixo? is
imaginary this means that, must be zero. The second sym-
[Wqli=dqi—hgi- (12 metry that theX'Y Hamiltonian possesses is the global phase-

. o ) flip symmetry
The quadratic Hamiltonian E¢6), when expressed in terms

of the operatorsy,, takes the diagonal form N-1
UPF: ]]:[0 (T]Z (17)
HZZE wqﬂgﬂq_z @q (13 . . ) )
q q This symmetry implies thdto?,p,]=0, so forcinggs to be
zero. The single-site density matrpx is therefore deter-

where .
mined solely byg;.
_ X sind.)2+ (1+ N COSdy)2, 14 For Fhe two—_sng denslty matrix, which is the_ joint state of
wq= (¥ $o)t o) (14 two spins at sites andj, the operator expansion takes the
and ¢=2mq/N. form
Now that theXY Hamiltonian has been diagonalized we 3

can calculate the one- and two-site density matrices. Much of E Do g0 ®U
the remainder of this paper is concerned with the case where *p

the system is at thermal equilibrium at temperatlireThe =trij(p)= 7 : (18)
density matrix for theXY model at thermal equilibrium is

given by the canonical ensemble=e “"/Z, where B The coefficients are determined by the relation

=1kgT, and Z=tr(e #Y) is the partition function. The

thermal density matrix is diagonal when expressed in terms Pup=tr(o{alpi)=(co{al), (19

of the Jordan-Wigner fermionic operatorg . Our interest

lies in calculating the quantum correlations present in theso that if the relevant correlation functions are known it is
system as a function of the parametgts y, M. In general, possible to construct the two-site density matrix completely.
this problem requires knowledge of all the possible spin- The operator expansion E¢l8) implies that we need
correlation functions. These correlators are typically verysixteen correlation functions to construct the two-site density
difficult to calculate fromp as it is diagonal in terms of the matrix. However, as in the case of the single-site density
7q's, which are complicated nonlocal functions of the origi- matrix, this number can be reduced by appealing to the sym-
nal spin operators. Fortunately, the only correlation functionsnetries of the Hamiltonian. Translational invariance of the
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lattice means that the density matrix depends only on th&imilarly, the two-site density matriy,, can be written en-

distancer =|j —i| between the spins, that ip;j=po . Re-
flection symmetry about any site also means ihat p;; .
Also, since the Hamiltonian is reah;=p;;. Finally, the
global phase-flip symmetry implies thiat{o{,p;;]1=0. The
symmetries of theXY model require that the only nonzero
coefficients in the operator expansion E§8) arepgg, Pos,
P30, P11, P22, and psz. Furthermorepg=1 because the
density matrix must have trace unity, apgh=psg-

In the thermodynamic limitN—-<c, sums that appear in

tirely in terms of the correlation functions E®1), Eq. (22),
Eg. (23), and the transverse magnetization,

3
lor +{a%) (o + 0?) + > <a'Eolr() ogalr(
k=1
Por= 4 . (26)

IIl. GROUND-STATE ENTANGLEMENT FOR THE

the expectation values are replaced by integrals, and the cor- TRANSVERSE ISING AND XY MODELS

relation functions for theXY model can be reduced to
guadratureg20,40,42,43 The calculations are rather in-

In this section we discuss the quantum correlations occur-

volved, and we merely summarize the results here. In therring in the ground state of lattice systems undergoing a quan-

mal equilibrium, for arbitraryy and\, the transverse mag-
netization(o?) is given by[40]

1
1 tanl‘(zﬂw(b)
(o%)=— ;fo dé(1+\ cosp) — L (20)

Wy

where we abuse notation and wriég,= o to indicate the
replacement of¢, with the continuous variableb which
results from the thermodynamic limit,— ¢.

The two-point correlation functions are given p42]

G, G, -- G._,
G G_ - GL
(xon= 0 0 T @
G2 Giz - G_1
Gi Gy -+ G2
G G - GL
(Yo)= :2 :1 ) :r+3' 22)
Gr Gr—l Gl
<060?>:4<0—Z>2_GrG7r ) (23
where
1
- . ¢ coq ¢r)(1+\ cosg) ny
1
7)\ - ' . tan Eﬁw¢
——J dgsin(¢r)sin(¢p) ——— . (24
m Jo (1)¢

Summarizing, in the thermodynamic limit we may write
the single-site density matriy, entirely in terms of the
transverse magnetization, EQO),

| +{co%c*
Plz%- (25)

tum phase transition. We argue that the critical point corre-
sponds to the situation where the lattice dasitically
entangled where, somewhat loosely, we define critically en-
tangled to mean that entanglement is present on all length
scales. In Sec. Il A we outline the properties of the ground
state of the transverse Ising model, which is a simple sub-
class of the anisotropiXY model. In Sec. IlI B the contri-
bution to the ground-state correlations from one- and two-
party entanglement in th8Y model is calculated explicitly

in order to illustrate the sharp peak in the entanglement at the
critical point. Finally, in Sec. Il C we discuss how the prop-
erties of shared entanglement may be related to critical quan-
tum lattice systems.

In Ref. [16] it was argued that the physical origin of the
correlations which occur in systems exhibiting a quantum
phase transition is quantum entanglement. We reproduce the
argument of Ref[16] here in order that this study be self-
contained. For concreteness, we restrict our attention to a
lattice of spin3 particles.

