
On compliance of business processes with business contracts

Guido Governatori Zoran Milosevic∗ Shazia Sadiq and Maria Orlowska
School of Information Technology and Electrical Engineering

The University of Queensland
Brisbane, QLD 072, Australia

{guido,zoran,shazia,maria}@itee.uq.edu.au

February 2, 2007

Abstract

This paper addresses the problem of ensuring compliance of business processes, implemented
within and across organisational boundaries, with the constraints stated in related business con-
tracts. In order to deal with the complexity of this problem we propose two solutions that allow for
a systematic and increasingly automated support for addressing two specific compliance issues. One
solution provides a set of guidelines for progressively transforming contract conditions into business
processes that are consistent with contract conditions thus avoiding violation of the rules in contract.
Another solution compares rules in business contracts and rules in business processes to check for
possible inconsistencies. Both approaches rely on a computer interpretable representation of con-
tract conditions that embodies contract semantics. This semantics is described in terms of a logic
based formalism allowing for the description of obligations, prohibitions, permissions and violations
conditions in contracts. This semantics was based on an analysis of typical building blocks of many
commercial, financial and government contracts. The study proved that our contract formalism pro-
vides a good foundation for describing key types of conditions in contracts, and has also given several
insights into valuable transformation techniques and formalisms needed to establish better alignment
between these two, traditionally separate areas of research and endeavour. The study also revealed a
number of new areas of research, some of which we intend to address in near future.

1 Introduction

The term compliance is applied in many disciplines such as management, standards development, regu-
lations, medical practice and so on. It is often used to denote and demonstrate adherence of one set of
rules (we refer to them as ‘source rules’ hereafter) against other set of rules (we refer to them as ‘target
rules’ hereafter). Typically, target rules represent an established or agreed set of guidelines, norms, laws,
regulations, recommendations or qualities which, if obeyed, will deliver certain effect or value to those to
whom they can apply, or to those with whom they interact. In some way, the target rules are intended for
a global or broad community of participants in a specific universe of discourse. On the other hand, source
rules are developed to apply to participants and their behaviours in certain local contexts, and adherence
of source rules to the target rules then ensures that both local and global expectations or requirements
can be met.

In management for example, target rules represent policies that need to be obeyed by companies, their
staff or executives, while undertaking their normal course of actions to meet their goals. Examples of such
rules are the US regulations such as Sarbanes-Oxley Act [23] or Health Insurance Privacy Act (HIPPA)
[24]. In standards development, compliance requirements are stated to ensure necessary consistency of
one set of requirements with some broader set of requirements, e.g., a compliance of the ODP Enterprise
Language with ODP-RM [28]. Note that in standards communities, the term conformance has a different
meaning: it is used to relate an implementation to a standard specification. Finally, in health sector,
compliance is referred to a patient’s (or doctor’s) adherence to a recommended course of treatment.

Similarly, we apply this interpretation of compliance as a metaphor to discuss adherence or consistence
of a set of rules in business processes against a set of rules stated in business contracts. The rules
in business contracts represent a broad agreement of how two or more parties decided to engage in

∗Also with Deontik, Australia, zoran@deontik.com

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14985353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

their interactions, but they do not specify local interactions within either of the parties. So, ensuring
compliance of business processes with business contracts means ensuring consistency of rules stated in
business contracts and rules covering the execution of business processes. In other words, to check that
the specification of a business process complies with a normative document regulating the domain of the
process, one has to verify that all execution paths of the process, possible according to the specification
of the business process, comply with the normative specification. This means that no execution path is
in breach of the regulation. This consistency is necessary to satisfy commitments that parties typically
state in their agreements or business contracts while carrying out their mutually related internal business
activities. Such compliance also leads to benefits to both parties, e.g., minimisation of costs or damages to
either party whether these are associated with potentially inadvertent behaviour or deliberate violations
while seeking more opportunistic engagements.

Figure 1: Compliance Space

Compliance of business processes with business contracts is thus important to ensure establishing
better links between these two traditionally separate universes of discourse, i.e., legal and business process
spaces (see Figure 1).

In legal domain, the focus is on contract negotiation, contract drafting and ensuring the legal validity
of contracts according to relevant laws such as business contracts law and various regulations. This has
been traditionally the domain of legal professionals and in recent times the domain has started involving
specialists with certain computing background, needed to support tools-based contract authoring and
analysis (see, for example [8]). While most of this analysis has been done through manual checking
and analysis of contracts, some recent developments towards formalisation of contract conditions [21],
open new possibilities for an increasing role of tools to support contract analysis, e.g., to identify clause
inconsistency.

The business process space on the other hand, has been the focus of management science, such as
various business process re-engineering approaches. This is a domain of business process modellers and
business architects involved in enterprise architecture developments. These professionals have typically
been involved in identifying business requirements and then designing business processes to satisfy these
requirements.

The compliance space however, is a new area of interest and endeavour, in particular driven by recent
regulative and legislative acts, which require the establishment of stronger and more enforceable compli-
ance requirements against the target set of rules. Some of the largest scandals in corporate history such as
Enron, have led to an increased importance of compliance and related initiatives with organisations. This
new space has thus led to the development of new roles such as compliance auditors, or requirements for
new skills to be developed by existing roles, such as of contract managers, business analysts or business
architects, for the contract/compliance management domain.

Ensuring compliance of business processes with business contracts is a complex problem, involving

2

a number of activities. In this paper we propose two solution approaches, which when supported by
appropriate set of computer tools, would facilitate better compliance between these two different areas.

The first solution approach provides a systematic set of guidelines for progressive refinement of con-
tract conditions into a complaint set of rules for the execution of business processes, covering both
cross-organisational and internal business processes (see Figure 1). This approach is of particular value
in situations when new business systems are to be designed, permitting for example the design of new
business processes to be derived from business contract conditions. This is of further value, when un-
derlying business process management systems are in place or planned to be deployed, ensuring fast
deployment of new processes, based on the corresponding business process specifications. It is either new
or existing business contracts that can be used as a basis for the design of new business processes, to be
contract-complaint. Although the main driver for business process design in process improvement [15],
we argue that contract violations can be mitigated when new processes are designed with the explicit
understanding of contract conditions and compliance with them.

The second solution approach can be applied to problems common to many enterprises, i.e., there
are many existing processes that were designed in the absence of any knowledge of contracts, opening
possibilities for failing to satisfy contractual commitments. This requires checking compliance of processes
against business contracts. This can be either against the existing contracts, to fix possible inconsistencies
that have not been detected yet, or against new contracts to detect whether existing business processes
can lead to conflicts with new contracts, either in terms of incompatible rules or in terms of unrealistic
resource expectations that new contracts may require (see Figure 1).

In order to support addressing both of these compliance techniques we needed a formal representation
of contracts, which can be used as an intermediate form for both of these approaches. This paper presents
our formalism, which was developed based on an analysis of key building blocks of business contracts.

Note that although the paper specifically focuses on contracts as source of policies and constraints,
the reasoning will be quite similar when considering the impact of external policies such as regulatory
legislature.

The rest of paper is structured as follows. In the next section we consider some typical categories of
conditions of contracts, then in Section 3 we introduce a sample contract that will be used for illustrative
purposes throughout the paper. In Section 4 we discuss the minimal required features for a formalism
for business contracts. Section 5 is dedicated to the presentation of the formalism and its properties and,
we show ow the formalism can be used for the representation and analysis of the contract of Section 3.
In Section 6 we investigate methodologies to derive compliant processes from normative specifications.
In Section 7 we develop an event and state based semantics for our formal language. The aim of this
section is to develop a common ground where one can compare formal contract specifications and business
process specifications. In Sections 8 we investigate how to check for compliance of business processes with
contracts based on the semantics proposed in Section 7.

2 Contracts — key legalese structures

From a system-theoretic point of view, a contract is an agreement that specifies part of the collective
behaviour of two or more objects [28]. In the world of law, these objects can be trading partners
(individuals or organisations) considered as legal entitles and the agreement reflects their mutual promises,
commitments and expectations while being enforceable by law. The behaviour of an object may involve
many other aspects of behaviour, either internal behaviour or interactions with other objects which are
subject to other agreements and contracts.

