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Abstract. While some recent frameworks on cognitive agents addressed the com-

bination of mental attitudes with deontic concepts, they commonly ignore the

representation of time. An exception is [1] that manages also some temporal as-

pects both with respect to cognition and normative provisions. We propose in this

paper an extension of the logic presented in [1] with temporal intervals.
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1 Introduction

A common approach in the agent literature for programming cognitive agents in a BDI

(belief, desire, intention) framework is the use of rules to represent or manipulate agents

mental attitudes. In addition to the three mental attitudes of beliefs, desires and inten-

tions, some works include deontic concepts which are used to denote norms, commit-

ments of social agents and social rationality [2][3][4][5][6]. However, these frameworks

commonly ignore the representation of time. An exception is [1] that adopts the rule-

based approach of [7][8][9] and extends it to accommodate temporal aspects. Time is

integrated by pairing propositions with instants representing the time when propositions

hold and by descriminating transient and persistent conclusions. Persistent conclusions

persists through time until some interrupting events occurs. Such account of persis-

tenccy is incomplete since some properties may ends without any external event. We

propose in this paper an extension of the logic presented in [1] with temporal intervals

so that persistent conclusions can ends by means of the occurence of an interrupting

event or by means of a certain temporal reference.

The presented framework is based on Temporal Defeasible Logic (TDL) which is

an umbrella expression to designate extensions of DL to capture time. TDL has been

proved usefull in modelling temporal aspects of normative reasonning, such as tem-

poralised normative provisions [10]; in addition, the notion of temporal viewpoint -

the temporal position from which things are viewed- allows for a logical account of

retroactibe norms and norm modidications [11].
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The layout of the paper is as follows. In section 2, we intoduce the general con-

ceptual model behind the framework. Section 3 provides an outline of basic Defeasible

Logic. Section 4 describes a variant of modal TDL that formalise the model of cogni-

tion.

2 Time, norms and mental attitudes

Our model aims to give account of some temporal aspects in respect to the combination

of mental attitudes with deontic provisions. The starting point is the acknowledgement

that on the first hand recent works shows that reasoning about agents can be embed-

ded in frameworks based on non-monotonic logic, as the most interesting problems

concerns the cases where the agent’s mental attitudes are in conflict or when they are

incompatible with some deontic provivions. On the other hand, in temporal setting, non-

monotonicity can also be used to conclude that mental attitudes or deontic provivions

persists up to some future time unless there is a reason for it not to perist. One can thus

argue that a type of non-monotonicity concerns situation where mental attitudes are in

conflict or when they are incompatible with some deontic provivions, while another

type of non-monotonocity issues temporal aspects. Our model is based on these two

types of non-monotonicity.

Accordingly, we adopt in this paper a system that follows the works of [7][8][9]

which are themselves inspired by Bratman’s analysis of so-called policy-based atti-

tudes. In Bratman’s view intentions are used to choose partial plans for realisation of

a goal and have a close relation to mean-ends, whereas [7][8][9] intentions is related

not only to means-ends but also to their consequences. This notion is partivularly rele-

vant with deontic and normative notions, for example if we want to say that an agent is

legally for A if the A is a side effect and if the agent did A with the intention to do A.

[7][8][9] extends this policy-based approach to other attitudes and motivational factors

as beliefs, intentions and oligations. An agent types correspond to the different ways

thorugh which conflicts are detected and solved: a realistic agent thus corresponds to

a conflict-resolution type in which beliefs override all other factors, while other agent

types, such as simple minded, selfish or social ones adopt differet orders of overrul-

ing. Some substantial peculiarities makes it different from other frameworks such as

BOID’s. In particular,

1. the system develops a constructive account of these modalities; rules are thus meant

to devise suitable logical conditions for introducing modalities; if so, rules may also

contain modalised literals;

2. possible conversions of a modality into another can be accepted, as when the apli-

cability of rule leading to derive, for example, OBLp (p is obligatory) may permit,

under appropriate conditions, to obtain INTp (p is intented).

[1] is on the same line of research of [7][8][9] and focus on some temporal aspects.

[1] is based on Bratman’s [12] which in his pursuit for a temporally extended rational

agency exposed a principle that can be roughly stated as follows:
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– At t0, agent A deliberates about what policy to adopt concerning a certain range of

activities. On the basis of this deliberation agent A forms a general intention to ϕ

in circumstances of type ψ .

– From t0 to t1, A retains this general intention.

– At t1, A notes that he/she is or will be in circumstance ψ at t2, where t2≥ t1.

– Based on the previous steps, A forms the intention at t1 to ϕ at t2.

Given the temporal nature of Bratmans historical principle, and the idea that some

intentions can be retained from one moment to another, [1] accounts for two types of

temporal deliberations: transient deliberations, which hold only for an instant of time,

and persistent deliberations, in which an agent is going to retain them unless some in-

tervening event that forces the agent to reconsider her deliberation occurs. This event

can be just a brute fact or it can be a modification of the policy of the agent. That

is, persistent conclusions persists through time until some interrupting events occurs.

Such account of persistenccy is incomplete since some properties may ends without

any external event. We propose in this paper an extension of this model with temporal

intervals so that persistent conclusions can ends by means of the occurence of an inter-

rupting event or by means of a certain temporal reference. For example, intervals allows

us to represent the span of time during which an obligation holds or a norm is in force.

Ordinarily, intervals are defined as sets of instants between two indicated instants.