Suppose the ground state of a quantum lattice system was
not entangled, that is, it is a product state. Then a simple
calculation shows that the spin-spin correlation function
(ofol)—(a{)(af) is identically zero. Thus, if the correla-
tion function is nonzero then the ground state must be en-
tangled. Furthermore, we conjecture that large values of the
correlation function imply a highly entangled ground state; it
is an interesting open problem to prove a precise form of this
conjecture.

For general quantum lattice systems the correlation func-
tion decays exponentially as a function of the separdfion
—j| when the system is far from criticalit)21]. When the
system is at a critical point, the correlations decay only as a
polynomial function of the separation. At this point a funda-
mental change in the ground state has occurred.

We believe that when a system approaches a critical point,
the structure of the entanglement in the ground state under-
goes a transition. Further, we conjecture that the nature of
this transition is governed by a change in the spatial extent of
the entanglement. The entanglement between a single spin
and the rest of the lattice away from the critical point must
be bounded in finite regions because the correlations are
damped exponentially. At the critical point correlations de-
velop on all length scales, and the physical property respon-
sible for these correlations, entanglement, should become
present at all length scales as well. We believe that a funda-
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mental transition in the nature of the entanglement in thés a second ground state. The=0 ground state is invariant
system occurs at this point; in some sense, at the criticainder the global phase flip. We note that in both limits the
point the state is delocalized, compared to the local nature ajround state approaches a product state.
the entanglement away from the critical point. If this physi-  Using the solutions obtained for the limiting casesiof
cal picture is correct, there should be evidence of entangleve can qualitatively describe the ground state\ as varied.
ment developing on all length scales in the one- and twowhen \ is small, the exchange term}(o'}(+1 may be re-
party entanglement results. garded as a perturbation, and perturbation theory may be
As described in detail below, the ground state of ¥  used. In this case the ground state becomes a superposition
model exhibits the features we have described in the previef the unperturbed ground state and low-lying excitations in
ous paragraphs. That is, maximality of the entanglement auch a way that the small-ground state remains invariant
criticality, and evidence that a transition in the entanglementinder the global phase flip.
structure takes place at the critical point. Although much \When\ is much greater than one,\is a small param-
work remains to be done to flesh out this physical picture, wester and perturbation theory may again be used to show that
believe that further research will show that these are generighe now-degenerate ground states are a superposition of the

properties of critical quantum systems. unperturbed ground stat¢g™ ) and low-lying excitations.
The degeneracy of the ground state under the global phase
A. Properties of the transverse Ising model ground state flip remains for\ large. (This degeneracy, along with the

invariance of the ground stat6) underUpr may be estab-
lished nonperturbativelj21].)
When\=1 a fundamental transition in the form of the

The ground state of th&Y model is very complicated
with many different regimes of behavi¢d0,42. For the

sake of clarity, we focus most of our discussions on the trans-round state occurs. The symmetry under the global phase
verse Ising model, which arises as the zero-anisotropy Iimiﬁip breaks at this pdint and the system develops a nonzero

y—1 in Eq. (). The reason for this particular choice is magnetization/c*)#0 which grows as\ is increased. The
because the transverse Ising model is the simplest quantum

lattice system to exhibit a quantum phase transiizt], The magnetization is theorder parameterwhich identifies the
: i o . e existence of a new phase.
central goal in this section is to illustrate the intimate rela- .
. ) Now that we have outlined the structure of the ground
tionship between the entanglement structure of the ground . .
o : tate for the transverse Ising model as a function ofve
state and the quantum phase transition. In particular, the cal-

culations for the transverse Ising model provide the cleareségzlfegu?tas sic physical picture with which to interpret the ex-

evidence for the conjecture that the critical point corresponds The calculation of the entanglement between a single site

to the situation where the lattice is most entangled. . . . .
S . and the rest of the lattice requires construction of the single-
The Hamiltonian for the transverse Ising model may be

. . : site density matrix for the ground state. While the single-site
obtained from th&Y model Hamiltonian, Eqc1), by setting density matrix for the thermal state was constructed in Sec.

=1 I, there is a distinction between the zero-temperature limit of
N—1 the thermal density matrix and the ground state, because of
H=— 2 ()\UJ.XUJ.X+1+ UJ.Z)_ (27 the possible ground-state degeneracy. In the following, when
j=0 referring to theground stateof the system, we suppose the
system to be in one of the possible degenerate eigenstates
The structure of the transverse Ising model ground statfp*) or |0~) rather than any other linear combination. It
changes dramatically as the parameteis varied. The de- does not matter which of the two is chosen to be “the”
pendence of the ground state anis quite complicated. ground state because all the entanglement quantities calcu-
However, it is possible to investigate the=0 and\—=  |ated in this paper do not depend on the choice, due to the
limits exactly. local symmetry connecting the two states. Therefore, without
When \ approaches zero, the transverse Ising modeloss of generality, when the system is in the ground state we
ground state becomes a product of spins pointing in the posthoose the system to be in the eigenstate) for A>1 and
tive z direction, |0) for A<1. For simplicity, we will identify|0*) with |0)
when is greater than or equal to one.
[0)x—0~- [Tl 1)jen- - (28 The zero-temperature state,, of the XY model may be
found by taking the limit3— <« of the canonical ensemble,
In the A — < limit the ground state again approaches a prod-
uct of spins pointing in the positive direction, o
e

z

= lim 31
|O+>>\Hoc%‘"|_>>j|_’>j+1"'- (29 Po s (31
The N—oo limit is fundamentally different from the.=0
case because the corresponding ground state is doubly d@/hen the ground state is nondegenerate the zero-temperature

generate under the global phase flip, ELZ), where state is the same as the ground state of the systgm,
=|0)(0|. However, if the ground state is degenerate the
[07 )\ _0e=Upd0* ) .~ |<—)j|<—)j+1~ -+ (30 zero-temperature ensemble becomes an equal mixture of all
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the possible ground states. For the transverse Ising model tfighe transverse magnetizatidn®) is given by the integral
zero-temperature state may be written Eg. (20) which reduces to an elliptic integral for=1 and