From a legal point of view, the contract-governed part of the collective behaviour can typically be
expressed through one or more of the legally-centric types of contract conditions. We have identified
several categories of such conditions or legalese structures:

1. The declaration of pre-existing external constraints from the environment which apply to the con-
tract as a whole or to the variables in the contract. These for example may be rules and policies
from various types of law, such as taxation law, employment law or business contracts law;

2. Definitional expressions explaining meaning of certain terms in contracts, e.g. that price is nomi-
nated in the Australian dollars;

3. The declaration of a period of validity when the contract is in effect or a duration for the contract;

4. The statement of core normative policies such as obligations, permissions and prohibitions that
apply to the parties involved, either directly from the contract in question or from the environment,

3

as per category 1 above. Note that in the contracts, the core normative policies will typically apply
to a subject of a policy but will often mention a target or beneficiary of the policy; in cases where
a beneficiary is omitted, it may be inferred from the context;

5. The statement of other enterprise policies that reflect typical terms used by business and which can
mostly be reduced on the core policies above; we refer to these as compound normative policies;
examples are the concepts of rights, liabilities, commitment and responsibility;

6. The statement of policy-related actions that cover transfer of normative modalities between prin-
cipals and agents, such as various forms of delegation; in this paper we call them policy-transfer
(delegation) actions;

7. The specification of events that signify occurrence of violations of the policies or the events that
signify situations that could potentially lead to some violations in future; in this paper we call them
attention events;

8. Second-effect policies to be invoked in cases of violations of any of the above policies; we call these
reparation policies, as per [9];

9. The expression of force-majeure conditions, explaining circumstances which are beyond control
of either parties; these need to be mentioned, although they might not be able to invoke of any
subsequent measures;

10. A number of structuring constructs introduced for the purposes of grouping these expressions and
supporting reuse of the existing fragments, e.g. a contract clause can consist of a number of other
legal statements.

The legalese structures above can be combined in various ways to reflect the specific circumstances that
apply to the contract in question.

3 A Sample Contract

This section introduces an example of a business contract, initially introduced in [11]. This is an example
of a service contract between an ISP provider and a Purchaser of ISP services.The contract is structured
in terms of a number of clause groups, each of which contains contract conditions that will be analysed
and formalised in the subsequent sections.

CONTRACT OF SERVICES

This Deed of Agreement is entered into as of the Effective Data identified below.

BETWEEN ABC Company (To be known as the Purchaser)

AND ISP Plus (To be known as the Supplier)
WHEREAS (Purchaser) desires to enter into an agreement to purchase from (Supplier) Application
Server (To be known as (Service) in this Agreement).

NOW IT IS HEREBY AGREED that (Supplier) and (Purchaser) shall enter into an agreement
subject to the following terms and conditions:

1 Definitions and Interpretations

1.1 Price is a reference to the currency of the Australia unless otherwise stated.

1.2 This agreement is governed by Australia law and the parties hereby agree to submit to the
jurisdiction of the Courts of the Queensland with respect to this agreement.

2 Commencement and Completion

2.1 The commencement date is scheduled as January 30, 2006.

2.2 The completion date is scheduled as January 30, 2007.

3 Price Policy

3.1 A “Premium Customer” is a customer who has spent more that $10000 in services. Premium
Customers are entitled a 5% discount on new orders.

4

3.2 Services marked as “special order” are subject to a 5% surcharge. Premium customers are
exempt from special order surcharge.

3.3 The 5% discount for premium customers does not apply for services in promotion.

4 Purchase Orders

4.1 The (Purchaser) shall follow the (Supplier) price lists at http://supplier/cat1.html

4.2 The (Purchaser) shall present (Supplier) with a purchase order for the provision of (Services)
within 7 days of the commencement date.

5 Service Delivery

5.1 The (Supplier) shall ensure that the (Services) are available to the (Purchaser) under Quality of
Service Agreement (http://supplier/qos1.htm). (Services) that do not conform to the Quality
of Service Agreement shall be replaced by the (Supplier) within 3 days from the notification by
the (Purchaser), otherwise the (Supplier) shall refund the (Purchaser) and pay the (Purchaser)
a penalty of $1000.

5.2 The (Supplier) shall on receipt of a purchase order for (Services) make them available within 1
days.

5.3 If for any reason the conditions stated in 4.1 or 4.2 are not met, the (Purchaser) is entitled to
charge the (Supplier) the rate of $ 100 for each hour the (Services) are not delivered.

6 Payment

6.1 The payment terms shall be in full upon receipt of invoice. Interest shall be charged at 5 % on
accounts not paid within 7 days of the invoice date. The prices shall be as stated in the sales
order unless otherwise agreed in writing by the (Supplier).

6.2 Payments are to be sent electronically, and are to be performed under standards and guidelines
outlined in PayPal.

7 Termination

7.1 The (Supplier) can terminate the contract after three delayed payments.

8 Disputes NOT SHOWN TO SAVE SPACE

Notice that the above contract contains clauses covering several of the legalese structures presented in
Section 2.

4 Contract Formalism

The identification of several categories of legalese contract expression above is a step towards a more
structured way of representing contracts. This structuring provides a better starting point for considering
the use of several existing logics and/or normative systems theories to arrive at a formal (i.e. logic)
representation of contracts. Example of such logics are modal, deontic and temporal logic, along with a
recently proposed logic of violations [13]. In many respects the scope of normative systems overlaps with
the scope of these logics. This is because they analyse those systems whose behaviour is covered by a
set of norms, being statements of constraints on expected behaviour such as what behaviour is allowed,
what behaviour must not occur, what behaviour is required and so on.

4.1 From legalese structures to deontic constraints

A detailed examination of the semantics of the contract conditions above reveals that their legal intent
and form are closely related to various types of behavioural expressions that apply to the parties in
contract. Most of these behavioural expressions are in the form of core normative policies (or deontic
modalities), the core of which are obligations, permissions and prohibitions.

Deontic constraints express what parties to the contact are required to perform (obligations), what
they are allowed to do (permissions), or what they are not allowed to do (prohibitions).

In general, deontic constraints apply to the behaviour of actors playing roles in some policy context
(contract being a special case of a set of policies). This context is typically determined by the way the
roles are configured into collaborative structures and by the pre-existing constraints from the environment

5

of this context space. In the specific case of legal contracts, this context is the contract itself, consisting
of various types of contract conditions as discussed above, all of which will apply to the two or more roles
specified in the contract. These roles in turn could be played by different legal entities, and policies apply
to these legal entities when they accept the constraints of the respective roles.

Deontic constraints are structured in terms of:

• constraints on behaviour typically expressed in terms of events and relationship between events,
closely reflecting the specification of various policies as part of contract conditions. The event
(relationship) constraint describes the expected behaviour of the party in question. Events describe
the actions of the parties that are subject to the constraint, but also other occurrences such as
expiration of deadlines, or actions of other parties.

• the specification of the modality that applies to the party, e.g. an obligation, permission or prohi-
bition.

• a subject to which modality and behavioural constraints apply. A deontic modality may explicitly
identify a beneficiary (or target) from the subject side in a modality expression, although the
beneficiary may be implied from the contract.

• Triggering conditions which signify that normative policies are in force; these can be temporal
events, but also other events, such as violation of other policies.

The semantics of modality can be expressed in terms of a set of observations chosen to determine whether
the corresponding policy is satisfied or not. For example, the prohibition modality can be checked through
an observation of occurrence(s) which are contrary to the prohibition statement.

Note that the style of constraints in deontic expressions is different from the style of expressions
in traditional business process specification languages. The focus of the process languages is on the
description of control and data flows to support repeatable and automatable activities. A lesser emphasis
is given to the detailed description of various types of associations between roles and process activities, and
no emphasis is normally given to the organisational consequences of the violations of agreed behaviour.

Recent business process specifications, however, are increasingly adopting an event-based style of
behaviour which better suits needs for more flexibility such as real-time process adaptations. Events can
be used to determine process flows in real-time as a result of the outcome of a specific task or to generate
notifications of specific events (e.g. natural events or temporal events) or the recognition of an emerging
economic or market trend.

We believe that the event-oriented style of expression is suitable for the expression of deontic con-
straints and the emerging business processes specifications centred on the flow of events can be exploited
as a mechanism to facilitate the derivation of business processes compliant with contract conditions.

4.2 From deontic constraints to contract formalism

This section presents a formalism for describing deontic constraints, based on commonly accepted prin-
ciples of deontic logic, but extended with the formalism for treating violations. The formalism, called
the Formal Contract Language (FCL) was first presented in [12], and is based on the logic of violations
developed by Governatori and Rotolo [13], used to represent violation in contracts.