Here we deviate to this definition because of the non-homogeneity or transient character

of events: if an event occurs in an interval conceived as a set of instants, then it would

also occur in the set of instants that defines it and this would conflict with the transient

characterisation of events. Hence, we define an interval as a pair of instants of the form

[ti, t f ]. Intervals are usually denoted by T (plus eventual subscript). We identify two

subtsets of interval to differentiate intervals in which an associated property holds at

any instant between the boundaries and intervals in which an associated property holds

at least one instant between the boundaries. We shall call the firsts A-interval and the

seconds B-intervals. A-intervals are represented by expressions of the form [ti, t f ] and

are usually denoted by T while B-intervals are represented by expressions of the form

[̂t f , t f ] and denoted by T̂ . If the wide hat or the line over an interval is omitted then it is

either an A-interval or a B-interval.

Mental attitudes and normative provisions are related to temporal references and

the passage of time allows change of these elements. This is in accordance with the

commonly accepted opinion that in a static system where nothing changes, the temporal

dimension does not provide more understanding.

Our references (intervals) allows us to temporalise literals and rules. In its simplest

form, a temporal literal is an expression of the form l:T where l is a literal and T is

either an A-interval or a B-interval. Intuitively, l:T means that l holds for all instants

between the boundaries of T while l:T̂ means that l holds for at least an instant between

the boundaries of T̂ . For example, ma jor(bob):[1973,max] means that Bob is major in

1973 and later. Similarly, rules are temporalised by associating to it a time interval,and

so a temporal rule is an expression of the form:

(r: a1:T1 ... an:Tn ↪→ b:T ):Tr
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The time labels allow us to deal formally with the different temporal dimensions

of a normative system. The temporal intervals labelling the antecedent of a rule, the

consequent of the rule and the overall rule are interpreted respectively as the intervals

of efficacy, applicability and time of force of the represented provision. These diferrent

temporal dimensions are in line with the legal temporal model developed in [13]. That

allows us to give an accurate account of temporal aspects of norms and therefore to

be consistent with legal principles. Note that the interval Tr labelling the entire rule is

an A-interval because the force of a provision is generally an homogeneous property.

Similarly, we constraint the interval labelling the literal in the head of the rule to be

an A-interval. Intervals in the body can be A-intervals or B-intervals. An example of a

temporal rule is:

(r: born(X):[t, t]→ ma jor(X):[t +18,max]):[1970,max]

This rule formalises the provision in force in 1970 and later that somebody get its ma-

jority at 18 years old.

Consequently of the different temporal dimensions, a conclusion can be associated

to two temporal intervals. The first interval is the interval with which the consequent of

the rule is labelled while the second interval corresponds to the time of force interval

associated to the rule. We represent such temporalisation of conclusion by concatena-

tion of intervals by means of the symbol ’:’ and we call such concatenation chain of

viewpoints. For example. giving the rule r and the fact that Bob was born in 1960, then

one can conclude ma jor(bob):[1978,max]:[1970,max], that is, Bob is major in 1978

(and later) from somebody reasoning in 1970 (and later). Chain of viewpoints are of the

upmost importance when one has to deal with the retroactivity of norms. Retroactivity

occurs when the effects of a rule r apply to an interval [ti, t f ] which begins before the

interval [t ′i , t
′
f ] attached to the antecedent of r, that is, ti < t ′i . Another case of retroac-

tivity is when the consequence of a rule r′ applies at an interval [ti, t f ] but r′ is in force

in [tri, tr f ] such that ti < tri. For an illustration of the utility of chain of viewpoints with

respects to retroactivity, consider the following rules:

(r1: Income > 90: ̂[1Mar06,max]⇒OBL ¬Tax:[1Jan06,max]):[15Jan06,max]

(r2: Income > 100: ̂[1Mar06,max]⇒OBL Tax:[1Jan06,max]):[1Apr06,max]

Rule r1 states that if the income of a person is in excess of ninety thousand as of 1st

March 2006 then she has not to pay the tax from 1st January 2006 with the policy being

in force from 15 January 2006. This means that the norm becomes part of the tax reg-

ulation from 15 January 2006. Accordingly, the policy covers tax returns lodged after

15 January 2006. The second rule, in force from 1st April 2006, establishes a tax re-

turns lodged after 1st April 2006. These two rules illustrate the concept of viewpoints.

Consider that the conditions in the antecedent of both rules hold, then one would derive

¬Tax:[1Jan06,max]:[15Jan06,max] but Tax:[1Jan06,max]:[1Apr06,max], that is, from

if one reason from a point of view between the 15 January and the 1st April then the
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tax is due while if one reason from a point of view later than the 1st April then no tax

is due.

Even though trivial cases of the phenomenon of retroactivity are captured by rules

such as r1 and r2, we should be able to detect retroactivity also in other scenarios,

where normative effects are in fact applied retroactively to some conditions as a result

of complex arguments that involve many rules. This problem is of great importance not

only because the designer of a normative system may have the goal to state retroac-

tive effects in more articulated scenarios, but also because she should be able to check

whether such effects are not obtained when certain regulations regard matters for which

retroactivity is not in general permitted. This is the case of criminal law, where the prin-

ciple -Nullum crimen, nulla poena sine praevia lege poenali- is valid.

