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Abstract

In an open channel, a hydraulic jump is the rapid transition from super- to sub-critical flow associated with strong turbulence
and air bubble entrainment in the mixing layer. New experiments were performed at relatively large Reynolds numbers using
phase-detection probes. Some new signal analysis provided characteristic air–water time and length scales of the vortical structures
advecting the air bubbles in the developing shear flow. An analysis of the longitudinal air–water flow structure suggested little
bubble clustering in the mixing layer, although an interparticle arrival time analysis showed some preferential bubble clustering for
small bubbles with chord times below 3 ms. Correlation analyses yielded longitudinal air–water time scales TxxV1/d1 of about 0.8
in average. The transverse integral length scale Z/d1 of the eddies advecting entrained bubbles was typically between 0.25 and 0.4,
irrespective of the inflow conditions within the range of the investigations. Overall the findings highlighted the complicated nature
of the air–water flow.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In an open channel, the rapid transition from a high-velocity flow into a slow flow is a hydraulic jump that is
characterised by strong turbulent mixing and air bubble entrainment (Fig. 1). Basic studies of bubbly flow properties
in hydraulic jumps included Rajaratnam [1] and Thandaveswara [2] (Table 1). A ‘milestone’ contribution was the work
of Resch and Leutheusser [3] who showed first that the air entrainment, momentum transfer and energy dissipation
processes are strongly affected by the inflow conditions. More recent studies are summarised in Table 1. Despite these,
the bubbly flow structure and the relevant characteristic time and length scales are not well known.

It is the purpose of this paper to present new experimental results obtained with a hydraulic jump with partially-
developed inflow. First, the experimental apparatus is described in details. Then basic air-water flow properties are
presented. In the later parts, the streamwise structure of the bubbly flow and the characteristic time and length scale
results are discussed.
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Fig. 1. Sketch of air bubble entrainment in hydraulic jump.

2. Experimental apparatus

New experiments were performed in two horizontal channels at the University of Queensland. One flume was 3.2 m
long, 0.25 m wide with glass bottom and sidewalls. The second channel was 3.2 long, 0.5 m wide with glass sidewalls
and a PVC bed. Both channels were fed by a constant head tank.

The water depths were measured using rail mounted pointer gauges with an accuracy of 0.2 mm. The flow rates
were measured with a 90◦ V-notch weir in the narrow flume and with a Venturi meter in the wide flume. Both systems
were calibrated in-situ and the percentage of error was expected to be less than 2%.

Air–water flow properties were measured with two single-tip conductivity probes (inner electrode ∅ = 0.35 mm).
The reference probe was always located on the channel centreline (z = 0) while the second identical probe was
separated in the transverse direction by a known spacing z (Figs. 1 and 2B). Both probe sensors were located at
the same vertical and streamwise distances y and x respectively. The probes were excited by an electronic system
(Ref. AS25240) designed with a response time of less than 10 µs. The signal outputs were scanned at 20 kHz per
probe sensor for 45 s. The probe displacement in the vertical direction was controlled by a fine adjustment system
(error < 0.1 mm).

Further details on the experimental apparatus as well as the full data sets were reported in Chanson [4].

2.1. Signal processing

The measurement principle of conductivity probes is based upon the difference in electrical resistivity between
air and water. Typical probe signals are shown in Fig. 2 for the two probes placed at the same streamwise and verti-
cal locations, but separated transversely by z = 11.5 mm. (In Fig. 2A, the air and water voltages are about +0.3 V
and +4.25 V respectively.) The air–water flow properties were calculated using a single threshold technique and the
threshold was set at about 45 to 55% of the air–water voltage range. A sensitivity analysis was conducted with thresh-
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Table 1
Detailed experimental investigations of air entrainment in hydraulic jumps

Reference

(1)

Flow conditions

(2)

Measurement
technique(s)
(3)

Comments

(4)

Rajaratnam [1] Fr1 = 2.68 to 8.72, V1 = 1.3 to
4.35 m/s, d1 = 0.0254 m

Conductivity probe W = 0.308 m

Resch and
Leutheusser [3]

Conical hot-film probe DISA
55A87 (0.6 mm sensor size)