4.2.1 Formalising deontic constraints

Deontic logic extends first order logic with the modal operators O, P and F denoting obligations, per-
missions and prohibitions. The modal operators satisfy the following deontic relationships:

OA ≡ ¬P¬A ¬O¬A ≡ PA O¬A ≡ FA ¬PA ≡ FA.

The modal operators also satisfy the following relationship OA → PA, meaning that if A is obligatory,
then A is permitted. This relationship can be used to ensure checking of the internal consistency of the
obligations in contracts: it is possible to execute obligations without doing something that is forbidden.

As stated before, the deontic constraints in contracts apply to the roles involved in the contract,
specifically to the subject to which constraints apply, and possibly including the target or beneficiary. In
case of obligation this can be denoted using the expression OsA to be read as ‘s has the obligation to do
A’, or ‘A is obligatory for s’. If a beneficiary is mentioned, the expression is extended, i.e. Os,bA to be
read as ‘s has the obligation to do A with respect to b’.

6

In case of certain breaches of polices in contract by actors playing the roles in a contract, special
policies may be included to express the respective obligations for these actors. These policies can vary
from pecuniary penalties to the termination of the contract itself. In deontic logic, this type of expression,
namely the activation of certain obligations in case of other obligations being violated, is referred to as
contrary-to-duty obligations (CTD) or reparation obligations. The reparation obligations are in force
only when normative violations occur and are meant to ‘repair’ violations of primary obligations. Thus a
reparation policy is a conditional obligation arising in response to a violation, where a violation is signalled
by an unfulfilled obligation. The expression of violation conditions and the reparation obligations is an
important requirement for formalising contracts, design subsequent business processes to minimise or
deal with such violations and also to support the monitoring of business contracts.

There are a number of different approaches in deontic logic to formalise CTD obligations, but in this
paper we use a simple logic of violation, to avoid danger of logical paradoxes that some other approaches
may involve [7]. This logic is also suitable to model chains of violations and is described next.

4.2.2 Formalising violations of deontic constraints

In addition to using the logic based approach to specifying core deontic constraints, we thus provide a
simple logic of violation.

The violation expression consists of the primary obligation, its violation conditions, an obligation
generated upon the violation condition occurs, and this can recursively be iterated, until the final condition
is reached. This final condition is one which cannot be violated and this it is to be a permission. We
introduce the non-boolean connective ⊗, whose interpretation is such that OA⊗OB is read as “OB is the
reparation of the violation of OA”. In other words the interpretation of OA⊗OB, is that A is obligatory,
but if the obligation OA is not fulfilled (i.e., when ¬A is the case, thus resulting in a violation of the
obligation OA), then the obligation OB is activated and becomes in force until it is satisfied or violated.
In the latter case a new obligation may be activated, followed by others in chain, as appropriate.

5 Formal Contract Language (FCL)

We now provide a formal account of the idea presented in Section 4.2 which we will refer to as Formal
Contract Logic (FCL). FCL was introduced in [11] for the formal analysis of business contracts and it is
based on previous work on formal representation of contracts [9], logic of violations [13], and normative
positions based on Deontic Logic with Directed Obligations [17, 16]. The language of FCL consists of two
sets of atomic symbols: a numerable set of propositional letters p, q, r, . . . , intended to represent the state
variables of a contract and a numerable set of event symbols α, β, γ, . . . corresponding to the relevant
events in a contract; complex events can be obtained from simpler events using the sequence operator “;”
(e.g., α;β means that event α is followed by event β), conjunction operator ∧ (e.g., α ∧ β meaning that
both event α and event β are expected to occur), and the disjunction operator ∨ (e.g., α ∨ β meaning
that either of the two events α and β are expected to occur). Formulas of the logic are constructed using
the deontic operators O (for obligation), P (for permission), negation ¬ and the non-boolean connective
⊗ (for the Contrary-To-Duty (CTD) operator). The formulas of FCL will be constructed in two steps
according to the following formation rules:

• every propositional letter is a literal;

• every event symbol is a literal;

• the negation of a literal is a literal;

• if X is a deontic operator and l is a literal then Xl and ¬Xl are modal literals.

After we have defined the notions of literal and modal literal we can use the following set of formation
rules to introduce ⊗-expressions, i.e., the formulas used to encode chains of obligations and violations.

• every modal literal is an ⊗-expression;

• if Ol1, . . . , Oln are modal literals and ln+1 is a literal, then Ol1⊗. . .⊗Oln and Ol1⊗. . .⊗Oln⊗Pln+1

are ⊗-expressions.

The connective ⊗ permits combining primary and Contrary-To-Duty obligations into unique regulations.
The meaning of an expression like OsA⊗OsB⊗OsC is that the primary obligation for s is A, but if A is

7

not done, then s has the obligation to do B. But if event B fails to be realised, then s has the obligation
to do C. Thus B is the reparation of the violation of the obligation OsA (represented that A does not
hold, i.e., that the negation of A, ¬A holds). Similarly C is the reparation of the obligation OsB, which
is force when the violation of A occurs.

The formation rules for ⊗-expressions allow a permission to occur only at the end of such expressions.
This is due to the fact that a permission can be used as a reparation of a violation, but it is not possible
to violate a permission, thus it makes no sense to have reparations to permissions.

Each condition or policy of a contract is represented by a rule in FCL, where a rule is an expression

r : A1, . . . , An ` C

where r is the name/id of the policy, A1, . . . , An, the antecedent of the rule, is the set of the premises
of the rule (alternatively it can be understood as the conjunction of all the literals in it) and C is the
conclusion of the rule. Each Ai is either a literal or a modal literal and C is an ⊗-expression.

The meaning of a rule is that the normative position (obligation, permission, prohibition) represented
by the conclusion of the rule is in force when all the premises of the rule hold. Thus, for example, the
second part of clause 5.1 of the contract (“the supplier shall refund the purchaser and pay a penalty
of $1000 in case she does not replace within 3 days a service that does not conform with the published
standards”) can be represented as1

r : ¬p,¬α ` OSβ

where the propositional letter p means “a service has been provided according to the published standards”,
α is the event symbol corresponding to the event “replacement occurred within 3 days”, and β is the
event symbol corresponding to the event “refund the customer and pay her the penalty”. The policy is
activated, i.e., the supplier is obliged to refund the customer and pay her a penalty of $1000, when the
condition ¬p is true (i.e., we have a faulty service), and the event “replacement occurred within 3 days”
lapsed, i.e., its negation occurred.

5.1 Normal Forms

We introduce transformations of an FCL representation of a contract to produce a normal form of the
same (NFCL). A normal form is a representation of a contract based on an FCL specification containing
all contract conditions that can generated/derived from the given FCL specification. The purpose of a
normal form is to “clean up” the FCL representation of a contract, that is to identify formal loopholes,
deadlocks and inconsistencies in it, and to make hidden conditions explicit.

In the rest of this section we introduce the procedures to generate normal forms. First (Section 5.1.1)
we describe a mechanism to derive new contract conditions by merging together existing contract clauses.
In particular we link an obligation and the obligations triggered in response to violations of the obligation.
Then, in Section 5.1.2, we examine the problem of redundancies, and we give a condition to identify and
remove redundancies from the formal specification of a contract.

5.1.1 Merging Contract Conditions

One of the features of the logic of violations is to take two rules, or clauses in a contract, and merge
them into a new clause. In what follows we will first examine some common patterns of this kind of
construction and then we will show how to generalise them.

Let us consider a policy like (in what follows Γ and ∆ are sets of premises)

Γ ` OsA.

Given an obligation like this, if we have that the violation of OsA is part of the premises of another
policy, for example,

∆,¬A ` Os′C,

then the latter must be a good candidate as reparational obligation of the former. This idea is formalised
is as follows:

Γ ` OsA ∆,¬A ` Os′C

Γ,∆ ` OsA⊗Os′C

1In what follows we will use OS and PS fot the obligation and permission operators relative to the Supplier , and OP

and PP for the Purchaser . Os and Ps will be used for a generic subject.

8

This reads as follows: given two policies such that one is a conditional obligation (Γ ` OsA) and the
antecedent of second contains the negation of the propositional content of the consequent of the first
(∆,¬A ` Os′C), then the latter is a reparational obligation of the former. Their reciprocal interplay
makes them two related norms so that they cannot be viewed anymore as independent obligations.
Therefore we can combine them to obtain an expression (i.e., Γ,∆ ` OsA ⊗ Os′C) that exhibits the
explicit reparational obligation of the second norm with respect to the first. Notice that the subject of
the primary obligation and the subject of its reparation can be different, even if very often in contracts
they are the same.