3 Defeasible Logic

The legal temporal model points out the importance of uncertainty due to the addi-

tion of new premises that can invalidate formerly derivable consequences. This means

that temporal cognition must proceed on the basis of non-monotonic reasoning. Non-

monotonic reasoning is supported by a number of non-monotonic logics. Among these,

DL [14][15][16] is based on a logic programming-like language and it is a simple, ef-

ficient but flexible non-monotonic formalism capable of dealing with many different

intuitions of non-monotonic reasoning. An argumentation semantics exists [17] that

makes its use possible in argumentation systems. DL has a linear complexity [18] and

also has several efficient implementations [19].

A Defeasible Logic theory is a structure D = (F,R,≺) where F is a finite set of

facts, R a finite set of rules, and ≺ a superiority relation on R. Facts are indisputable

statements, for example, “Bob is a minor,” formally written as minor(bob). Rules can

be strict, defeasible, or defeaters. Strict rules are rules in the classical sense; when-

ever the premises are indisputable, so is the conclusion. An example of a strict rule

is “Minors are persons,” formally written as r1: minor(X)→ person(X). Defeasible

rules are rules that can be defeated by contrary evidence. An example of a defeasible

rule is “Persons have legal capacity”; formally, r2: person(X)⇒ haslegalcapacity(X).
Defeaters are rules that cannot be used to draw any conclusion. Their only use is to pre-

vent some conclusions by defeating some defeasible rules. An example of this kind of

rule is “Minors might not have legal capacity,” formally expressed as r3: minor(X) ;

¬haslegalcapacity(X). The idea here is that even if we know that someone is a mi-

nor, this is not sufficient evidence for the conclusion that he or she does not have legal

capacity. The superiority relation between rules indicates the relative strength of each

rule. That is, stronger rules override the conclusions of weaker rules. For example, if

r3� r2, then the rule r3 overrides r2, and we can derive neither the conclusion that Bob

has legal capacity nor the conclusion that he does have legal capacity.

Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of

defeasible rules in R by Rd , the set of strict and defeasible rules in R by Rsd , and the set

of defeaters in R by Rd f t . R[q] denotes the set of rules in R with consequent q. In the
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following∼p denotes the complement of p, that is, ∼p is ¬p if p is an atom, and∼p is

q if p is ¬q. For a rule r we will use A(r) to indicate the body or antecedent of the rule

and C(r) for the head or consequent of the rule. A rule r consists of its antecedent A(r)
(written on the left; A(r) may be omitted if it is the empty set), which is a finite set of

literals; an arrow; and its consequent C(r), which is a literal. In writing rules we omit

set notation for antecedents.

Conclusions are tagged according to whether they have been derived using defeasible

rules or strict rules only. So, a conclusion of a theory D is a tagged literal having one of

the following four forms:

+∆q meaning that q is definitely provable in D.

−∆q meaning that q is not definitely provable in D.

+∂q meaning that q is defeasibly provable in D.

−∂q meaning that q is not defeasibly provable in D.

These different notions of provability come of use here because they enable the system

to label a suggestion as stronger or weaker depending on the kind of proof associated

with it. Provability is based on the concept of a derivation (or proof) in D. A derivation

is a finite sequence P = (P(1),...,P(n)) of tagged literals. Each tagged literal satisfies

some proof conditions. A proof condition corresponds to the inference rules that refer

to one of the four kinds of conclusions we have mentioned above. P(1..n) denotes the

initial part of the sequence P of length n. We state below the conditions for defeasibly

derivable conclusions:

If P(i+1) = +∂q then

(1) +∆q ∈ P(1..i) or

(2) (2.1) ∃r ∈ Rsd [q]∀a ∈ A(r) : +∂a ∈ P(1..i) and

(2.2) −∆∼q ∈ P(1..i) and

(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃a ∈ A(s) :−∂a ∈ P(1..i) or

(2.3.2) ∃t ∈ Rsd [q] such that

∀a ∈ A(t) : +∂a ∈ P(1..i) and t � s.

If P(i+1) =−∂q then

(1) −∆q ∈ P(1..i) and

(2) (2.1) ∀r ∈ Rsd [q] ∃a ∈ A(r) :−∂a ∈ P(1..i) or

(2.2) +∆∼q ∈ P(1..i) or

(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀a ∈ A(s) : +∂a ∈ P(1..i) and

(2.3.2) ∀t ∈ Rsd [q] either

∃a ∈ A(t) :−∂a ∈ P(1..i) or t 6� s.

Informally, a defeasible derivation for a provable literal consists of three phases: First,

we propose an argument in favour of the literal we want to prove. In the simplest case,

this consists of an applicable rule for the conclusion (a rule is applicable if its antecedent

has already been proved). Second, we examine all counter-arguments (rules for the op-

posite conclusion). Third, we rebut all the counter-arguments (the counter-argument is
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weaker than the pro-argument) or we undercut the (some of the premises of the coun-

terargument are not provable).

4 Temporal Modal Defeasible Logic

Defeasible Logic allows us to deal with incomplete information but as such does not

provide any mean to deal with modalities and temporal aspects. Temporal Modal De-

feasible Logic is an umbrella expression to designate possible extensions of Defeasible

Logic to capture modalities and time. We present in this section an extension of [1] with

intervals as exposed in the temporal model (see Section 2).

4.1 Modal Domain

The combination of mental attitudes and obligations are framed in Defeasible Logic

following the works of [7][8][9] and capture some basic facets of the modal notions of

knowledge, intentions, action and obligation.