W = 0.39 m

Fr1 = 2.98 & 8.04,V1 = 1.84 &
2.78 m/s, d1 = 0.039 & 0.012 m,
x1 = 0.39 & 0.122 m

P/D inflow
conditions

Fr1 = 3.26 & 7.32, V1 = 2.5 &
2.0 m/s, d1 = 0.039 & 0.012 m,
x1 = 2.44 & 7.8 m

F/D inflow
conditions

Thandaveswara [2] Fr1 = 7.16 to 13.31, V1 = 2.18 to
4.60 m/s, d1 = 0.0107 to 0.152 m
x1 = 0.23 m, P/D inflow conditions

Pitot tube (3.2 mm external ∅),
Conductivity probe: double tip
(4 mm tip spacing)

W = 0.6096 m

Babb and Aus [26] Fr1 = 6.0, V1 = 3.51 m/s,
d1 = 0.035 m, P/D inflow conditions

Conical hot-film probe DISA
55R42 (0.4 mm sensor size)

W = 0.46 m

Chanson [5] Fr1 = 5.0 to 8.1, V1 = 1.97 to
3.19 m/s, d1 = 0.016 to 0.017 m,
x1 = 0.7 to 0.96 m, P/D inflow
conditions (δ/d1 = 0.45 to 0.95 (m))

Pitot tube: 3.3 mm external ∅),
Conductivity probe (single tip,
0.35 mm inner electrode)

W = 0.25 m

Mossa and Tolve [6] Fr1 = 6.42 to 7.3, V1 = 2.85 to
3.12 m/s, d1 = 0.0185 to 0.0202 m,
x1 = 0.90 m, P/D inflow conditions

Video-imaging (CCD, 5E+5
pixels, 16.8E+6 levels of grey pr
pixel)

W = 0.40 m

Chanson and
Brattberg [7]

Fr1 = 6.33 & 8.48, V1 = 2.34 &
3.14 m/s, d1 = 0.014 m,
x1 = 0.50 m, P/D inflow conditions
(δ/d1 = 0.65 (m))

Pitot tube: 3.3 mm external ∅),
Conductivity probe (double tip,
0.025 mm inner electrode, 8 mm
tip spacing)

W = 0.25

Murzyn et al. [8] Fr1 = 2.0 to 4.8, V1 = 1.50 to
2.19 m/s, d1 = 0.021 to 0.059 m,
x1 = 0.28 to 0.36 m, P/D inflow
conditions (δ/d1 = 0.18 to 0.36 (c))

Optical fibre probe (double tip,
0.010 mm ∅, 1 mm tip spacing)

W = 0.3 m

Present study Fr1 = 4.6 to 8.6, V1 = 1.7 to
4.0 m/s, d1 = 0.012 to 0.029 m,
x1 = 0.5 & 1.0 m, P/D inflow
conditions (δ/d1 = 0.6 to 0.7 (m))

Conductivity probes (single tip,
0.35 mm inner electrode)

P/D inflow
conditions
W = 0.25
and 0.5 m

Notes: F/D: fully-developed; P/D: Partially-developed; W: channel width; (c): calculated; (m) measured.

olds between 40 and 60% of the voltage range, showing little effect of the threshold on the air–water flow properties
(e.g. error less than 1% on void fraction) as previously observed by Herringe and Davis [9] and Toombes [10].

The basic probe outputs were the void fraction C, the bubble count rate F defined as the number of bubbles
impacting the probe tip per second, and the air chord time distribution where the chord time is defined as the time
spent by the bubble on the probe tip. Statistical analyses of chord time distributions yielded median chord time,
standard deviation, skewness and kurtosis. Interparticle arrival times were also calculated and analysed.

With two probes simultaneously sampled, the signals were analysed in terms of the auto-correlation and cross-
correlation functions Rxx and Rxz respectively (Fig. 3). Basic results included the maximum cross-correlation coeffi-
cient (Rxz)max, and the integral time scales Txx and Txz where:

Txx =
τ=τ(Rxx=0)∫

Rxx(τ )dτ, (1)
τ=0
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(A)

(B)

Fig. 2. Air–water flow measurements with two conductivity probes side-by-side. (A) Signal outputs in the shear layer of a hydraulic jump –
transverse probe separation z = 11.5 mm, C = 0.156, F = 136.7 Hz, y/d1 = 0.91, Fr1 = 8.6, d1 = 0.024 m, x1 = 1.0 m, x − x1 = 0.2 m,
W = 0.5 m. (B) Two probes separated by z = 10.5 mm, flow direction from bottom left to top right – local air–water flow properties: C = 0.79,
F = 20.6 Hz, y/d1 = 4.15, Fr1 = 7.9, d1 = 0.024 m, x1 = 1 m, x − x1 = 0.2 m, W = 0.25 m.