Suppose the contract includes the rules

r : Invoice ` OP PayWithin7Days
r′ : ¬PayWithin7Days ` OP PayWithInterest .

From these we obtain

r′′ : Invoice ` OP PayWithin7Days ⊗OP PayWithInterest .

We can also generate chains of CTDs in order to deal iteratively with violations of reparational obligations.
The following case is just an example of this process.

Γ ` OsA⊗OsB ¬A,¬B ` OsC

Γ ` OsA⊗OsB ⊗OsC

For example we can consider the situation described by Clause 5.1 of the contract. Given the rules

r : Invoice ` OSQualityOfService ⊗OSReplace3days
r′ : ¬QualityOfService,¬Replace3days ` OSRefund&Penalty

from which we derive the new rule

r′′ : Invoice ` OSQualityOfService ⊗OSReplace3days ⊗OSRefund&Penalty .

The above patterns are just special instances of the general mechanism described in details in [13, 9].

5.1.2 Removing Redundancies

Given the structure of the inference mechanism it is possible to combine rules in slightly different ways,
and in some cases the meaning of the rules resulting from such operations is already covered by other
rules in the contract. In other cases the rules resulting from the merging operation are generalisations of
the rules used to produce them, consequently, the original rules are no longer needed in the contract. To
deal with this issue we introduce the notion of subsumption between rules. Intuitively a rule subsumes a
second rule when the behaviour of the second rule is implied by the first rule.

We first introduce the idea with the help of some examples and then we show how to give a formal
definition of the notion of subsumption appropriate for FCL.

Let us consider the rules

r : Service ` OSQualityOfService ⊗OSReplace3days ⊗OSRefund&Penalty ,
r′ : Service ` OSQualityOfService ⊗OSReplace3days.

The first rule, r, subsumes the second r′. Both rules state that after the supplier has provided the service
she has the obligation to provide the service according to the published standards, if she violates such an
obligation, then the violation of QualityOfService can be repaired by replacing the faulty service within
three days (OSReplace3days). In other words OSReplace3days is a secondary obligation arising from the
violation of the primary obligation OSQualityOfService. In addition r prescribes that the violation of
the secondary obligation OSReplace3days can be repaired by OSRefund&Penalty , i.e., the seller has to
refund the buyer and in addition she has to pay a penalty.

As we discussed in the previous paragraphs the conditions of a contract cannot be taken in isolation
in so far as they exist in a contract. Consequently the whole contract determines the meaning of each
single clause in it. In agreement with this holistic view of norms we have that the normative content of
r′ is included in that of r. Accordingly r′ does not add any new piece of information to the contract, it
is redundant and can be dispensed from the explicit formulation of the contract.

9

Another common case is exemplified by the rules:

r : Invoice ` OP PayWithin7Days ⊗OP PayWithInterest
r′ : Invoice,¬PayWithin7Days ` OP PayWithInterest .

The first rule says that after the seller sends the invoice the buyer has one week to pay it, otherwise the
buyer has to pay the principal plus the interest. Thus we have the primary obligationOP PayWithin7Days,
whose violation is repaired by the secondary obligationOP PayWithInterest , while, according to the second
rule, given the same set of circumstances Invoice and ¬PayWithin7Days we have the primary obligation
OP PayWithInterest . However, the primary obligation of r′ obtains when we have a violation of the
primary obligation of r. Thus the condition of applicability of the second rule includes that of the first
rule, which then is more general than the second and we can discard r′ from the contract.

The intuitions we have just exemplified is captured by the following definition.

Definition 1 Let r1 : Γ ` A ⊗ B ⊗ C and r2 : ∆ ` D be two rules, where A =
⊗m

i=1Ai, B =
⊗n

i=1Bi

and C =
⊗p

i=1 Ci. Then r1 subsumes r2 iff

1. Γ = ∆ and D = A; or

2. Γ ∪ {¬A1, . . . ,¬Am} = ∆ and D = B; or

3. Γ ∪ {¬B1, . . . ,¬Bn} = ∆ and D = A⊗
⊗k≤p

i=0 Ci.

The intuitions is that the normative content of r2 is fully included in r1. Thus r2 does not add anything
new to the system and it can be safely discarded.

Conflicts often arises in contracts. What we have to determine is whether we have genuine conflicts,
i.e., the contracts is in some way flawed or whether we have prima-facie conflicts. A prima-facie conflict
is an apparent conflict that can be resolved when we consider it in the context where it occurs and if we
add more information the conflict disappears. FCL has facilities to detect conflicts and to resolve them.
However, in this paper we are not interested in such features, and we will assume that a contract does
not result in any conflict. For the details about how to detect conflicts see [13, 11]

5.1.3 Normalisation Process

We now describe how to use the machinery presented in Section 5.1.1 and Section 5.1.2 to obtain FCL
normal forms. The FCL normal form of a contract provides a logical representation of a contract in
format that can be used to monitor the execution of the contract. This consists of the following three
steps:

1. Starting from a formal representation of the explicit clauses of a contract we generate all the implicit
conditions that can be derived from the contract by applying the merging mechanism of FCL.

2. We can clean the resulting representation of the contract by throwing away all redundant rules
according to the notion of subsumption.

3. Finally we use the conflict identification rule to label and detect conflicts.

In general the process at step 2 must be done several times in the appropriate order as described above.
The normal form of a set of rules in FCL is the fixed-point of the above constructions. A contract contains
only finitely many rules and each rule has finitely many elements. In addition it is possible to show that
the operation on which the construction is defined is monotonic [13], thus according to standard set
theory results the fixed-point exists and it is unique. However, we have to be careful since merging first
and doing subsumption after produces different results from the opposite order (i.e., subsumption first
and merging after), or by interleaving the two operations.

5.2 Representing the Contract in FCL

Let us now see how to represent the contract of Section 3 in FCL. Usually a contract comprises two types
of clauses: definitional clauses giving the meaning of the terms used in the contract and clauses specifying
the normative behaviours (i.e., giving the obligations, permissions, prohibitions the signing parties of the
contract are subject to). In this paper we will concentrate only on the normative specifications of a
contract. Accordingly, we will ignore Sections 1, 2, and 3 of the contract, and similarly for clause 4.1
which states what the basic prices are and clause 6.2 that states what a payment is (see [9, 10], for a
representation of these clauses in the spirit of an extension of FCL).

10

r4.2 : begin ` OP FirstOrder7Days
r5.1a : Service ` OSQualityOfService
r5.1b : ¬QualityOfService ` OSReplace3days
r5.1c : ¬Replace3ays ` OSRefund&Penalty
r5.2 : PurchaseOrder ` OSDeliver1day
r5.3a : Service,¬QualityOfService,¬Replace3days,¬Refund&Penalty ` PP ChargeSupplier
r5.3b : PurchaseOrder ,¬Deliver1day ` PP ChargeSupplier
r6.1 : Invoice ` OP PayWithin7days ⊗OP PayWithInterest
r7.1 : 3LatePayments ` PSTerminateContract

The normalisation process give us the following rules

r4.2 : begin ` OP FirstOrder7Days
r5.1 : Service ` OSQualityOfService ⊗OSReplace3days ⊗OSRefund&Penalty ⊗ PP ChargeSupplier
r5.2 : PurchaseOrder ` OSDeliver1day ⊗ PP ChargeSupplier
r6.1 : Invoice ` OP PayWithin7days ⊗OP PayWithInterest
r7.1 : 3LatePayments ` PSTerminateContract

6 From FCL to business processes

In this section we describe how a business contract stated in the FCL can be translated into business
processes that are aligned with contract conditions. We will attempt to refine contract description into
increasing level of detail, starting from mere cross-organisational interactions and progressively refining
it into internal processes. We will again use our contract example to illustrate the steps involved. Note
that the example is not elaborated in full detail and many points were omitted for brevity.

We use BPMN notation [22] as our target process description language. We chose BPMN because this
notation is suited to support business analysts and business process modellers and we believe that initial
translation from business contracts into business processes needs to be undertaken by these specialists.
Once this activity is performed and business process model is produced, it is up to the business process
engine specialists to describe specific mapping from a BPMN model into an executable form of a process.
Indeed, the BPMN specification comes with one such mapping, i.e. the mappings onto BPEL [5]. Many
other mappings could be also possible.

In addition, BPMN provides an expressive, event-oriented approach to specifying contracts, which
is a style of expression that is suitable for the description of business contracts and without imposing
block-structure limitation adopted as part of BPEL specification.