B—o,

1 1
—_I0t\/0t L 10-\/0—

21l
(o)== 0 ¢\/1+)\2+2)\ cosed

€Armed with knowledge of the appropriate correlation func-
tions we can now proceed to the calculation of the entangle-
ment in the ground state of tR€Y and transverse Ising mod-

(39

In order to differentiate between the actual ground sft@je
of the XY model and the zero-temperature ensemble we ref
to pg as thethermal ground state
In general, the canonical ensemilegossesses the same
symmetries as the Hamiltonian E@). This is a simple con-
sequence of the identifyd,H]=0, whereU is some unitary
or antiunitary operator representing the symmetry operation.
The invariance follows fromMfU,p]=0, so thatUpUT=p.
In particular, while each individual degenerate ground eigen- Given the modern understanding of entanglement as a
state may not possess the same symmetries as the Hamghysical resource, it makes sense to hskw muchentangle-
tonian, the thermal ground statg has all the same symme- ment there is in a given multipartite state. In order to answer
tries. this question the notion of aantanglement measunas been
The quantum phase transition in the transverse Isingleveloped. A review of work on entanglement measures may
model separates two different phases, theramagnetic be found in Refs[25-28.
phase where the magnetizatiéa*) is zero, and thderro- The study of entanglement measures is far from com-
magneticphase where the magnetization becomes nonzergletely developed. There is currently no consensus as to the
Associated with the development of a nonzero value for thdest method to define an entanglement measure for all pos-
order paramete¢c™) is the breaking of the phase-flip sym- sible multipartite states. There are, however, situations where
metry. The symmetry breaking present in the ground statéhere is an unambiguous way to construct suitable measures.
|0) is a key feature of the quantum phase transition, and i# is these situations that we study in this paper.
responsible for the development of nonzero order parameter When a bipartite quantum systeAB is in a pure state
(o) associated with the ferromagnetic phade. practice, there is an essentially uniqgue measure of the entanglement
small external perturbations force spontaneous symmetrgetween the subsystermdsandB given by thevon Neumann
breaking of the phase flip symmetry, and the system willentropy S[12,44—48. The von Neumann entropy is calcu-
choose one or the other ground state, so this order parameteted from the reduced density matpy or pg according to
is, in principle, observablgThis symmetry breaking cannot the formula
occur in the thermal ground state. For this reason, we will be
most interested in properties {) rather thatp,. For each = —tr(palogzpp) = —tr(pglogzpp). (36)
of the degenerate ground eigenstd®s) and|0~) the glo- _ _ _ _
bal phase-flip symmetry is broken, so the terms that were sé/hen either subsyster or B is a spin3 system,S varies
to zero in the operator expansion Efj8), as a consequence from O (product stateto S=1 (maximally entangled stake
of the symmetry Eq(17), may become nonzero. For the ground state of the transverse Ising model we regard
The Sing'e-site density matripl for the ground state of a Single site as SubsyStem and the rest of the lattice as
the Ising model is obtained by taking a partial trace over alSubsystenB. o _
but one site 0of0)(0|. In general, because the global phase- When a bipartite systerAB is in a mixed state there are
flip symmetry may be broken, the operator expansiorpfor & number pf pro_posals for measures of the er_ltanglement in
is only constrained by the reality conditigrf =p,. There-  the state, including, thentanglement of formatiof.2,27,
fore, typically, two parameters are required to spegiy the distillable entanglemeritl 2,47, and therelative entropy

completely, the magnetizatiafw™) and the transverse mag- of entanglemen{48,49. Each of these measures has the
netization{?), property that, for pure states éfB, they reduce to the von

Neumann entropy. The entanglement of formati{#\:B) is
|+ () o+ (o) o the best understood of the mixed-state entanglement mea-
p1= 5 . (33 sures. For this reason, in this paper, we use the entanglement
of formation to measure the mixed-state entanglement in the
XY model.

B. Ground-state entanglement in the transverse Ising model

It is O(;'ff'cu“ to Cﬁk.:lljla:)e the mggnetlzano(_trx)_of the The entanglement of formatiod(p) for a bipartite
e o sl e staley megsures the minimum expected amount of
tain (o) from the larger limit of thé correlation function entanglemen(as measured by the von Neumapn entrapy

% X o required to preparg [50]. Mathematically, this is expressed
(ojo7i.r) [43], yielding by the formula

0, \=1

(o= (1-\")Y8  \>1. (34) Hp)= .inf. <E>{qj"‘/’i>}' 37

{a [y}
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where{q;,|#;)} is a pure-state decomposition fpr(i.e., p 1
=3q;|¢;)(¥;]) and
08f
(o, dupr =2 0 SMrs(v)(5]) (39) .
6 1
is the expected entanglement required to fgsnfrom the § :
pure-state decompositidu; ,|4;)}. The infimum in Eq(37) 04 !
runs over all pure-state decompositionspof !
At the current time, there is no simple way to calculate the 02} "
entanglement of formation E¢37) for mixed states of bi- \
partite system#\B where the dimension oA or B is three 0 T e
and above. However, for the case where both subsystems 0 1 % 3 4
andB are spins particles there exists a simple formula from
which the entanglement of formation can be calculdfgl. FIG. 1. Single-site entropy for the thermal ground statg,