Txz =
τ=τ(Rxz=0)∫

τ=τ(Rxz=(Rxz)max)

Rxz(τ )dτ (2)

with Rxx being the normalised auto-correlation function of the reference probe output signal, τ the time lag, and Rxz

the normalised cross-correlation function between the two probe output signals (Fig. 3A). Fig. 3B illustrates some
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(A)

(B)

Fig. 3. Auto- and cross-correlation functions for two identical single-tip conductivity probes separated by a transverse distance z. (A) Definition
sketch. (B) Experimental data: z = 2.9 mm, C = 0.37, F = 156 Hz, y/d1 = 1.47, Fr1 = 7.9, d1 = 0.0245 m, x1 = 1.0 m, x − x1 = 0.1 m,
W = 0.25 m.

typical auto- and cross-correlation data. When some identical experiments were repeated with different transverse
spacings z, a characteristic length scale was calculated as:

Z =
z=z((Rxy)max=0)∫

z=0

(Rxz)max dz (3)

where the transverse length scale Z is a function of the inflow conditions and streamwise position (x −x1). The length
scale Z represented a transverse length scale of vortical structures in the hydraulic jump.

2.2. Experimental flow conditions

Clear water velocity measurements were performed in the supercritical inflows. The data showed that the inflow
conditions were partially-developed for all investigated flow conditions. Herein the air–water flow properties were
studied specifically in the developing air–water flow region: i.e., (x −x1)/d1 � 20 where x is the longitudinal distance
from the sluice gate, x1 is the distance from the gate to the jump toe and d1 is the upstream flow depth which was
measured typically 10 to 20 cm upstream of the jump toe.

Preliminary experiments were performed in both channels with inflow conditions within 0.012 � d1 � 0.027 m,
4.6 � Fr1 � 8.6 and 1.8E+4 � Re1 � 1E+5 where Fr1 = V1/

√
gd1 is the inflow Froude number, Re1 = ρwV1d1/μw
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Table 2
Summary of detailed experimental investigations

Run

(1)

Qw

(m3/s)
(2)

d1
(m)
(3)

V1
(m/s)
(4)

W
(m)
(5)

x1
(m)
(6)

Fr1

(7)

Re1

(8)

W/d1

(9)

Remarks

(9)

051117 0.0096 0.029 2.67 0.25 1.0 5.01 7.7E+4 19
051123-25 0.0237 0.0245 3.60 0.25 1.0 7.9 9.5E+4 10 z = 2.9, 10.5, 17 mm
051202 0.0344 0.0265 2.60 0.5 1.0 5.1 6.8E+4 19 z = 11.5 mm
051206 0.0494 0.0238 4.14 0.5 1.0 8.6 9.8E+4 21 z = 11.5 mm

Note: Qw: water discharge.

is the inflow Reynolds number, V1 is the inflow velocity, g is the gravity acceleration, and ρw and μw are the water
density and dynamic viscosity respectively. The results were reported in Chanson [4]. They showed that the air–water
flow properties obtained at low Reynolds numbers could not be scaled up based upon a Froude similitude. That is,
some scale effects in terms of void fraction and bubble count rate distributions were experienced for d1 � 0.014 m and
Re1 � 4E+4. Therefore the present study was focused on the high Reynolds number flow conditions (Table 2). Further,
the experiments showed that the channel width (0.25 � W � 0.5 m) had no effect on the air–water flow properties for
Re1 > 4E+4.

3. Basic air–water flow properties

In a hydraulic jump, air entrainment occurs in the form of air bubbles and air packets entrapped at the impingement
of the upstream jet flow with the roller. The air packets are broken up in very small air bubbles as they are entrained
in the shear region which is characterised by large air contents and maximum bubble count rates. Once the entrained
bubbles are advected into regions of lesser shear, bubble collisions and coalescence lead to larger air entities (bubbles,
pockets) that are driven towards the free-surface by a combination of buoyancy and turbulent advection.