Finally, BPMN provides quite suitable environment for supporting interactions defined by business
contracts because it allows for support of process descriptions that range from internal processes to
complex cross-organisational processes, involving several parties. Namely, using BPMN it is possible
to describe abstract (or public) processes between parties, where the focus is on exchange of messages
between them. In this case it is possible to either abstract away the internal processes of both parties
or to abstract away the internal processes of the other partner only, depending on the circumstances. In
the last case, the aim is to provide description of interactions from the point of view of one party. In the
most detailed form, BPMN allows for the description of internal processes for all parties, along with the
messages between them. In BPMN terms this is called a collaboration (global) process.

In what follows, we will use all these process variants as facilities to help the progressive refinement
from the contract onto processes.

6.1 From FCL to Abstract Processes

Consider the FCL representation of the contract given in the previous section. Our first step is to translate
this contact representation into two abstract BPMN processes, corresponding to each of the parties and
to identify the messages that can be consequences of the corresponding obligations. So, we first identify
those obligations between the parties which explicitly state the subject and the target (or beneficiary)
of the obligation. This is because many of such obligations will imply some form of message exchange
between the parties. For example, the following statement

¬QualityOfService ` OSReplace3Days

implies that the Purchaser will need to send a message to the Supplier to inform them (about some
problems). We can use BPMN text annotations as a way of stating deontic constraints on process

11

diagrams. Note that we use the BPMN annotations to show triggering conditions for obligations, such
as beginning of month trigger for sending monthly report. Thus, they are used to denote the conclusion
and antecedents of the FCL logical expression respectively.

Note that the messages identified do not necessarily need to represent a unique or even best solution
for the interactions between the parties. However, they can be a good starting point for subsequent
redesign as needed.

6.2 From an abstract process to a private process

Once public processes are identified, it is possible to provide a more detailed structure of internal processes
of the parties, including the way messages (identified in the abstract processes) are generated or consumed
by the tasks within them.

The FCL expressions of the contract can again be used in this exercise. To this end, we have identified
several translation rules, as follows.

First, it is useful to look for the antecedents of each of the deontic expressions that indicate actions
of the parties involved in the contract. This is because antecedents represent certain occurrences, e.g.
message arrivals, deadline expirations or state changes. In terms of BPMN constructs these would be start
events or intermediate events, each of these of any of the BPMN available types. These triggers can then be
used to start corresponding tasks of the internal processes. The statement Service ` OSQualityOfService,
for example, means that the if a service is requested the Supplier is obliged to provide it according to the
published quality of service description.

Second, some of the tasks activated by the events, can in turn generate messages to be sent to the
other party, for example begin ` OP FirstOrder7Days means that on the commencement of the contract
the Purchaser has to send a message to the Supplier with the request for the first order.

Third, some obligations involve deadlines, and for this the triggering event should activate the tasks
that need to be performed and also the deadline event, which if triggered before the completion of the
activity, will signify violation of the obligation.

It is important to note that the rules identified above can be considered only as a guiding mechanism
for identifying some patterns for structuring internal activities. There are of course many possible designs
for internal business processes and this is where it may be useful to consider further heuristics. Some
initial considerations for such heuristics are presented in [25].

6.3 From process description to process implementation

In the discussions so far we have been concerned with business level specification of processes. It is
precisely for these reasons that we chose the BPMN notation - because it was developed for the high level
descriptions of processes. However, in order to provide significant level of business process automation
one relies on the availability of business process engines that provide an automation of business processes.
In the case of BPMN the obvious engines of choice are those that implement BPEL semantics, because
the BPMN specification provides mapping to the BPEL. However BPEL semantics provides a relatively
restricted support for the execution of complex events along the lines of those that are for example
described in [19]. It would be interesting to consider some other process engines that are more distributed
in nature and that implement event-centric semantics such as those that follow the WS-CDL [26] approach
or an engine proposed by Berry [3, 4].

6.4 A methodology for deriving compliant processes

Our approach for the progressive development of collaborative business processes from the legalese form
of contract is part of a more general methodology which we have recently proposed [20]. The aim of
the methodology is to serve as a general guiding tool for business process modellers in their activities
of developing processes that are compliant with contracts. In doing so, they need to consider various
business setups of organisations and various pre-existing procedures, policies and cultures. In some
cases for example, when there are existing processes in place, there needs to be checked whether these
processes are complaint with business contracts. In other cases, such as those addressed in this paper,
one is concerned with how to design new processes based on the existing or new contract. In yet another
cases one needs to determine whether there is sufficient trust between organisations to decide whether
some third-party monitoring mechanisms need to be employed. All these issues need to be discussed and
addressed when considering various deployment and operational issues associated with processes governed
by business contracts.

12

7 Ideal Semantics

In a way, FCL constraint expressions for a contract define a behavioural and state space which can be
used to analyse how well different behaviour execution paths (including state constraints) comply with
the FCL constraints. Our aim is to use this analysis as a basis for deciding whether execution paths
of a business process are compliant with the FCL and thus with the contract. The central part of this
compliance checking is given by the notions of ideal, sub-ideal, non-ideal and irrelevant situations which
will be introduced and defined after two simple motivating examples are given.

Consider the FCL obligation rule related to our contract:

WeekDay ,FaultMessageEvent ` OSRepair24hours

stating that on a week day, when a fault message occurs, the service provider is obliged to repair the
fault within 24hrs.

Assume now that one possible execution path from a process is:

1. a FaultMessageEvent is received from a premium customer on a week day

2. the service provider reacts by (in the order):

(a) sending an apology message,

(b) repairing the fault within 24 hours and

(c) sending a reparation confirmation message

When checking compliance of this execution path with the obligation it is obvious that the obligation is
fulfilled because the fault is fixed within 24 hours. Notice that the execution path also includes additional
conditions such as PremiumCustomer (state variable) sending of two additional messages (an apology
message, and a reparation confirmation message) which are not critical for the obligation.

Consider another example:

WeekDay ,PremiumCustomer ,FaultMessageEvent ` OSrepair12hours

This reflects the requirement for a faster reaction time for premium customer. Assume we have the
following situation:

WeekDay ; FaultMessageEvent

Obviously, this situation is not sufficient for the OSrepair12hours to be activated.

7.1 FCL expressions and behavioural execution paths

We now introduce the concepts of ideal, sub-ideal and non-ideal situations to describe various degrees of
compliance between execution paths and FCL constraints. We will also provide a semantic interpretation
of FCL rules in terms of ideal, sub-ideal, non-ideal and irrelevant situations, which we refer to as Ideal
Semantics.

Intuitively an ideal situation is a situation where execution paths do not violate FCL expressions,
and thus the execution paths (which will then correspond to processes that are related to the contract)
are fully compliant with the contract. A sub-ideal situation is situation where there are some violations,
but these are repaired, in the CTD sense. Accordingly, processes resulting in sub-ideal situations are still
compliant to a contract even if they provide non-optimal performances of the contract. A situation is
non-ideal if it violates a contract (and the violations are not repaired). In this case a process resulting
in a non-ideal situation does not comply with the contract. There are two possible reasons for a process
not to comply with a contract: 1) the process executes some tasks which are prohibited by the contract
(or equivalently, it executes the opposite of obligatory tasks); 2) the process fails to execute some tasks
required by the contract. Finally a situation is irrelevant for a contract if no rule is applicable in the
situation. Irrelevant situations correspond to states of affairs where a contract is silent about them.

In the rest of this section we provide a formal definition for these concepts.
As discussed in Section 5.1, for every FCL representation of a contract its normal form contains all

conditions that can be derived from the contract and redundant clauses are removed. Thus normal forms
are the most appropriate means to determine whether a process conforms with a contract. Accordingly,
we have to use the normal form of a contract and not the contract itself to determine whether a business
process complies with the contract. We now define conditions under which we are able to determine

13

whether a situation complies with a contract or if it represents a violation of some clauses. To this end,
we shall define a situation to be a pair (L, S) where L is a set of literals representing states and S is a
pattern (sequence) of events.

In what follows we will consider the rules in the normal form for a contract. In addition every FCL
rule

B1, . . . , Bm ` A1 ⊗ . . .⊗An

will be represented as
Γ, E ` A1 ⊗ . . .⊗An

where Γ is the set of state literals in {B1, . . . , Bm} and E is the conjunction of the event literals in
{B1, . . . , Bm}, and 1 ≤ n. For example, given the rule

WeekDay ,PremiumCustomer ,FaultMessageEvent ,RequestOnSite ` OSSendTechnician

we have that

Γ = {WeekDay ,PremiumCustomer}
E = FaultMessageEvent ∧ RequestOnSite

Definition 2 Given two sequences of events S and S′, we say that S′ is a subsequence of S, if every
element of S′ is an element of S, and the elements of S′ occur in the same order as they occur in S.