In this case the entanglement of formation is given in termgsolid line) and the single-site entanglement for the ground state
of another entanglement measure, tkencurrence C [07) (dashed lingof the transverse Ising model.
[27,51,52. The entanglement of formation varies monotoni-
cally with the concurrence. in Fig. 1. The single-site entanglement varies from zero at
The entanglemert between a single site and the rest of A\=0, where the ground state is a product, to a maximum at
the lattice represents the collective contibutions of the enthe critical point\=1. As the limit A — is approached®
tanglement between the given site and all other sites in thalso approaches zero because the ground state again ap-
lattice. Unfortunately, the single-site entanglement does ngtroaches product form. The single-site von Neumann en-
tell us how the entanglement is shared out. For exan®le, tropy for the thermal ground state of the transverse lIsing
=1 could mean that the site in question is maximally en-model is also shown in Fig. 1. Unlike the ground-state case,
tangled with a neighboring sitegr, entangled with many the entropy approaches unity in the limit-o. This is be-
sites. In the transverse Ising model it appears $iatrelated  cause the thermal ground state approaches an equal mixture
to the onset of correlations in a fairly direct wégee below,  of two pure stategthe eigenstatef0™) and|07)) in this
and to reflect this we speak & as “measuring” how en- limit. The single-site entropy is not measuring the entangle-
tangled the lattice is. ment content of the thermal ground state in this limit, rather
We should point out that this situation is by no meansit is measuring the degree of mixedness of the thermal
typical. It is quite common for the ground state of aground state.
condensed-matter system to possess strong nearest-neighboit is an intriguing fact that systems with quite different
entanglement and no long-range correlati¢sse, for ex- microscopic dynamics may behave equivalently at criticality.
ample, the models constructed by Affleck, Kennedy, LiebFurther, their behavior depends only on the dimension of the
and TasakiAKLT) discussed in Ref53]). Analysis of the system and the symmetry of the order parameter. The char-
entanglement in various AKLT models carried out by theacter of this behavior is captured by a small numbeurmif
authors has shown that, in fact, the single-site entanglemeersal quantities whose behavior at criticality is completely
is constantfor all parameter values even though long-rangedescribed in terms of a unigquengle number, acritical ex-
correlations develop and vanish. The entanglement in thegsonent The equivalence of physically different systems and
models (and many other condensed-matter systeimsin  their simple dependence on certain global properties at criti-
general, not revealed from knowledge of the single-site deneality is known asuniversality One of the triumphs of twen-
sity matrix. What is really needed—but which has not yettieth century physics was the development of the RG, which
been developed—to study these models is an entanglemepitovided an explanation for the emergence of universality in
measure which can take account of the way entanglement igitical systems.
shared out. If we are to suppose th&is a universal quantity which
At the critical point,\.=1, of the transverse Ising model could be studied via the RG then we should be able to find a
there is a fundamental transition in the structure of thecritical exponent foiS In other words, near the critical point
ground state. The correlation functic(rarf“af}—(af‘)(af) we should be able to write something like
decays polynomially as a function of separation at this point
(the dominant term has exponent;) while for all other
values of\ this decay is exponential. Interestingly, one could
argue that the correlation function itself actually constitutes
an entanglement measure for pure states as it transforms asvhere vy is the critical exponent fos. Unfortunately, this is
tensor under local unitary operations and is zero for produchot possible. As we describe below, the single-site entangle-
states. As argued earlier, the change in the correlation funanent is two sided, so thaivo numbers are needed to specify
tion signals a fundamental change in the entanglemerslike Eq.(39) near the critical point, one for each of the two
present in the ground state. This change is reflected in theays of approaching..=1. In this way we see that the
single-site entanglemeftfor the ground state which appears single-site entanglement i®t a universal quantity.

SN —N¢|?, (39)
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The two-sided behavior of the single-site entanglement There are indicationib4], however, that thequareof the
arises because the single-site density matrix depends on batbncurrences extensive. Perhaps a suitable generalization of
the magnetization and the transverse magnetization. In thie concurrence will turn out to be the best quantity for
region neaix<1 only the transverse magnetization is non-studying universal properties of entanglement. Evidence that
zero and the single-site entropy rises linearly. At the criticalthis is the case has recently been obtained by Ostetiaih
point the magnetization becomes nonzero and increases Hsb| where they found that a quantity related to the concur-
A8 This becomes the dominant term in the expression forenceis universalfor the transverse Ising andY models. It
the single-site entanglement, and so the decay of the singlevould be interesting to investigate this behavior and see if it
site entanglement is faster than linear in the region neaarises because of the possible extensivity properties of the
A>1. concurrence. Note, incidentally, that universal behavior in