To extend DL woth modal opators, new types of rules relative to modal operator

are introduced: arrows of the rules are labelled by the different modalities we want

to deal with. This solution leads to distinguishing different modes through which the

literals can be derived using rules. How such types of derivation are related to the

introduction of the corresponding modalised literals can be expressed as follows: if

X ∈ {KNOW, INT,ACT,OBL}, then

Γ Γ ⇒X ψ

Γ |∼Xψ
MI

As we will see, we do make an exception when rules for knowledge are concerned

since we will state that X ∈ {INT,OBL,ACT}. The reason for this is that we assume

that beliefs are conceived of as the knowledge the agent has of the environment, and so

they are used by the agent to make inferences about how the world is: in this perspective,

belief conclusions correspond to factual knowledge and do not need to be modalised.

But besides this exception, which can be removed if required, schema MI captures the

basic logical behaviour of our modal rules. Notice, also, that actions are successful and

intentional and so, when ACTψ is derived, this also implies that ψ and INTψ are the

case.

Other relations between modalities are captured by means of rule conversions and

conflicts.

The notion of rule conversion permits to use rules for a modality X as they were for

another modality Y . Suppose that a rule of a specific type is given and also suppose that

all the literals in the antecedent of a rule are provable in one and the same modality,

then it is arguable that the conclusion of the rule inherits the modality of the antecedent.

An example can help us illustrate the notion of conversion. Consider the following

formalisation of the Yale Shooting Problem.

load:[t, t], shoot:[t, t]⇒KNOW kill:[t, t]
This rule encodes the knowledge of an agent that knows that loading the gun with live
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ammunitions, and then shooting will kill her friend. This example clearly shows that

the qualification of the conclusions depends on the modalities relative to the individual

acts “load” and “shoot”. In particular, if we obtain that the agent intends to load and

to shoot the gun (INT(load), INT(shoot)), then, since she knows that the consequence

of these actions is the death of her friend, she intends to kill him. However, if shooting

was not intended, then we have prima facie to say that killing, too, was not intentional.

To define the admitted conversions we introduce a binary relation Convert over the

modalities of the language. When we write Convert(KNOW,OBL) this means that a

knowledge rule r can be used to derive an obligation (of course, provided that all its

antecedents are derived as obligations): r can thus be converted into a rule for intention.

Conflicts play an important role in the current context and it is crucial to estab-

lish criteria for detecting and solving conflicts between the different components which

characterise the cognitive profiles of agent’s deliberation, and, above all between mental

states and normative provisions. Conflicts are detected and solved by a similar strategy

than basic DL, i.e, by following a pattern such that (i) in a first phase an argument

supporting the conclusion is advanced (ii) in the second phase any possibble attack are

considers, and (iii) finally the counter-attack for each attack.

Thus, for the purpose of this paper, we introduce a ternary relation Attack over the

set of modalities that defines which types of rules are in conflict and which are the

stronger ones. For example, if we write Attack(OBL, INT,ACT) this means that, in the

reasoning pattern illustrated above, obligations in general override intentions, which in

turn override actions.

The relation Attack is explicitly linked to that of agent type. Classically, agent types

are characterised by stating conflict resolution types in terms of orders of overruling

between rules [3,7,9,8]. In this perspective, agent types are meaningful within a non-

monotonic setting and are nothing but general strategies to detect and solve conflicts

between the different components of the cognitive profiles of agent’s deliberation. In [3]

24 possible types are identified while, in [8], based on a different framework, 20 com-

binations are proposed. Typically, rational agents are assumed to be at least realistic: a

realistic agent, in fact, is such that rules for knowledge override all other components.

If the realistic condition is abandoned, we may have various forms of wishful thinking.

Given the minimal assumption that a rational agent should be realistic, we may further

constrain agent’s deliberation in order not to violate obligations: a social agent type

requires that obligations are stronger than the other motivational components with the

exception of beliefs. Other agent types can be specified, for which see [7][8][9].

4.2 Temporal domain

Approaches in temporal resonning are traditionally based on either instants (van Ben-

them, 1991), intervals (Allen, 1984) or both by representing one through the other

(Allen and Hayes, 1989). We represent intervals by means of instants. Formally, we

consider a totally ordered discrete set Temp of points of time termed -instants- and over

it the order relation > ⊆ Temp×Temp. We usually denotes the variables ranging over

the members of Temp by t and its subscripts.

Ordinarily, intervals are defined as sets of instants between two indicated instants. Here
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we deviate to this definition because of the non-homogeneity or transient character of

events: if an event occurs in an interval conceived as a set of instants, then it would also

occur in the set of instants that defines it and this would conflict with the transient char-

acterisation of events. Hence, we define an interval as a pair of instants. Formally, an in-

terval is a member of the set Int = {[t1, t2]∈ Temp×Temp|t1≤ t2}. As can be noted, this

defintion allows punctual intervals, i.e., intervals of the form [t, t]. Among the set Int, we

identify two subtsets of interval to differentiate intervals in which an associated property

holds at any instant between the boundaries and intervals in which an associated prop-

erty holds at least one instant between the boundaries. We shall call the first A-interval

and the seconds B-intervals. The set of A-intervals is denoted AInter while the set of

B-intervals is denoted BInter. We have AInter∩BInter = /0 and AInter∪BInter = Int.

We shall usually denote intervals by T , A-intervals by T and B-intervals by T̂ (plus

eventual subscripts).