With partially-developed inflow, a key feature of the jump flow is the presence of an advective diffusion region in
which the void fractions distributions exhibit a peak in the turbulent shear region as sketched in Fig. 1. This advective
diffusion air layer was documented experimentally in past and present studies [4,6,7]. An example is shown in Fig. 4.
With increasing distance (x − x1) from the impingement, the peak void fraction Cmax decreased while the diffusion
layer broadened as seen in Fig. 4A. Experimental results indicated further the existence of a peak Fmax in bubble count
rate (Fig. 4B), but its location did not coincide with the locus of maximum void fraction as noticed by [7] and [8], and
observed in the present study (Figs. 4A and 4B).

In the advective diffusion layer, the void fraction distributions followed closely an analytical solution of the diffu-
sion equation for air bubbles:

C = Qair/Qw√
4πD#(x − x1)/d1

(
exp

(
− 1

4D#

(y/d1 − 1)2

(x − x1)/d1

))
+ exp

(
− 1

4D#

(y/d1 + 1)2

(x − x1)/d1

))
(4)

where Qair is the volume air flow rate, Qw is the water discharge, D# is a dimensionless diffusivity: D# = Dt/(V1d1),
Dt is the turbulent diffusivity which averages the effects of turbulent diffusion and of longitudinal velocity gradient,
and x and y are the longitudinal and vertical distances measured from the channel intake and bed respectively. Eq. (4)
was developed for both two-dimensional supported plunging jet and hydraulic jump flows [11,12], but it does not
account for buoyancy effects in a horizontal channel. In practice, experimental data showed that the void fraction
profiles are best predicted by an approximate form of Eq. (4):

C = Qair/Qw√
4πD#(x − x1)/d1

(
exp

(
− 1

4D#

(y/d1 − YCmax/d1)
2

(x − x1)/d1

)
+ exp

(
− 1

4D#

(y/d1 − YCmax/d1)
2

(x − x1)/d1

))
(5)

where y = YCmax is the vertical elevation where the void fraction is maximum C = Cmax (Fig. 1). Eq. (5) is compared
with experimental data in Fig. 4A. Note that the dimensionless diffusivity D# was deduced from the best data fit.
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(A)

(B)

Fig. 4. Dimensionless distributions of void fraction and bubble count rate in a hydraulic jump with partially-developed inflow – Fr1 = 7.9,
Re1 = 9.5E+4, d1 = 0.0245 m, x1 = 1.0 m, W = 0.250 m. (A) Dimensionless distributions of void fraction C – comparison with Eq. (5). (B) Di-
mensionless distributions of bubble count rate Fd1/V1.

Remark. The void fraction profiles showed some marked difference with some upper and lower regions of the flow.
In the upper flow region, Murzyn et al. [8] suggested that the void fraction distributions followed a Gaussian error
function:

C = 1

2

(
1 + erf

(
1

2

√
V1d1

D′
t

(y − Y50)/d1√
(x − x1)/d1

))
upper free-surface (6)

where Y50 is the characteristic depth (m) where the void fraction is 50%, D′
t is the turbulent diffusivity of the upper

interface and the function erf is:

erf(u) = 2√
π

u∫
0

exp
(−t2)dt. (7)

Eq. (6) was derived by Chanson [13] as an analytical solution of the advection/diffusion equation for air bubbles in
water jets discharging into air with an uniform velocity distribution, for a diffusivity D′

t that is assumed independent
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of the transverse direction y and which averages the effect of turbulence and longitudinal velocity gradient [11,14].
Eq. (6) is not applicable to a hydraulic jump roller “free-surface” although it fits the data [8,4].