If there exist universal quantities related to the entanglethe concurrence does not necessarily imply universal behav-
ment in critical quantum systems, then it is likely that theyior for the entanglement of formation, for the latter is only a
are derived from entanglement measures that satisfy addiunction of the former in the special case of a two-qubit
tional properties beyond the set usually regarded as “esseisystem.
tial” for an entanglement measursee, for example, Refs. The determination of what entanglement is shared by two
[45,48). There are two main reasons why we make this assites in the lattice requires a measure of the two-party en-
sertion. The first arises from the inability of the single-sitetanglement present in mixed states. We will henceforth use
entanglement to distinguish between neighboring and distribthe concurrenc€ to measure the two-party mixed-state en-
uted entanglement. In order to distinguish between these ditanglement between two spins. The concurrence of two spin-
fering scenarios, a good entanglement measure for critical particles may be calculated from their density magrixia
guantum systems should take account of how the entangl¢he formula
ment is shared out. The second reason is that, as we argue
below, the single-site entanglement is mescalable If a Cle)=max 0N —A2—Nz— N4, (41)
quantity is to be renormalizable it is necessary that it be
rescalable. That is, it must be possible to collect degrees dfhere the\; are the eigenvalues in decreasing order, of the
freedom together, calculate the collective value of the quanHermitian matrix R=+\/ee e, and o= (s'® oY) 0* (¥
tity, and then rescaléor “renormalize”) the collective value. ®¢Y). The concurrence varies fro@=0 for a separable
A renormalizable entanglement measure should be rescalabdgate toC=1 for a maximally entangled staf&6].
in this way. The two-site density matrices for the ground state of the

We should be a little more precise in our definition of XY model are difficult to calculate when there is ground-
rescalability for entanglement measures. Say we wish to caktate degeneracy. This is because the magnetiz&inbe-
culate the bulk entanglement of a block of spinscomes nonzero as the phase-flip symmetry is broken, and it
S1,S2, - - - Sy in a lattice with the rest of the lattice, Ifthe  becomes necessary to include the correlation function
entanglement measug (for example,G could be the en- (5%5?) in the operator expansion E(L8). The (o5o?) cor-
tanglement of formationused to calculate this entanglement re|ation function is nonlocal when expressed in terms of the
is to be rescalable then, in the very least, it must satisfy thgordan-wigner fermionic operators and there is no simple

extensivity relation way to derive it from other correlators. As a result of this
difficulty we do not calculate the two-site density matrix for
G(S1,S2, - - - Sm:L)=G(s1:L)+ -+ - +G(sy:L). (400  the ground state, instead, all two-site calculations are per-

formed with respect to the thermal ground state. However,

This inequality expresses the idea that the entanglement offzecause the thermal ground state for the transverse Ising
collection of spins with the rest of the lattice should d&te  model takes the special form E@?2), it is possible to place
least as greafs the sum of the entanglements of each spirbounds on the entanglement that can occur between two sites
with L. If an entanglement measure does not satisfy the exin a degenerate ground state.
tensivity relation Eq(40) then it is not clear how to rescale =~ The entanglement between pairs of sites for the thermal
the bulk value of the entanglement. ground state of the transverse Ising model shares many of the

Summarizing, the failure of the single-site entanglemensame features of the single-site entanglement. The entangle-
to be universal may be due to the facts thaj:it does not ment, as measured by the concurrence, between neighboring
distinguish localized from distributed entanglement; @dod  sites and next-nearest neighboring sites is shown in Fig. 2
it is not rescalable, in a sense that we can now make expliciand Fig. 3, respectively. All other pairs have zero two-party
To do this, note first that it has previously been shown thaentanglement because the correlation functions drop below
the entanglement of formation does not satisfy @) [54].  the threshold for a positive concurrence. In both cases the
If we regard the single-site entanglemé&hés the entangle- entanglement rises from zero in the limitss0 and\ —« to
ment of formationS= 7(s;,L) between a single spisy and a maximum value near the critical point=1. When \
the rest of the latticd, it seems unlikely that it will be a =<1, the ground state coincides with the thermal ground state
universal quantity[There do exist other entanglement mea-so that the two-site entanglement results are the same in this
sures which reduce to the von Neumann entropy for purease. Note that the maximum does not ocexactlyat the
stateq12,15,48,49. It is an open question whether they sat- critical pointA = 1. At first site this may appear to contradict
isfy Eq. (40).] our earlier conjecture that we expect entanglement to be the
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0.3 y y y wherep; is any probability distribution ang; a set of two-
site density matrices. If we apply this inequality to the ther-

025 mal ground state, Eq. (32, we obtain C(po,)
s <3C(trg: (00 |))+3C(tr5:(J07)(07])). The global
) phase flip is a local unitary operation, so that the concurrence
Co 15 of each term in the right-hand sidBHS) of the inequality is
) the same, that is
0.1
C(por) =Cl(trg (|07 )(0"))). (43)
005 In this way we see that the two-party entanglement in the
0 ground state is at least as large as the two-party entanglement
in the thermal ground state.
FIG. 2. Nearest-neighbor concurrerCet zero temperature for C. Critical quantum systems and the constraints
the transverse Ising model. of shared entanglement

greatest at the critical point. In fact, as explained in Sec, "€ maximum value of the concurrence between neigh-

Il C, the reason for this is that the results here are for two-20ng Sites does not occur at the critical point. This seem-
site entanglement, and are not inconsistent with the conjedngly contradicts the idea that the strength of the correlations

ture that theotal entanglement in the lattice is a maximum at 'S Proportional to the entanglement, and that therefore the
the critical point. entanglement should be maximal at the critical point. How-

The entanglemer,; between any two sites, 0 ajdand ever, as we will discuss in this subsection, there are reasons
J 1

the rest of the lattice, can also be calculated for the paramet&2S€d on the properties of shared entanglement to expect that
regimes where the ground state of t& model is unique this maximum should occur away fronj the critical point.
(e.g.,A<1, y=1). We have not included the results of such Itis well known that there are limitations to the amount of
calculations as we are not able to calculjg outside of the entanglement that may be distributed amongst three or more
regionA<1, y=1. In addition, qualitatively, fon<1, y subsysfcem.§30,54,57—6]. This class of problem, that is, the
=1 the results forEy; are very similar to single-site en- dgtermmanon of how m.UCh two-party entan_glement can be
tanglement results in Fig. 1. distributed amongst a given number of parties, is known as