As explained in section 2, a conclusion can be associated to two temporal intervals

consequently of the different temporal dimensions. The first interval is the interval of

applicability with which the consequent of the rule is labelled while the second interval

corresponds to the time of force interval associated to the rule. Each interval can be

assimilated to temporal russian-dolled viewpoints from which conclusions are consid-

ered. We represent such temporalisation of conclusion by concatenation of intervals by

means of the symbol ’:’ and we call such concatenation chain of viewpoints. Chain of

viewpoints are denoted by V (plus eventual subscripts).

Temporal calculi are driven by operators over intervals. In the literature, one can

find many relations that hold between intervals. For example, (Allen 1984) proposes

an algebra of intervals with thirteen mutually exclusive relations between two intervals.

For our purpose, we limit the set of relations to -subinterval- denoted v, over, -start in-

denoted si, -start before end- denoted sbe and -start before start- denoted sbs.

Definition 1. Let two intervals T = [ti, t f ] and T ′ = [t ′i , t
′
f ],

T v T ′ iff t ′mi ≤ tmi and tm f ≤ t ′m f .

si(T,T ′) iff t ′i ≤ ti ≤ t ′f .

sbe(T,T ′) iff ti ≤ t ′f .

sbs(T,T ′) iff ti ≤ t ′i .

over(T,T ′) iff t ′i ≤ ti ≤ t ′f or t ′i ≤ t f ≤ t ′f or ti ≤ t ′i ≤ t f .

Note that T v T ′, si(T,T ′) or sbe(T,T ′) implies over(T,T ′), that T v T ′ implies

si(T,T ′) and that over(T,T ′) implies over(T ′,T ).
In order to lighten the paper, we may use the abbreviation consisting in placing chain

of view points as arguments of the previous operators, such that for example,

– T v T ′ : T ′′ stands for T v T ′ and T v T ′′.
– T : T ′ v T ′′ : T ′′′ stands for T v T ′′ and T ′ v T ′′′.
– T : T ′ v T ′′ stands for T v T ′′ and T ′ v T ′′.

and similarly for other operators.

Finally, we consider the functions start() and end() that returns respectively the

lower bound and upper bound of an interval.



10 R. Riveret, A. Rotolo, G. Governatori

4.3 The Language

A temporal defeasible agent theory consists of a discrete totally ordered set of in-

stants of time Temp, a set of facts or indisputable statements, four sets of rules for

knowledge, intentions, intentional actions, and obligations, and a superiority relation

> among rules saying when a single rule may override the conclusion of another

rule. For X ∈ {KNOW, INT,ACT,OBL}, a strict rule is an expression of the form

φ1, . . . ,φn →X ψ such that whenever the premises φ1, . . . ,φn are indisputable so is the

conclusion ψ . A defeasible rule is an expression of the form φ1, . . . ,φn ⇒X ψ whose

conclusion can be defeated by contrary evidence. An expression φ1, . . . ,φn ;X ψ is a

defeater used to defeat some defeasible rules by producing evidence to the contrary.

It is worth noting that modalised literals can occur only in the antecedent of rules: the

reason of this is that the rules are used to derive modalised conclusions while we do not

conceptually need to iterate modalities. This limitation makes the system more man-

ageable.

Definition 2 (Language). Let Temp a discrete totally ordered set of instants of time,

Prop be a set of propositional atoms, Mod = {KNOW, INT,ACT,OBL} be the set of

modal operators, and Lab be a set of labels. The sets below are the smallest sets closed

under the following rules:

Literals

Lit = Prop∪{¬p|p ∈ Prop}

If q is a literal, ∼q denotes the complementary literal (if q is a positive literal p

then ∼q is ¬p; and if q is ¬p, then ∼q is p);

Modal Literals

ModLit = {Xl,¬Xl|l ∈ Lit,X ∈ {INT,ACT,OBL}};

Intervals

Inter = {T = [t1, t2]|t1, t2 ∈ Temp, t1≤ t2};

A-Intervals

AInter = {T = [t1, t2]|t1, t2 ∈ Temp, t1≤ t2};

B-Intervals

BInter = {T̂ = [̂t1, t2]|t1, t2 ∈ Temp, t1≤ t2};

Chain of Viewpoints

ChainView = {V = T 1,V ′ = T 1 : T 2|T 1,T 2 ∈ AInter∪BInter};

Temporal Literals

TempLit = {l : T |l ∈ Lit,T ∈ AInter∪BInter};

Multi-Temporal Literals

MTempLit = {l : V |l ∈ Lit,V ∈ ChainView};
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Temporal Modal literals

TempModLit = {Xl : T |Xl ∈ModLit,T ∈ AInter∪BInter};

Multi-Temporal Modal literals

MTempModLit = {Xl : V |Xl ∈ModLit,V ∈ ChainView};

Temporal Rules

Rules = {(r : φ1, . . . ,φn→X ψ) : T |
r ∈ Lab,A(r)⊆ TempLit∪TempModLit,X ∈Mod,ψ ∈ TempLit,T ∈ AInter}

Ruled = {(r : φ1, . . . ,φn⇒X ψ) : T |
r ∈ Lab,A(r)⊆ TempLit∪TempModLit,X ∈Mod,ψ ∈ TempLit,T ∈ AInter}

Ruledft = {(r : φ1, . . . ,φn ;X ψ) : T |
r ∈ Lab,A(r)⊆ TempLit∪TempModLit,X ∈Mod,ψ ∈ TempLit,T ∈ AInter}

Rule = Rules∪Ruled ∪Ruledft

We use some abbreviations: A(r) denotes the set {φ1, . . . ,φn} of antecedents of the

rule r, and C(r) to denote the consequent ψ of the rule r. We use also superscript for

mental attitude, subscript for type of rule, and Rule[φ ] for rules whose consequent is

φ . If one does not refer to the content of the rule, a temporal rule can be written as r:T

where r is the label of the rule and T is a temporal interval.