4. Bubble chord time distributions

In a complicated flow such as a hydraulic jump, flow reversal and recirculation exist and phase-detection intrusive
probe cannot discriminate accurately the direction nor magnitude of the velocity. Hence only chord time data are
presented herein for the sake of accuracy. Fig. 5 shows typical normalised distributions of bubble chord time in the
hydraulic jump. For each graph, the legend provides the location (x−x1, y/d1), local air–water flow properties (C,F ),
and number of recorded bubbles Nab . The histogram columns represent each the probability of bubble chord time in a
0.5 ms chord time interval. For example, the probability of air chord time from 1 to 1.5 ms is represented by the column
labelled 1 ms. Bubble chord times larger than 15 ms are regrouped in the last column (>15). Fig. 6 presents typical
vertical distributions of median chord time, standard deviation, skewness and excess kurtosis at several longitudinal
locations for one inflow Froude number. Note that the bubble chord time is proportional to the bubble chord length
and inversely proportional to the velocity. For a 1 m/s particle velocity, a 1 ms chord time would correspond to a
1 mm particle chord length.

First the data showed a broad spectrum of bubble chord times at each location. The range of air chord time extended
over several orders of magnitude, including at low void fractions, from less than 0.1 ms to more than 15 ms. Second
the distributions were skewed with a preponderance of small bubble chord times relative to the mean. The probability

(A)

(B)

Fig. 5. Bubble chord time probability distributions in a hydraulic jump – Fr1 = 8.6, Re1 = 9.8E+4, d1 = 0.024 m, x1 = 1.0 m, W = 0.50 m,
0.5 ms chord time intervals. (A) (x − x1)/d1 = 8.4. (B) (x − x1)/d1 = 12.6.
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(A)

(B)

Fig. 6. Vertical distributions of median value, standard deviation, skewness and excess kurtosis of bubble chord times in a hydraulic jump –
Fr1 = 8.5, Re1 = 9.8E+4, d1 = 0.024 m, x1 = 1.0 m, W = 0.50 m, (x − x1)/d1 = 12.6. (A) Distributions of median chord times and standard
deviations – comparison with the distribution of void fraction. (B) Distributions of skewness and excess kurtosis – comparison with the distribution
of bubble count rate.

distribution functions of bubble chord time tended to follow in average a log-normal distribution. A similar finding
was observed in plunging jet flows (e.g. Chanson et al. [15]). Third, the bubble chord time distributions had a similar
shape at most vertical locations y/d1 although the air–water structures may differ substantially between the mixing
and recirculation regions.

Vertical distributions of median chord time showed similar shapes at all cross-sections (e.g. Fig. 6A). At a given
streamwise position (x − x1), a marked increase in bubble chord time was observed in the developing shear layer
(1 < y/d1 < 3 in Fig. 6). It was expected to reflect the presence of large air packets entrapped at the jump toe and
advected in the mixing layer. The shape of vertical distributions of median chord times was close to some vertical
distributions of Sauter diameter presented by Murzyn et al. [8]. In that study, bubble chord times were transformed
into bubble diameter using the time-average velocity measured with a dual-tip optical fibre probe (1 mm between
tips). Fig. 6 presents also typical vertical distributions of bubble chord time standard deviation, skewness and kurtosis.
The results highlighted large standard deviations of chord time with ratios of standard deviations to median values
larger than 2 to 5 typically. Large positive values of skewness and excess kurtosis were also observed (Fig. 6B). The
findings reflected the broad range and skewed shape of the chord time probability distribution functions as well their
peakiness (e.g. Fig. 5).
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5. Clustering and particle grouping

In addition the signal outputs provide some information on the streamwise structure of the air–water flow including
bubble clustering. A study of clustering events may be useful to infer if the formation frequency responds to some
particular frequencies of the flow (e.g. [16,17]). However a concentration of bubbles within some relatively short
intervals of time may indicate some clustering or it may be the consequence of a random occurrence. Fig. 7A shows
a typical time series of bubble chord time measurements at one sampling location where the maximum bubble count
rate occurred (F = Fmax). Fig. 7B shows the occurrence of pairing in time at the same location. The binary pairing
indicator is unity if the water chord time between adjacent bubbles is less than 10% of the median water chord time
and zero otherwise. The grouping of vertical lines seen in Fig. 7B is an indication of patterns in which bubbles tend
to form bubble “platoons”.