It is interesting to see what effect the ground-state degen"Em entanglement-sharingroblem. The simplest example of

eracy has on the two-site entanglement in the ground statg."S s the situation Of. three par_tle& B, anc_:l C.lIf Als
As mentioned, it is not possible to study the two-site en_maX|maIIy entangled witlB then it is not possible foA and

tanglement foix>1. Despite this difficulty, fol above the C or B andC to share any two-party entanglement. Entangle-

critical value, we can place a lower bound on the two-siteent sharing is relevant to the quantum phase transition in

entanglement in a degenerate ground state. This may ti)ge transverse Ising model as it provides a fundamen_tal
achieved by observing that the concurrence mea€uig ound on the amount of entanglement that may be distrib-
convex51], which means that uted amongst the sites. The existence of such a bound means

that as the overall entanglement in the lattice is increased,
n n some sites become pairwise more disentangled. An example

C( > pipi) <> piC(pi), (42)  where this occurs is in a system approaching a critical point.

=1 =1 As the critical point is approached in the transverse Ising

" model the correlation length begins to increase. What occurs

x 10 physically is that each site develops entanglement with its

> neighboring sites. When the system gets closer to the critical
point each site begins to develop entanglement with its next-
41 ] nearest neighbors and so on. When the system is not at the
critical point the entanglement between a single site and the
3| ! rest of the lattice is localized within some region because the
C correlations are exponentially damped for large enough sepa-
5l ration. At the critical point this is no longer the case; there
are appreciable correlations between a single site and every
other site. However, the entanglement associated with this
1 T correlation must be distributed in such a way that it satisfies
the constraints of entanglement sharing.
0 . . r We conjecture that saturating the constraints of shared
0 1 2 3 4 entanglement is a natural symmetry for critical quantum sys-

A tems. There are many ways to saturate the constraints of

FIG. 3. Next-nearest-neighbor concurrer@at zero tempera- Shared entanglement. One way is to saturate the constraint
ture for the transverse Ising model. expressed by Eq40). Another way is to maximize the av-
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erage of the two-party entanglements between all pairs. lif the pair A,A; is renormalized the deficih’ between the
the second case the saturating staterfajubits has been left- and right-hand sides of E¢44) after the RG step will
constructed 60] (the two-party entanglement is given B/  be less than the original deficit, i.e\’<A. This follows
=2/n for all pairs. from
We now provide an example of the type of heuristic that
one might adopt to motivate the saturation conjecture. In

order to do this we need to use ideas based on the renormal- A" =G(A1:AAL) —G(A1:A2) — G(A1:Ay),

ization group. The RG works by successively collecting to- _ . . .

gether 2ubs§)/stems of a Iatticey and eIiminai/ing degre%s of =G(A1 AANAL) ~ G(A1: AdA) = Gl A1 Ad)
freedom from these collections. For example, suppose a sys- =G(A1:AA3A) —G(A1:A2) —G(A:Ag)

tem A is composed oh qubits A=A, ... ,A,. A typical

RG step would involve collecting together two qubksand —G(A11A) — (A1 Az Ag),

Aj+1, and discarding two degrees of freedom from the —A—G(A;:A,As). (49)

AjA; ;1 subsystenti.e., renormalizing AA; ). The renor-
malized system is a single qubit, Writte!q. This type of
RG step is often performed simultaneously on all the pairs off there is three-party entanglement then the only fixed point
A. It is known [23,24 that quantum critical points corre- iSA=0, i.e., saturation of the extensivity relation.
spond tofixed pointsof the RG, i.e., where the state of the ~ Generalizing this argument to an infinite lattice, we see
system is symmetric under a RG step. For this reason, thé@at as RG steps are continually applied, the deficit between
state of a system at a quantum critical point is said to béeft and right sides will continue to decrease until it reaches

scale invariantor self-similar zero at a fixed point of the R@ quantum critical poinf that
Suppose that a syster is composed of four qubits IS, saturation of the entanglement sharing inequality.
A;, ..., A,. Consider the extensivity relation Eq40) There is a lot that is questionable with the preceding ar-

(which we assume to be generally tyder the first qubitA;, ~ gument. For example, the two assumptions 1 and 2 we made
about the behavior of entanglement under renormalization

G(ALIAAA)=G(ALIA) HG(ALIAR) + G(AL:A,). may not be correct. The biggest problem our saturation con-
(44)  jecture faces is that, as we will show, the entanglement shar-

ing inequality isnot saturated for the critical transverse Ising

model. Nonetheless, we believe that a more rigorous argu-

renormalized this inequality will tend toward saturation. ~ Ment similar to the one we have made here will provide the
To do this we suppose the following two facts. correct picture of the entanglement distribution at a quantum

(1) The left-hand side of Eq(44) does not change if a cfitical point. ,
pair, sayA,A,, is renormalizedA,Az—A}, ie., We should mention that the RG procedure we have em-

ployed to discuss the saturation conjecture is well known in

We are going to provide a speculative argument thah &

the condensed-matter literature where it is referred to as the

G(A1:AAzAL) =G(A1:ALA,). (45  real-space renormalization groupfRSRQG [39]. When the
RSRG is applied, in the way we have described it, to study
] o the critical transverse Ising model it is known that it does not
(2) The renormalized entanglemeftA; :A) is given by generate a very good approximation to the state of the sys-

the expression tem at criticality[39]. Improvements to the scheme involve
collecting larger blocks of subsystems instead of just pairs.
AT . _ . . To account for this obviously requires a refinement of our
AL A =G(A:AA)=G(A:A)+G(AL A s .
G(AL:A2) =G(A1: Adhg) =G( A1 Ao) Gl A1 1 Ag) argument. This means that the failure of the entanglement
+G(A1:A5:Ay), (46) sharing inequality to be saturated at the critical point may be

an artifact of the renormalization scheme we have chosen.