Definition 3 (Defeasible Agent Theory). A defeasible agent theory is a structure

D = (Temp,F,RKNOW,RINT,RACT,ROBL,>,C ,V )

where

– Temp a discrete totally ordered set of instants of time;

– F ⊆ TempLit∪TempModLit is a finite set of facts;

– RKNOW ⊆ RuleKNOW, RINT ⊆ RuleINT, RACT ⊆ RuleACT, ROBL ⊆ RuleOBL are four

finite sets of rules such that each rule has a unique label;

– >⊆ RKNOW∪INT∪ACT∪OBL × RKNOW∪INT∪ACT∪OBL is an acyclic superiority rela-

tion.

– C ⊆ {Convert(X ,Y )|X ,Y ∈Mod} is a set of conversions.

– V ⊆ {Attack(X ,Y,Z)|X ,Y,Z ∈Mod} is a set of attack relation.

4.4 Proof Theory

The formalism we have introduced allows us to temporalise rules, thus we have to

admit the possibility that rules are not only given but can be proved to holf for certain

span of time. Accordingly we have to give conditions that allow us to derive rules

instead of literals. A conclusion of a theory D is a tagged temporal literal or rule having

one of the following forms:

+∆γ:V meaning that γ:V is definitely provable in D.



12 R. Riveret, A. Rotolo, G. Governatori

−∆γ:V meaning that γ:V is not definitely provable in D.

+∂γ:V meaning that γ:V is defeasible provable in D.

−∂γ:V meaning that γ:V is not defeasible provable in D.

Provability is based on the concept of a derivation (or proof) in D. A derivation

is a finite sequence P = (P(1), ..,P(n)) of tagged literals. Each tagged temporal literal

or rule satisfies some proof conditions, which correspond to inference rules for the four

kinds of conclusions we have mentioned above. The conditions for applicability of

rules are formalised below:

If Convert(Y,X) and r:Tr is ∆ -applicable in the proof condition for ±∆X then

(1) +∆r:Tr ∈ P(1..i), and either

(2) r:Tr ∈ RX ,

(2.1) ∀α:Tα ∈ A(r:Tr),
(2.1.1) +∆KNOWα : Tα ∈ P(1..i), or +∆KNOWα : Tα :T̂r ∈ P(1..i), or

(2.1.2) +∆ACTα : Tα ∈ P(1..i), or +∆ACTα : Tα :T̂r ∈ P(1..i),
(2.2) ∀α:T̂α ∈ A(r:Tr),

(2.2.1) +∆KNOWα : T̂α ∈ P(1..i), or +∆KNOWα : T̂α :T̂r ∈ P(1..i), or

(2.2.2) +∆ACTα : T̂α ∈ P(1..i), or +∆ACTα : T̂α :T̂r ∈ P(1..i), and

(2.3) ∀Zα:Tα ∈ A(r:Tr),+∆Zα : Tα ∈ P(1..i), or +∆Zα : Tα :T̂r ∈ P(1..i), and

(2.4) ∀Zα:T̂α ∈ A(r:Tr),+∆Zα : T̂α ∈ P(1..i), or +∆Zα : T̂α :T̂r ∈ P(1..i), or

(3) r:Tr ∈ RY ,

(3.1) ∀α:Tα ∈ A(r:Tr), +∆X α : Tα ∈ P(1..i), or +∆X α : Tα :T̂r ∈ P(1..i), and

(3.2) ∀α:T̂α ∈ A(r:Tr),+∆X α : T̂α ∈ P(1..i), or +∆X α : T̂α :T̂r ∈ P(1..i).

The conditions for a rule r to be ∂ -applicable are the same as those for ∆ -

applicable, but where we replace ∆ with ∂ .

If Convert(Y,X) and r:Tr is ∆ -discarded in the proof condition for ±∆X then

(1) −∆r:Tr ∈ P(1..i), or either

(2) r:Tr ∈ RX ,

(2.1) ∃α:Tα ∈ A(r:Tr),
(2.1.1) −∆KNOWα : Tα ∈ P(1..i), and −∆KNOWα : Tα :T̂r ∈ P(1..i), and

(2.1.2) −∆ACTα : Tα ∈ P(1..i), and −∆ACTα : Tα :T̂r ∈ P(1..i), or

(2.2) ∃α:T̂α ∈ A(r:Tr),
(2.2.1) −∆KNOWα : T̂α ∈ P(1..i), and −∆KNOWα : T̂α :T̂r ∈ P(1..i), and

(2.2.2) −∆ACTα : T̂α ∈ P(1..i), and −∆ACTα : T̂α :T̂r ∈ P(1..i), or

(2.3) ∃Zα:Tα ∈ A(r:Tr),−∆Zα : Tα ∈ P(1..i), and −∆Zα : Tα :T̂r ∈ P(1..i), or

(2.4) ∃Zα:T̂α ∈ A(r:Tr),−∆Zα : T̂α ∈ P(1..i), and −∆Zα : T̂α :T̂r ∈ P(1..i), or

(3) r:Tr ∈ RY ,

(3.1) ∃α:Tα ∈ A(r:Tr), −∆X α : Tα ∈ P(1..i), and −∆X α : Tα :T̂r ∈ P(1..i), or

(3.2) ∃α:T̂α ∈ A(r:Tr),−∆X α : T̂α ∈ P(1..i), and −∆X α : T̂α :T̂r ∈ P(1..i).