One approach may be based upon the analysis of the water chord between two adjacent bubbles. If two bubbles are
closer than a particular length or time scale, they can be considered a group of bubbles. The characteristic length/time
scale may be related to the water chord statistics or to the bubble size itself, since bubbles within some distance may
be influenced by the leading particle [17,18,27]). A typical result is presented in Fig. 8 where the criterion for cluster
existence was a water chord time being less than 10% of the median. Fig. 8A shows the vertical distribution of the
number of clusters per seconds (upper horizontal axis), and Fig. 8B presents the vertical distributions of the percentage
of bubbles in clusters (lower horizontal axis) and average number of bubbles per cluster (upper horizontal axis) in the

(A)

(B)

Fig. 7. Air–water flow structures in the developing shear layer of hydraulic jump – Fr1 = 8.5, Re1 = 9.8E+4, d1 = 0.024 m, x1/d1 = 40,
W = 0.50 m, (x − x1) = 0.40 m, y/d1 = 1.33, C = 0.20, F = Fmax = 158 Hz. (A) Time records of entrained bubbles. (B) Binary pairing
indicator of closely spaced bubble pairs in the developing shear layer (1 = water chord time less than 10% of median; 0 = otherwise).
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(A)

(B)

Fig. 8. Dimensionless distributions of percentage of bubbles in clusters, average number of bubbles per cluster and number of clusters per seconds
– Fr1 = 8.5, Re1 = 9.8E+4, d1 = 0.024 m, x1/d1 = 40, (x − x1)/d1 = 12, W/d1 = 20 – cluster criterion: water chord time < 10% median
water chord time. (A) Dimensionless distributions of percentage of bubbles in clusters, void fraction and average number of clusters per seconds.
(B) Dimensionless distributions of percentage of bubbles in clusters and average number of bubbles per cluster.

advective diffusion region. In Fig. 8A, note the behaviour (i.e., oscillations) of the number clusters per second data for
0.5 < y/d1 < 2. The matter ought to be further investigated, possibly with a longer scan duration. Overall the results
(e.g. Fig. 8) showed in average a relatively small percentage (5 to 10%) of bubbles that were part of cluster structures.
It is likely that this derived from some unique features of air–water flow structures in hydraulic jumps.

For a dispersed phase, a complementary approach is based upon the analysis of interparticle arrival times [19,
20,16,17]. “Random” dispersed flows are those whose interparticle arrival time distributions follow inhomogeneous
Poisson statistics. That is, the interparticle time distribution function in steady-random dispersed flows is:

f (t) = λ(Tscan − t) exp(−λt)

λTscan − 1 + exp(−λTscan)
(8)

where t is the interparticle arrival time, Tscan is the sampling duration (herein 45 s), λ = Nab/Tscan and Nab is the
number of particles [21]. Eq. (8) would describe an ideal dispersed flow driven by a superposition of Poisson processes
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(A)

(B)

Fig. 9. Interparticle arrival time distributions in the bubbly flow region for different classes of bubble chord times with comparison between data
and Poisson distribution – expected deviations from the Poisson distribution for this sample are shown in dashed lines – Fr1 = 8.5, Re1 = 9.8E+4,
d1 = 0.024 m, x1/d1 = 40, (x −x1)/d1 = 12, W/d1 = 20, y/d1 = 1.327, C = 0.353, 8000 bubbles. (A) Bubble chord times between 0 and 0.5 ms,
3055 bubbles, χ2 = 461. (B) Bubble chord times between 0.5 and 1.5 ms, 2370 bubbles, χ2 = 457. (C) Bubble chord times between 1.5 and 3 ms,
1017 bubbles, χ2 = 212. (D) Bubble chord times between 3 and 5 ms, 581 bubbles, χ2 = 110.

of bubble sizes assuming non-interacting particles. Deviations from Eq. (8) indicate some lack of randomness, or
unsteadiness, and the degree of non-random particle clustering may be quantified by Chi-square tests. Practically this
analysis is best conducted by breaking down the bubbly flow into narrow classes of particles of comparable sizes that
are expected to have the same behaviour [20].

A simple method consists in dividing the bubble population in terms of the bubble chord time. Fig. 9 illustrates
some typical interparticle arrival time distributions for four chord time classes of the same sample (0 to 0.5 ms, 0.5 to
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(C)

(D)

Fig. 9 (continued).