. i In the light of this interpretation it is interesting to com-

where G(A;:A;:Ag) is an associated measure of purely pare the entanglement calculations for the transverse Ising

three-party entanglemef2]. _ _ model at criticality to the lattice calculations of Wootters and
The additional assumption we make (@) is that if the  o:connor[30,57. In the critical case\,=1 the correlation

purely three-party entanglement, as measured bynctions for the transverse Ising model are known explicitly
G(A1:A;:Az), is added to the RHS of the extensivity rela- 55 functions of [43],

tion, Eq.(40), for three qubits then the inequality becomes an
equality. For further details on why this should be the case
see Ref[54]. w2\ sy HO®
Consider thedeficit A between the left and right sides of (0007)= = H(2r)’ (49)
the extensivity relation before a renormalization step,

A=G(A1:A2A3A,) — G(A1:A2) —G(A1:Ag) — Q(A11A4()A;7) (aba)y=— (50)
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FIG. 4. Nearest-neighbor concurrerCet zero temperature for FIG. 5. Next-nearest-neighbor concurrerCet zero tempera-
the XY model. ture for theXY model.

4 1 parameters, reflecting the competition between the various

(0%0?)= (51) different noncommuting terms in the Hamiltonian as the pa-

T 4r2—1"' rameters are varied.
The completely isotropic limity=0, is the most interest-
ing parameter region besides the transverse Ising model. Di-
a2 rect calculation along the lines already presented shows that
(o%)= o’ (52 two-party entanglement exists between all pairs for all sepa-

rations at this point. Woottell63] has made a study of the
[ lar—2 correlations in one- and two-dimensional lattices and he has
where H(r)=1"""2""%..-(r—1). The concurrence at the foynd interesting connections between the two-party correla-
critical point is nonzero for both=1 andr=2 where itis  tions in the isotropicX Y model and the bounds of entangle-
given by, respectively, 0.1946 and 0.0044. These valuegent sharing. Further investigations along these lines could
should be compared with the values obtained by O'Connopygyide evidence that critical quantum lattice systems are

and Wootters in their studyp7] of the concurrence in chains maximally entangled in the sense of entanglement sharing.
and rings of qubits. They maximized the entanglement be-

tween nearest neighbors of a translationally invariant ring of
spin+ degrees of freedom. Wootters and O’Connor were at-
tempting to saturate the bounds of entanglement sharing by
maximizing the entanglement of nearest-neighbors subject to In this section we discuss the entanglement present in the
the symmetry of translational invariance. They found a maxithermal state of the transverse Ising model. We find that the
mal nearest-neighbor concurrence value of 0.4345 for an inlargest amount of entanglement is present in the parameter
finite ring, which is greater than the critical value for the region close to the critical point. This region is found to
transverse Ising model. This result alone does not imply thatorrespond with thejuantum criticalregion introduced by
the critical transverse Ising model is less entangled than th8achdevp. 58 of Ref.[21]). We also find parameter values
ring considered in Refd.30,57), indeed, if the conjecture for which the entanglemerntcreasesas the temperature is
made in the preceding paragraph is true then the ring wouléthcreased. Finally, we discuss the persistence of quantum ef-
be much less entangled than the critical transverse Isinfects in the thermal state as the temperature is increased.
model. The reasoning for this is that the critical transverse It is desirable to determine when a condensed-matter sys-
Ising model is conjectured to maximize the entanglementem will behave quantum-mechanically. This is particularly
between all pairs subject to translational invariance while thémportant because the validity of various ansatz methods de-
chains and rings of Wootters and O’Connor only maximizepends on whether they take account of possible quantum
entanglement between nearest neighbors. One means of deffects. When a system is in its ground state, quantum effects
termining whether this is the case would be to calculate thevill certainly be important, as evidenced by the quantum
correlation function for the ring. On the basis of the argu-phase transition in thXY model. The zero-temperature cal-
ments made in this study, we expect that the correlations wiltulations of the last section represent a highly idealized situ-
decay exponentially with separation for the ring. ation, however, it is unclear whether they have any relevance
The entanglement in the thermal ground state of the gerto the system at a nonzero temperature. It turns out that the
eral XY model may be calculated simply, following the properties of a quantum system for low temperatures are
method outlined in Sec. Il. Following Barou¢#2], which is  strongly influenced by nearbyn parameter spageuantum
where the correlation functions EQ1), Eq. (22), and Eq. critical points[21,22. It is tempting to attribute the effect of
(23) were calculated, only the regions0y=<1 is considered nearby critical points to persistent mixed-state entanglement
here. The concurrence between nearest-neighbor and next-the thermal state. In order to investigate this, we calculate
nearest neighbor sites is shown in Fig. 4 and Fig. 5, respec¢he two-party entanglement present at a nonzero temperature
tively. The concurrences are a complicated function of theT.