The conditions for a rule r:Tr to be ∂ -discarded are the same as those for ∆ -

discarded, but where we replace ∆ with ∂ .
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We are now ready to define the proof theory that is, the inference conditions to

derive tagged conclusions from a given theory D. We begin with the proof conditions

to determine whether a rule is a definite conclusion of a theory D. A temporalised rule

γ:T is definitely provable (+∆ ) if (1) there exists a rule γ:Tγ in the set of rule such that

T v Tγ , or (2) blalblabla Formally:

If P(i+1) = +∆γ:T then

(1) ∃Tγ ,v Tγ ,γ:Tγ ∈ R,T , or

(2) ∃Tγ1,∃Tγ2, meets(Tγ1,Tγ2), start(Tγ1) = start(T ), end(Tγ2) = end(T ),
γ:Tγ1 ∈ R and γ:Tγ2 ∈ R.

A definite rule is not provable at interval T if there is not such rule in the set rules

defined in a larger interval.

If P(i+1) =−∆γ:T then

(1) ∀Tγ ,v Tγ ,γ:Tγ /∈ R,T , and

(2) ∀Tγ1,∀Tγ2, meets(Tγ1,Tγ2), start(Tγ1) = start(T ), end(Tγ2) = end(T ),

γ:Tγ1 /∈ R or γ:Tγ2 /∈ R.

A temporalised rule γ:T̂ is definitely provable (+∆ ) if there exists a rule γ:Tγ in the

set of rule such that T v Tγ . Formally:

If P(i+1) = +∆γ:T̂ then ∃Tγ ,over(T̂ ,Tγ),γ:Tγ ∈ R.

If P(i+1) =−∆γ:T̂ then ∀Tγ ,over(T̂ ,Tγ),γ:Tγ /∈ R.

We can now move to definite literals.

If P(i+1) = +∆X γ:V and Convert(Y,X) then

(1) ∃Tγ ,V v Tγ ,Xγ:Tγ ∈ F , or

(2) if X = KNOW then ∃Tγ ,V v Tγ ,γ:Tγ ∈ F , or

(3) if X = INT then ∃Vγ ,V vVγ ,+∆ACTγ:Vγ , or

(4) ∃r:Tr ∈ Rs[γ : Tγ ], V v Tγ :Tr, r:Tr is ∆ -applicable, or

(5) ∃Vγ1,∃Vγ2, meets(Vγ1,Vγ2), start(Vγ1) = start(V ), end(Vγ2) = end(V̂ )
+∆X γ:Vγ1 ∈ P(1..i) and +∆X γ:Vγ2 ∈ P(1..i).

To prove that a definite literal is not provable we have to show that all attempts to

give a definite proof of the literal fail.

If P(i+1) =−∆X γ:V and Convert(Y,X) then

(1) ∀Tγ ,V v Tγ ,Xγ:Tγ /∈ F , and

(2) if X = KNOW then ∀Tγ ,V v Tγ ,γ:Tγ /∈ F , and

(3) if X = INT then ∀Vγ ,V vVγ ,−∆ACTγ:Vγ , and

(4) ∀r:Tr ∈ Rs[γ : Tγ ], V v Tγ :Tr, r:Tr is ∆ -discarded, and

(5) ∀Vγ1,∀Vγ2, meets(Vγ1,Vγ2), start(Vγ1) = start(V ), end(Vγ2) = end(V̂ )
−∆X γ:Vγ1 ∈ P(1..i) or −∆X γ:Vγ2 ∈ P(1..i).
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The conditions for a temporal literal γ:T̂ to be definitely provable (+∆ ) are formally

expressed below.

If P(i+1) = +∆X γ:V̂ and Convert(Y,X) then ∃V̂γ ,over(V̂ ,Vγ),+∆X γ:Vγ .

If P(i+1) =−∆X γ:V̂ and Convert(Y,X) then ∀V̂γ ,over(V̂ ,Vγ),−∆X γ:Vγ .

If P(i+1) = +∆X γ:T :T̂r and Convert(Y,X) then

∃Tγ1,∃Tr1,T v Tγ1, over(T̂r,Tr1),+∆X γ:Tγ1:Tr1 ∈P(1..i).

If P(i+1) =−∆X γ:T :T̂r and Convert(Y,X) then

∀Tγ1,∀Tr1,T v Tγ1, over(T̂r,Tr1),−∆X γ:Tγ1:Tr1 ∈P(1..i).

We now turn our attention to defeasible derivations, that is, derivations giving a

temporal assertion γ:V as a defeasible conclusion of a theory D. We begin with the

proof conditions to determine whether a rule is a defeasible conclusion.

If P(i+1) = +∂ r:T then +∆r:T ∈ P(1..i)

If P(i+1) = +∂ r:T̂ then +∆r:T̂ ∈ P(1..i).

Defeasible provability (+∂ ) for temporal literals consists of three phases. In the

first phase, we put forward a supported reason for the temporal assertion that we want

to prove. Then in the second phase, we consider all possible attacks against the desired

conclusion. Finally in the last phase, we have to counter-attack the attacks considered

in the second phase.