For example, given the sequence of events S = α;β; γ; δ; ε the sequence β; ε is a subsequence of S but γ;β
is not since γ occurs before β in γ;β while it occurs after β in S.

First of all we define when a situation is either ideal, sub-ideal, non-ideal or irrelevant with respect to
a contract rule.

Definition 3

• A situation s = (L, S) is ideal with respect to a rule Γ, E ` A1 ⊗ · · · ⊗ An iff if Γ ⊆ L and E is a
subsequence of S, then E;A1 is a subsequence of S.

• A situation s = (L, S) is sub-ideal with respect to a rule Γ, E ` A1 ⊗ · · · ⊗ An iff if Γ ⊆ L, E is a
subsequence of S and ∃Ai, 1 < i ≤ n such that ∀Aj, j < i E;¬A+

1 ; . . . ;¬A+
j ;Ai is a subsequence of

S.2

• A situation s = (L, S) is non-ideal with respect to a rule Γ, E ` A1 ⊗ · · · ⊗ An iff Γ ⊆ L and E is
a subsequence of S and s is neither ideal nor sub-ideal.

• A situation s = (L, S) is irrelevant with respect to a rule Γ, E ` A1 ⊗ · · · ⊗An iff it is neither ideal
nor sub-ideal nor non-ideal.

Returning to our first example, Γ = {WeekDay} and the sequence of events E = FaultMessageEvent L
is {WeekDay ,PremiumCustomer} and the sequence of events S is

S = FaultMessageEvent ; SendApologyMessage;
Repair24hours; SendReparationConfirmationMessage

So, it is true that Γ ⊆ L, and E and E; Repair24hours are subsequences of S.
According to Definition 3, a situation is ideal with respect to a norm if the rule is not violated;

sub-ideal when the primary obligation is violated but the rule allows for a reparation, which is satisfied;
non-ideal when the primary obligation and all its reparations are violated, and irrelevant when the rule
is not applicable. Definition 3 is concerned with the status of a situation with respect to a single rule,
while a contract consists of many rules, thus we have to extend this definition to cover the case of a set
of rules. In particular we will extend it considering all rules in the normal form for a contract containing
all rules inherent to the contract.

Definition 4

2With ¬A+
k we denote 0 or 1 occurrence of ¬Ak in a sequence of events.

14

• A situation s is ideal with respect to a contract normal form iff there is no rule in the normal form
for which s is either sub-ideal or non-ideal or irrelevant.

• A situation s is sub-ideal with respect to a contract normal form iff there is a rule for which s is
not irrelevant and it is sub-ideal, and there is no norm in the normal form for which s is non-ideal.

• A situation s is non-ideal with respect to a contract normal form iff there is no rule in the normal
form for which s is not irrelevant and is non-ideal.

• A situation s is irrelevant with respect to a contract normal form iff for all rules in the normal
form s is irrelevant.

Definition 4 follows immediately from the intuitive interpretation of ideality and the related notions we
have provided in Definition 3. On the other hand, the relation between a normal form and the contract
from which it is obtained seems to be a more delicate matter. A careful analysis of the conditions for
constructing a contract normal form allows us to state the following general criterion:

Definition 5 A situation s is ideal (sub-ideal, non-ideal, irrelevant) with respect to a contract FCL if
s is ideal (sub-ideal, non-ideal, irrelevant) with respect to the contract normal form from FCL.

It is worth noting that Definition 5 shows the relevance of the distinction between a contract and its
normal form. This holds in particular for the case of sub-ideal situations. Suppose you have an FCL
contract consisting of the rules

` OsA ¬A ` OsB

The corresponding contract normal form is

` OsA⊗OsB

While the situation with ¬A;B is sub-ideal with respect to the latter, it would be non-ideal for the former.
In the first case, even if ¬A ` B expresses in fact an implicit reparational obligation of ` A, this is not
made explicit. Key point here is that there was no link between the primary and reparation obligations in
the contract, but this is made explicit in the normal form. So, there exists a situation which apparently
accomplishes a rule and violates the other without satisfying any reparation. This conclusion cannot be
accepted because it is in contrast with our intuition according to which the presence of two rules like ` A
and ¬A ` B must lead to a unique regulation. For this reason, we can evaluate a situation as sub-ideal
with respect to an FCL contract only if it is sub-ideal with respect to its normal form.

7.2 Processes as Behaviour Execution Paths

In this section we treat business process fragments in terms of behaviour execution paths. This is a
generic mechanism we can use to check compliance between business processes and business contracts.

As we have argued before there are two ways in which a process does not comply with a contract (or
a contract rule).

1. It explicitly violates an obligation;

2. If fails to perform a required task.

For example consider the rule
α ` Osβ ⊗Osγ

which means that, if event α occurred then this must be followed by β, or in alternative, in case β does
no occur, it must be followed by γ.

According to the intuitive reading and Definition 3, a situation is

• ideal if it has α;β as its subsequence;

• sub-ideal if it has either of the following as subsequences α;¬β; γ, α; γ.

• not-ideal if it has α as a subsequence, but there is non subsequence extending α that has β or γ as
its members.

15

Let us now consider the process
π = δ;α; ε.

This process results in a non-ideal situation: it has α as one of its subsequences, but it does not contain
β or γ. So it not compliant because it fails to fulfil the obligation Osβ.

The process3

π′ = δ;α; ε;¬β

is also not compliant because in this case it presents an explicit violation of the obligation Osβ. The
main difference between π and π′ is that π can be made (fully) compliant by extending it with β, while
π′ either is revised by first removing ¬β and then inserting a sub-process corresponding to β, or resulting
in a sub-ideal situation by extending it by γ.

7.3 Ideal Semantics for the Contract

In Section 5.2 we have shown the FCL representation of the contract an the resulting normal form. Here
we describe the minimal behaviours corresponding to ideal, sub-ideal and non-ideal situation for the
normal form of the contract.

The minimal non-trivial ideal situation for rule r4.2 is when L = ∅ and

S1 = begin; FirstOrder7Days

and non-ideal if
S2 = begin;¬FirstOrder7Days

For rule r5.1 the minimal non-trivial ideal situation is when L = ∅ and

S3 = Service; QualityOfService

while the situations where S is either of the following

S4 = Service;¬QualityOfService; Replace3days
S5 = Service;¬QualityOfService;¬Replace3days; Refund&Penalty

are sub-ideal situations because there are events that must be executed in case of violations of prior
obligations; while the following

S6 = Service;¬QualityOfService;¬Replace3days; Refund
S7 = Service;¬QualityOfService;¬Replace3days; Penalty

are non-ideal situations, since the last possible reparation (Refund&Penalty) is not completely fulfilled.
For r5.2 we have

S8 = PurchaseOrder ; Deliver1day

is the minimal non-trivial ideal situation, while

S9 = PurchaseOrder ;¬Deliver1day

is non-ideal.
Finally for r6.1, the minimal non trivial situation is when

S10 = Invoice; PayWithin7days

while
S11 = Invoice;¬PayWithin7days; PayWithInterest

is sub-ideal, and
S12 = Invoice;¬PayWithin7days;¬PayWithInterest

is not ideal, and then it does not comply with the contract.
3Notice that here we ignore the distinction whether β must immediately follow α, or just follows it. This this distinction

can be made more precise with the introduction of temporal notions either as timestamps or based on intervals, for example
using Allen’s interval algebra [1, 2] as in [18]. However, this distinction, while important for properly representing business
process, is not essential to the discussion of the present paper, since the argument will carry over unchanged to those more
complex and powerful formalisms.

16

Figure 2: BPMN Diagram for Processes in Service Contract

8 Compliance of Processes with Contracts

In the previous discussion we have outlined some methodology and heuristic to derive business processes
compliant with a business contract starting from the formal representation of the business contract. In this
section the focus in instead in checking whether an existing business process is compliant with the relevant
regulatory documents (contracts). As in the previous section, we use BPMN for the representation of
business processes.