1.5 ms, 1.5 to 3 ms and 3 to 5 ms). The flow conditions are given in the figure caption including the Chi-square test
results. For each class of bubble sizes, a comparison between data and Poisson distributions gives some information
on its randomness within the assumptions underlying the derivation of the Poisson distribution. For example, Fig. 9A
shows some data for bubble chord times below 0.5 ms. Clearly the smallest class of bubble chord times did not exhibit
the characteristics of a random process because the experimental and theoretical distributions differ substantially in
shape. For that sample, the expected deviation of a steady bubbly mixture from the theoretical curve was about ±15%,
and the second smallest interparticle time bin (0.5–1 ms) had a population that was 2.5 times the expected value or
about 11 standard deviations too large (Fig. 9A). This indicates that there was a higher probability of having bubbles
with shorter interparticle arrival times, hence some bubble clustering occurred.
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Overall the present study showed some differences between experimental and theoretical curves. The deviations
were the largest for the smallest bubble chord times (less than 3 ms) as reflected by Chi-square test results (e.g. Fig. 9).
It was unlikely that the observed clustering was due to a random process.

6. Transverse time and length scales

6.1. Streamwise and transverse time scales

Correlation analyses were performed for some experiments during which two identical probes, separated by a
known transverse distance z, were simultaneously scanned. Such results complement “traditional” air–water flow
measurements such as void fraction and bubble count rate. Examples of vertical distributions of maximum cross-
correlations (Rxz)max and characteristic time scales Txx and Txz are presented in Fig. 10, where the time scales Txx and
Txz are defined in Eqs. (1) and (2). Fig. 10A shows the maximum cross-correlations (Rxz)max distributions for several
transverse spacings z. The dimensionless void fraction distribution is also shown. Fig. 10B presents the corresponding
vertical distributions of integral time scales. Note that the integral time scales are presented in dimensional forms
(units: milliseconds) with a logarithmic scale (top horizontal axis).

First the results showed that the cross-correlation functions exhibited clearly a marked maximum in the advec-
tive diffusion region as illustrated in Fig. 3B. In the recirculation region and upper flow region, no clearly-defined
maximum was observed and a correlation analysis could not be conducted. Second, in the advective diffusion re-
gion, the maximum cross-correlation (Rxz)max was a function of the transverse spacing. Typically it decreased with
an increasing transverse spacing z (Fig. 10A). Within the range of investigations (Table 2), the maximum cross-
correlations dropped sharply for z/d1 > 0.6. Third, the maximum cross-correlation was about independent of the
inflow Froude number. Fourth, the cross-correlation time scales Txz were consistently smaller than the auto-correlation
time scales Txx , and the former (Txz) decreased with increasing transverse spacings as seen in Fig. 10B. Again the
integral time scale (Txz) declined rapidly for z/d1 > 0.6 (Fig. 10B), and the result was consistent with lower maxi-
mum cross-correlations. Fifth the depth-averaged dimensionless time scale TxxV1/d1 was about 0.8 in average. The
data indicated a slight increase with increasing Froude number and longitudinal distance (x − x1)/d1 [4]. The results
were best correlated by:

TxxV1

d1
= 0.019

x − x1

d1
+ 0.1012Fr1 − 0.1525 (9)

with a correlation coefficient of 0.80.
The auto-correlation time scale Txx is an integral time scale characterising the streamwise coherence of the two-

phase flow. It represents a rough measure of the longest longitudinal connection in the air–water flow structures. On
the other hand, the cross-correlation time scale Txz is a time scale of transverse connection between the air–water flow
structures as seen by two probes separated by a distance z. Herein, present results implied that any transverse length
scale of the bubbly shear flow must be smaller than about 0.6d1 since negligible correlation and transverse integral
time scale existed for z/d1 > 0.6.

6.2. Transverse air–water length scales

For some experiments, the maximum cross-correlation coefficient (Rxz)max was obtained for several transverse
spacings z with identical flow conditions at identical locations. A transverse air–water length scale z was then calcu-
lated using Eq. (3). The length sale Z is a function of the inflow conditions and of the streamwise position (x − x1).
Results are presented in Fig. 11. The measured void fraction distributions are also shown in Fig. 11 for completeness.