IV. THERMAL ENTANGLEMENT IN THE TRANSVERSE
ISING MODEL
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perature is increase@.g.,A=1.4, Fig. 6. This effect has
previously been observed in finite-size calculatiphg,31]
for the Heisenberg model. The occurrence here of the same
effect implies that it is not an artifact of the truncation of a
lattice. The second feature is the existence of appreciable
entanglement in the system for temperatg$ above the
ground-state energy gafh. It has been arguef22] that
quantum systems behawtassically when the temperature
exceeds all relevant frequencies. For the transverse lIsing
model the only relevant frequency is given by the ground-
state energy gap=%sw. The presence of entanglement in
the system for temperatures above the energy gap indicates
FIG. 6. Nearest-neighbor concurrer@at nonzero temperature that quantum effects may persist past the point where they
for the transverse Ising model. are usually expected to disappear.
A comparison should be made between the results ob-
The two-site density matrices constructed in Sec. Ii aréaineq here and the ngmerical calculatiqns of concurrence in
valid for all temperatures. Using these matrices it is possiblfh‘? Ising model on a finite number of sitg33]. The calcu-
ations that were performed in Rdf33] were implemented

to study the purely two-party entanglement present at ther< . £ . h b
mal equilibrium because the concurrence measure of el @ maximum of seven sites. The concurrence between

tanglement can be applied to arbitrary mixed states. The rdi€arest neighbors obtained by Gunlyekel. (Figs. 2 and 5
gions where there is appreciable two-party entanglemerflf Ref-[33]) is in qualitative agreement with the results ob-
give at least a partial indication of where quantum effectstf"“_ned .here._However, as there IS no phase transition for. the
may be important. We again emphasize the transverse Isinifite-size Ising m_odel the dom[nance of the critical point
model for this section. The influence the critical point has onV@S Not as sharp in the calculations of H&3].

the entanglement structure at nonzero temperatures is par-

ticularly clear for this model. V. SUMMARY AND FUTURE DIRECTIONS

The entanglement between nearest-neighbor and next-
nearest-neighbor sites in the Ising model at nonzero tempera- The one- and two-party entanglement present in the
ture appears in Fig. 6 and Fig. 7, respectively. The entangleground and thermal states of th&/ model has been calcu-
ment is nonzero only in a certain region in thgT —\ plane.  lated. It should be stressed that the calculations in this study
It is in this region that quantum effects are likely to dominateare analytic and, furthermore, they are for the thermody-
the behavior of the system. The entanglement is largest in th@amic limit of a quantum lattice system.
vicinity of the critical pointh =1, kgT=0. This region cor- We have argued that the critical point of a quantum lattice
responds, approximately, to thguantum critical regime  System corresponds to the situation where the lattice is maxi-
identified by Sachde}21]. Sachdev found, by using a very mally entangled. Evidence for this conjecture was found in
different argument, that quantum effects would be importanthe single-site entanglement results for the ground state of
in this regime. The correspondence of these two regions préhe transverse Ising model. We have also argued that the
vides evidence that the entanglement content plays an impogonstraints of shared entanglement are important for critical
tant role in the emergence of quantum behavior in naturalljguantum systems, and we have found possible evidence of
occurring guantum systems. such constraints playing a role in the two-party entanglement

There are two notable features of the two-site thermaresults for the transverse Ising model. The entanglement
entanglement results. The first feature is that, for certain valPresent at thermal equilibrium was also studied, and an ap-
ues of\, the two-site entanglement can increase as the tenProximate correspondence between the quantum critical re-
gime identified by Sachdev and the regions where the two-
party entanglement is nonzero was found. Parameter values
where the entanglement increases as the temperature is in-
creased were also found.

We have focused on the transverse Ising model through-
out this study, although the calculations presented also cover
the XY model. The transverse Ising model is interesting be-
cause it is the simplest system to exhibit a quantum phase
transition, and it is relatively easy to identify the structure of
the entanglement present in this system. The importance of
the critical point in this system is also particularly clear. The
XY model has many parameter regimes where it behaves
differently, so it is very likely that more interesting phenom-
ena may be found in other parameter regions.

FIG. 7. Next-nearest-neighbor concurrer@eat nonzero tem- Entanglement calculations in this study have been re-
perature for the transverse Ising model. stricted to time-independent scenarios. However, the dy-
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namic correlation functions have been calculated for thestudy. In particular, it would be interesting to makeiversal
Ising andXY models for certain values of. It is possible statements about the character of entanglement at the critical
and may be interesting to calculate the time evolution of thepoint, and to examine whether the constraints of entangle-
entanglement in these models and thus identify truly quanment sharing impose physical limitations on the behavior
tum dynamics. that can occur in such a system.

The calculations in this study are intended as a point of Note added Recently we learned of related work done
reference for the development of an understanding of thendependently by Osterlogt al. [55].
entanglement in critical quantum systems. Rather frustrat-
ingly, the present incomplete understanding of entanglement
measures has prevented us from performing many of the cal-
culations we would like to do in order to check the many We would like to thank Dorit Aharonov, Nick Bonesteel,
conjectures made in this paper. Further progress on the gedehn Preskill, and Bill Wootters for many stimulating and
eral quantitative theory of entanglement should enable thesencouraging discussions about entanglement and phase tran-
conjectures to be checked in the future. We believe that ersitions. We would also like to thank Jennifer Dodd, Alexei
tanglement plays a central role in the emergence of long6Gilchrist, Ross McKenzie, and Howard Wiseman for their
range correlations at the critical point of such systems, antielpful comments on the manuscript. This work has been
that a fruitful interplay between the theory of entanglementfunded, in part, by an Australian Postgraduate Award to
and critical quantum phenomena may result from furthefT.J.O.
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