8.1 BPMN Formulation: The Service Contract

Let us assume that a business analyst has come up with a process representation as shown in Figure 2,
independently of the details of the contract conditions. In other words there was no prior attempt to
derive contract compliant processes as proposed in Section 6. In the figure key obligations are stated as
BPMN annotations next to the actions that are expected to occur. We also use several timers that reflect
temporal constraints on when the obligations should be discharged. The mapping from this process into
a process event description follows the rules below:

• A BPMN intermediate event representing message arrival is a process event, e.g., a message signi-
fying that new contract was signed, eNewContract ;

• A BPMN intermediate event representing timer is a process event;

• A BPMN message flow’s origin is a process event; note that in BPMN both sending and receiving
of a message is an event, but to simplify presentation we only regarded the sending of a message as
a process event;

• Start of a BPMN task or process is a process event;

• The completion of a BPMN task or process is a process event;

• BPMN does not specify when a message flow is to be triggered from a task, so we will assume
that it is triggered immediately following the start of this task (e.g., as in DeliverService and
CreateInvoice tasks), unless the message is created when other change state occurs within this task,
as in ProblemDetected message sent out of the UseService sub-process; this event will be sent when
its corresponding guard in an process event description will be set to true.

17

These events can be combined into more complex structures. We use three simple operators to produce a
simple event language used only for the purpose of illustrating the mapping from contracts to processes.
We note that a more detailed mapping from BPMN into a more sophisticated event language is subject
of our other research topic. Three simple event operators are used to describe their temporal causality
(i.e., sequence), depicted with the ; symbol, their alternative paths (OR) or they simultaneous triggering
(AND).

We assumed that a business modeller using BPMN needed a way to describe a common requirement
that some task must be completed within a particular period of time, and if this is not the case then an
alternative execution path need to be taken. There is currently no notation for this scenario. In fact,
this can be regarded as a common pattern that can be modelled by using the BPMN intermediate timer
event and a decision node together with the required task. So, it is upon the activation of the task in
question that the timer is also activated, which will generate another event (deadline expiry). If that
event occurs before the completion of the task, then the obligation in question is violated and this can
be a sub-ideal or non-ideal situation. There are several usages of this pattern in Figure 2. For example
FixProblem task is activated at the same time as the corresponding timer (3Days), and the flows from
that timer and from the task are fed into an OR merging node, so that whichever event occurs first it
would continue onto the subsequent flows via the merger node. We will use the name of the event and
the name of the timer to denote the resulting complex event, in this case the event is FixProblem3Days.

8.2 Event-centric transformation

The example of Figure 2 is shown in terms of event patterns as follows.

Supplier Side: There are three event sub-patterns, which describe independently triggered execution
paths associated with:

• the activity of waiting for Purchase Orders (and if received, starting delivering service)

• Invoicing activities

• Reaction to the problems

These patterns are listed next.

π1 = eNewContract ; WaitPO7days; ((POrecieved ; DeliverService;mNotifyPurchaser) ∨ End)
π2 = NewMonth; CreateInvoice; (mInvoice ∧ (CheckPayment7days;

([Paid]DeliverService ∨ [NotPaid]; End)))
π3 = mProblemDetected ; QoSMonitor ; FixProblem3days; ([fixed]DeliverService ∨ [notFixed]End)

Notice that these patterns will need to be composed into one high-level pattern that will represent execu-
tion path options for the overall process. So, these three sub-patterns are then AND-ed and NewMonth
and mProblemDetected can then become part of guards for the last two patterns.

Similar reasoning applies to the Purchaser Side, and the three patterns there are:

π4 = eNewContract ; PresentPO ;mPO

π5 = mNotifyPurchaser ; UseService; ([problem]mProblemDetected ∧D1monthBeforeContractEnd);
([Renew]PresentPO ∨ [NoRenew]End)

π6 = mRecieveInvoice ; PayInvoice; UseService

8.3 ANDs and ORs

The event relationships from the BPMN example above include several operators that were not included
in the execution path expressions derived from the normal form of the contract expressed in FCL. These
are the AND and OR operators that can describe two separate branches in a process, and Guards which
can be likened to the states in the FCL antecedents. The lack of such operators within the expressions
of behaviour execution paths results from the limitations of current behaviour execution paths formalism
which is primarily influenced by the sequence relationship between antecedent and conclusion in the FCL
statements.

Although we do plan to extend this execution path formalism (for example to express Obligation on
two events in AND relationship) this limitation is not the problem for this example because the Ideal

18

semantics can incorporate compliance checking for the AND and OR branches. It does so by providing
a union of execution paths from AND or OR branches.

In case of OR branches an ideal situation for the whole process is satisfied if any of the branches are
ideal.

In case of AND branches, if all AND branches are ideal, then the composite process is ideal. However,
if any of AND branches is non-ideal or sub-ideal so is the overall process. This area needs further
investigation.

8.4 BPMN Compliance with FCL

We are now ready to test whether the specifications of the path obtained from the BPMN diagram comply
with the FCL representation of the contract according to the ideal semantics presented in Section 7.3.

Process π1 contains an OR-branch, thus it generates two sequences

P1 = eNewContract ; WaitPO7days; POrecieved ; DeliverService;mNotifyPurchaser

P2 = eNewContract ; WaitPO7days; End

Assuming that the event POrecieved corresponds to the event PurchaseOrder , and event DeliverService
to Deliver , then the path P1 does not comply with rule r5.2 since it lacks the timer 1day. Path P2 does
not contain any subsequence of the sequences given in Section 7.3, and thus it is deemed as irrelevant.
We can argument in the same way (lack of timer) to determine the non compliance of processes π4 and
π5

Similarly to the previous case process π3 generates two paths:

P3 = mProblemDetected ; QoSMonitor ; FixProblem3days; [fixed]DeliverService
P4 = mProblemDetected ; QoSMonitor ; FixProblem3days; [notFixed]DeliverService

Again assuming that the same ontology is used for event literals in FCL and event patterns in BPMN,
¬QualityOfService maps to mProblemDetected and Replace to FixProblem, then P3 corresponds to a sub-
ideal situation (see sequence S4 in Section 7.3) for rule r5.1, In this case Replace and FixProblem have
the same timer. On the other hand, P4 is not-ideal since the process repairing the violation of the then
required event FixProblem3days is that the supplier has to refund the customer and to pay her a penalty,
and not the termination of the contract.

Finally π2 and π5 are not relevant for the contract (i.e., they do not affect whether the whole processes
complies or not with the contract).

9 Conclusions and Future work

In this paper we have embarked on a relatively unexplored research theme related to compatibility check-
ing of business processes against business contracts. The value of this research lies in the need to address a
number of incompatibility problems in the business world, resulting from varying business environments,
characterised by different business setups, external constraints as well as future organisations trajectories.

One specific compatibility area that is addressed in this paper is concerned with ensuring compli-
ance between business processes and business contracts. This is of relevance for many organisational
environments of today in which business contracts and business processes are designed and managed
through separate activities and by separate specialists. This can lead to compliance problems that in
turn may lead to the violation of contract conditions with possibly costly consequences both in financial
and reputation terms.

Our approach to compliance checking involves two solution approaches. The first solution provides
a set of guidelines for progressively transforming contract conditions into business processes that are
consistent with contract conditions thus avoiding violation of the rules in contract. Another solution
compares rules in business contracts and rules in business processes to check for possible inconsistencies.
Both solutions use a logic-based formalism for the expression of contracts and their violations, coupled
with a new semantics that we have developed specifically for the purpose of compliance checking. The for-
malisation employs an event-based way of expressing behaviour associated with contracts and processes.
The semantics consists of determining what are the ideal, sub-ideal and non-ideal situations (or state of
affairs) when comparing business process execution paths and contract conditions. We have tested our
approach by assuming that processes and contracts are developed by different experts and we have found
several compliance problems in the example used, as reported.

19

This exercise has also identified several research issues that we intend to address in future regarding
compliance checking.

For the derivation of compliant processes from normative specifications we have found that the rep-
resentation of contract in a structured form such as the one based on a logic formalism, provides a more
direct way in the identification of messages to be exchanged between parties as driven by their mutual
obligations - as opposed by using straight legalese version. We have also found that FCL form can help in
identifying some fragments of internal processes, typically the tasks that are activated by some triggering
events and tasks which need to be involved in exchange of messages needed as part of fulfilment of mu-
tual obligations. However, it is difficult to arrive at a detailed set of rules for the construction of internal
processes - which in a way is to be expected as there may be many ways how processes can be realised
to implement contract conditions. Some heuristics can be applied in a similar way as was proposed in
[20] and we expect that more of such heuristics will be developed over time as the patterns of use are
identified and recorded. In fact, one of our future research directions to study various such cases and to
provide richer set of heuristics, which are likely to be industry domain dependent.