First it must be stressed that the analysis could only be performed at locations where cross-correlation calculations
were meaningful. In the recirculation region and at some locations, these calculations were unsuccessful for a number
of reasons that included flat cross-correlation functions without a distinctive peak, non-crossing of the correlation
function(s) with the zero line, correlation functions with several peaks, meaningless correlation trends....
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(A)

(B)

Fig. 10. Auto- and cross-correlation results in a hydraulic jump – Fr1 = 7.9, Re1 = 9.4E+4, d1 = 0.0245 m, x1 = 1.0 m, W = 0.25 m,
x − x1 = 0.1 m. (A) Vertical distributions of maximum cross-correlation (Rxz)max for several transverse distances z. (B) Vertical distributions
of transverse time scales Txx and Txz for several transverse distances.

Second the results showed that the dimensionless transverse air–water length scale Z/d1 was about 0.25 to 0.4.
The data exhibited no obvious correlation with void fraction nor bubble count rate, and they tended to show a slight
increase with increasing vertical height:

Z

d1
= 0.2141 + 0.0526

y

d1
, 0.3 <

y

d1
< 3.3. (10)

6.3. Discussion

Some researchers studied fundamental processes affecting free-surface deformations and air–water free-surfaces:
e.g., Sarpkaya [22], Chanson [11], Brocchini and Peregrine [23], Mouaze et al. [24]. But no result on characteristic
length scales in bubbly shear flows was reported and it is believed that present results are unique.
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(A)

(B)

Fig. 11. Vertical distributions of dimensionless air–water transverse length scale Z/d1 in a hydraulic jump – Fr1 = 7.9, Re1 = 9.4E+4,
d1 = 0.0245 m, x1 = 1.0 m, W = 0.25 m – comparison with Eq. (10). (A) x − x1 = 0.1 m. (B) x − x1 = 0.2 m.

In the bubbly shear layer of hydraulic jumps, the characteristic length scale Z must be closely linked with the sizes
of the large vortical structures and their vortex shedding. This was evidenced by high-speed photographs showing air
trapping in the large eddies of the developing mixing layer (e.g. [25,11]). Basically Z is a measure of the transverse
size of the vortical structures advecting air bubbles. Present results demonstrated that the transverse air–water length
scales were closely related to the inflow depth: i.e., Z/d1 = 0.25 to 0.4 (Fig. 11).

7. Conclusion

In an open channel, the hydraulic jump is a rapid transition from super- to sub-critical flow associated with strong
turbulence and air bubble entrainment in the shear flow. New experiments were performed in some hydraulic jump
flows at relatively large Reynolds numbers with two phase-detection probes. The signal analyses yielded characteristic
air–water time and length scales in the mixing layer.
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The void fraction measurements showed the presence of an advective diffusion shear layer in which the void frac-
tions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. Similar results
were observed in plunging jet flows and hydraulic jumps. In the developing shear region, bubble chord time distribu-
tions showed a broad range of chord times. The distributions were skewed with a preponderance of bubble chord times
smaller than the mean. An analysis of the longitudinal flow structure showed comparatively little bubble clustering
in the air–water shear layer region. However an interparticle arrival time analysis suggested some preferential bubble
clustering for bubble chord times below 3 ms within the investigated flow conditions. Altogether both approaches
are complementary, but the interparticle arrival time analyses give a greater insight into the range of particle classes
affected by non-random clustering. This is believed to be a first step towards a better characterisation of air–water
flow structures in turbulent shear flows.

Air–water time and length scales were integrated from auto- and cross-correlation analyses. The result provided
some time and length scales of the vortical structures advecting air bubbles in the developing shear layer. The longi-
tudinal air–water time scale was a measure of the longest longitudinal connection in the air–water flow structures and
the results yielded TxxV1/d1 ∼ 0.8 in average. The transverse integral length scale of the eddies advecting bubbles
was related to the inflow depth, and the dimensionless transverse length scale was typically about Z/d1 ∼ 0.25 to 0.4.

The present study showed that the hydraulic jump remains a complicated two-phase flow that is still not yet un-
derstood. The correlation and cluster analyses were a coarse preliminary approach. It is believed that more systematic
applications to other turbulent shear flows may bring new insights into complex interactions between free-surface and
turbulence.
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