If P(i+1) = +∂X γ:V and Convert(Y,X) and Attack(W,Z,X) then

(1) +∆X γ:V ∈ P(1..i), or

(2) −∆X∼γ:V̂ ∈ P(1..i), and

(2.1) if X = INT then ∃Vγ ,V vVγ , +∂ACTγ:Vγ , or

(2.2) ∃r:Tr ∈ RX∪Y
sd [γ:Tγ ], V v Tγ :Tr, r:Tr is ∂ -applicable,

(2.3) ∀s:Ts ∈ RW∪Z∪X∪Y [∼γ:T∼γ ], si(T∼γ :Ts,Tγ :Tr), sbe(T∼γ :Ts, V ),

(2.3.1) s:Ts is ∂ -discarded, or

(2.3.2) ∃w:Tw ∈ RK [γ:Twγ ], V v Twγ :Tw,

(2.3.2.1) w:Tw is +∂ -applicable, and either

(2.3.2.2) s:Ts ∈ RX∪Y ,

(2.3.2.2.1) w:Tw ∈ RW∪Z , or

(2.3.2.2.2) w:Tw ∈ RX∪Y , w:Tw � s:Ts, or

(2.3.2.3) s:Ts ∈ RZ ,

(2.3.2.3.1) w:Tw ∈ RW , or

(2.3.2.3.2) w:Tw ∈ RZ , w:Tw � s:Ts, or

(2.3.2.4) s:Ts ∈ RW , w:Tw ∈ RW , w:Tw � s:Ts, or

(3) ∃Vγ1,∃Vγ2, meets(Vγ1,Vγ2), start(Vγ1) = start(V ), end(Vγ2) = end(V̂ )
+∂X γ:Vγ1 ∈ P(1..i) and +∂X γ:Vγ2 ∈ P(1..i).
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If P(i+1) =−∂X γ:V and Convert(Y,X) and Attack(W,Z,X) then

(1) −∆X γ:V ∈ P(1..i), and

(2) +∆X∼γ:V̂ ∈ P(1..i), or

(2.1) if X = INT then ∀Vγ ,V vVγ , −∂ACTγ:Vγ , and

¿(2.2) ∀r:Tr ∈ RX∪Y
sd [γ:Tγ ], V v Tγ :Tr, r:Tr is ∂ -applicable,

(2.3) ∃s:Ts ∈ RW∪Z∪X∪Y [∼γ:T∼γ ], si(T∼γ :Ts,Tγ :Tr), sbe(T∼γ :Ts, V ),

(2.3.1) s:Ts is ∂ -applicable, and

(2.3.2) ∀w:Tw ∈ R[γ:Twγ ], T v Twγ :Tw, either

(2.3.2.1) w:Tw is ∂ -discarded, or

(2.3.2.2) s:Ts ∈ RX∪Y ,

(2.3.2.2.1) w:Tw /∈ RW∪Z , and

(2.3.2.2.2) w:Tw ∈ RX∪Y , w:Tw 6� s:Ts, and

(2.3.2.3) s:Ts ∈ RZ

(2.3.2.3.1) w:Tw /∈ RW , and

(2.3.2.3.2) w:Tw ∈ RZ , w:Tw 6� s:Ts, and

(2.3.2.4) s:Ts ∈ RW , w:Tw ∈ RW , w:Tw 6� s:Ts, and

(3) ∀Vγ1,∀Vγ2, meets(Vγ1,Vγ2), start(Vγ1) = start(V ), end(Vγ2) = end(V̂ )
−∂X γ:Vγ1 ∈ P(1..i) and −∂X γ:Vγ2 ∈ P(1..i)

Let us illustrate the proof condition of the defeasible provability of Xγ:V . We have

two cases: 1) We show that Xγ:V is already definitely provable; or 2) we need to argue

using the defeasible part of D. In this second case, to prove Xγ:V defeasibly we must

show that X∼γ:V̂ is not definitely provable (2). We require then there must be a strict

or defeasible rule r:Tr ∈ RX∪Y which can be applied and with head γ:Tγ such that

V v Tγ :Tr (2.1). But now we need to consider possible attacks, i.e., reasoning chains

in support of ∼γ:V , that is, any rule s:Ts ∈ RW∪Z∪X∪Y which has head ∼γ:T∼γ such

that si(T∼γ :Ts,Tγ :Tr), and sbe(T∼γ :Ts, V ). Note that here we consider defeaters, too,

whereas they could not be used to support the conclusion Xγ:V ; this is in line with the

motivation of defeaters given earlier. These attacking rules s:Ts have to be discarded

(2.3.1), or must be counterattacked by a stronger rule w:Tw which has a head γ:Twγ

such that V is contained in Twγ :Tw (2.3.2). blabla

The defeasible proof for a temporalised literal to hold in some instants of a chain of

viewpoints V̂

If P(i+1) = +∂X γ:V̂ and Convert(Y,X) and Attack(W,Z,X) then

∃Vγ ,over(V̂ ,Vγ),+∂X γ:Vγ ∈P(1..i).

If P(i+1) =−∂X γ:V̂ and Convert(Y,X) and Attack(W,Z,X) then

∀Vγ ,over(V̂ ,Vγ),−∂X γ:Vγ ∈P(1..i).

5 Conclusions

We hope you like the Dagstuhl Seminar Proceedings :-)

pricai06
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