For the other solution approach, our current semantics supports relatively simple normative expres-
sions in which deontic constraints are expressed in terms of single events. We plan to extend it by
considering complex event relationships instead, e.g., obligations involving two of more events related
according to various compositional operators. In addition, we plan to investigate broader context for
the Ideal semantics and cater for a more complex compositional operators (than sequence only) between
events in behaviour execution paths, for example as in [27]. Further, our example has pointed to a need
to provide a better handling of deadlines in FCL Obligation modalities, because they are frequently used
in the specification of obligations. In particular we will try to incorporate in FCL the approaches of [14]
to represent temporal notions and temporalised normative positions and of [6] to incorporate obligation
deadlines.

The example has also identified a need to establish a common ontology for the events that are used
in contract and process specifications and we intend to investigate possible solution approaches for this
area.

Another topic is related to checking of a different form of compatibility, namely the one which in-
volves an additional checking of possible future resource conflicts. For example, are partners’s future
commitments such that they may lead to the violations of the contract in question.

Acknowledgements

This work is partially supported by the Australia Research Council under Discovery Project No. DP0558854
and Linkage Project No. LP0348532.

References

[1] James F. Allen. Towards a general theory of action and time. Artif. Intell., 23(2):123–154, 1984.

[2] James F. Allen and George Ferguson. Actions and events in interval temporal logic. J. Log. Comput.,
4(5):531–579, 1994.

[3] Andrew Berry. Describing ans Supporting Complex Interactions in Distibuted Systems. Phd thesis,
University of Queensland, 2002.

[4] Andrew Berry and Zoran Milosevic. Extending choreography with contract constraints. International
Journal of Cooperative Information Systems, 14(2–3):131–179, 2005.

[5] Business Process Execution Language for Web Services. Version 1.1. http://www-128.ibm.com/
developerworks/library/specification/ws-bpel/, 5 May 2003.

[6] Jan Broersen, Frank Dignum, Virginia Dignum, and John-Jules Ch. Meyer. Designing a deontic logic
of deadlines. In Alessio Lomuscio and Donald Nute, editors, Deontic Logic in Computer Science,
volume 3065 of Lecture Notes in Computer Science, pages 43–56. Springer, 2004.

[7] José Carmo and Andrew J.I. Jones. Deontic logic and contrary to duties. In D.M. Gabbay and
F. Guenther, editors, Handbook of Philosophical Logic, 2nd Edition, volume 8, pages 265–343. Kluwer,
Dordrecht, 2002.

20

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

[8] Elkera XML-2-go suite. http://www.elkera.com.

[9] Guido Governatori. Representing business contracts in RuleML. International Journal of Cooperative
Information Systems, 14(2–3):181–216, 2005.

[10] Guido Governatori and Duy Hoang Pham. A semantic web based architecture for e-contracts in
defeasible logic. In Asaf Adi, Suzette Stoutenburg, and Said Tabet, editors, RuleML, volume 3791
of Lecture Notes in Computer Science, pages 145–159. Springer, 2005.

[11] Guido Governatori and Zoran Milosevic. Dealing with contract violations: formalism and domain
specific language. In 9th International Enterprise Distributed Object Computing Conference (EDOC
2005), pages 46–57. IEEE Computer Society, 2005.

[12] Guido Governatori and Antonino Rotolo. A Gentzen system for reasoning with contrary-to-duty
obligations. A preliminary study. In Andrew J.I. Jones and John Horty, editors, ∆eon’02, pages
97–116, London, May 2002. Imperial College.

[13] Guido Governatori and Antonino Rotolo. Logic of violations: A Gentzen system for reasoning with
contrary-to-duty obligations. Australasian Journal of Logic, 4:193–215, 2006.

[14] Guido Governatori, Antonino Rotolo, and Giovanni Sartor. Temporalised normative positions in
defeasible logic. In Anne Gardner, editor, 10th International Conference on Artificial Intelligence
and Law (ICAIL05), pages 25–34. ACM Press, 2005.

[15] Gartner Group. Delivering ITs Contribution: The 2005 CIO Agenda. Gartner, Inc, Stamford,
Connecticut, 2005.

[16] Andrew .J.I. Jones and Marek Sergot. A formal characterisation of institutionalised power. Journal
of IGPL, 3:427–443, 1996.

[17] Stig Kanger. Law and logic. Theoria, 38:105–32, 1972.

[18] Ruopeng Lu, Shazia Sadiq, Vineet Padmanabhan, and Guido Governatori. Using a temporal con-
straint network for business process execution. In Gillian Dobbie and James Bailey, editors, Seven-
teenth Australasian Database Conference (ADC2006), volume 49 of CRPIT, pages 157–166, ACS,
2006.

[19] David Luckham. The Power of Events. Addison-Wesley, 2002.

[20] Zoran Milosevic, Shazia Sadiq, and Maria Orlowska. Towards a methodology for deriving contract-
compliant business processes. In Proc. 4th Int. Conference on Business Process Management, pages
395–400. Springer, 2006.

[21] OASIS. LegalXML eContracts. http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=legalxml-econtracts.

[22] Object Management Group. Business Process Modeling Notation Specification. http://www.bpmn.
org/, 3 February 2006.

[23] Sarbanes-Oxley Act of 2002. US Public Law 107-204. http://www.sec.gov/about/laws/soa2002.
pdf.

[24] Health Insurance Portability and Accountability Act of 1996. US Public Law 104-191.

[25] Roger Tagg, Zoran Milosevic, Sachin Kulkarni, and Simon Gibson. Supporting contract execution
through recommended workflows. In Fernando Galindo, Makoto Takizawa, and Roland Traunmüller,
editors, Database and Expert Systems Applications, 15th International Conference, DEXA 2004,
volume 3180 of Lecture Notes in Computer Science, pages 1–12. Springer, 2004.

[26] Web Service Choreography Decription Language, 1.0. www.elkera.com, 30 November 2006.

[27] Adam Zachary Wyner. A functional program for agents, actions, and deontic specifications. In
Matteo Baldoni and Ulle Endriss, editors, Proceedings of DALT 2006, 2006.

[28] ITU-T Rec X.902. ISO/IEC 10746-2: Foundations, RM-ODP.

21

http://www.elkera.com
http://eprint.uq.edu.au/archive/00002225/01/coala.pdf
http://eprint.uq.edu.au/archive/00002967/01/main.pdf
http://eprint.uq.edu.au/archive/00002967/01/main.pdf
http://eprint.uq.edu.au/archive/00002472/01/bcl.pdf
http://eprint.uq.edu.au/archive/00002472/01/bcl.pdf
http://eprint.uq.edu.au/archive/00001893/01/deon02.pdf
http://eprint.uq.edu.au/archive/00001893/01/deon02.pdf
http://eprint.uq.edu.au/archive/00002629/01/main.pdf
http://eprint.uq.edu.au/archive/00002629/01/main.pdf
http://eprint.uq.edu.au/archive/00002279/01/ic05.pdf
http://eprint.uq.edu.au/archive/00002279/01/ic05.pdf
http://eprint.uq.edu.au/archive/00003024/01/CRPITV49Lu.pdf
http://eprint.uq.edu.au/archive/00003024/01/CRPITV49Lu.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=legalxml-econtrac ts
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=legalxml-econtrac ts
http://www.bpmn.org/
http://www.bpmn.org/
http://www.sec.gov/about/laws/soa2002.pdf
http://www.sec.gov/about/laws/soa2002.pdf
www.elkera.com

	Introduction
	Contracts --- key legalese structures
	A Sample Contract
	Contract Formalism
	From legalese structures to deontic constraints
	From deontic constraints to contract formalism
	Formalising deontic constraints
	Formalising violations of deontic constraints

	Formal Contract Language (FCL)
	Normal Forms
	Merging Contract Conditions
	Removing Redundancies
	Normalisation Process

	Representing the Contract in FCL

	From FCL to business processes
	From FCL to Abstract Processes
	From an abstract process to a private process
	From process description to process implementation
	A methodology for deriving compliant processes

	Ideal Semantics
	FCL expressions and behavioural execution paths
	Processes as Behaviour Execution Paths
	Ideal Semantics for the Contract

	Compliance of Processes with Contracts
	BPMN Formulation: The Service Contract
	Event-centric transformation
	ANDs and ORs
	BPMN Compliance with FCL

	Conclusions and Future work

