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Abstract. This paper provides a computational framework, based on Defeasible Logic, to
capture some aspects of institutional agency. Our background is Kanger-Lindahl-Pörn account
of organised interaction, which describes this interaction within a multi-modal logical setting.
This work focuses in particular on the notions of counts-as link and on those of attempt and
of personal and direct action to realise states of affairs. We show how standard Defeasible
Logic can be extended to represent these concepts: the resulting system preserves some basic
properties commonly attributed to them. In addition, the framework enjoys nice computational
properties, as it turns out that the extension of any theory can be computed in time linear to
the size of the theory itself.
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1. Background and Motivation

Recent works on agents and their societies assume that as in human societies,
also in artificial societies normative concepts may play a decisive role, allow-
ing for the flexible co-ordination of intelligent autonomous agents [12, 40].
In line with this trend, in [16] the authors of this paper and other colleagues
proposed to model organisations of agents in terms of rule-based normative
systems; accordingly, an organisation should be characterised by specifying
the normative positions relevant to design its structure. These positions in-
clude not only duties and permissions, but also powers, as for instance powers
of creating further normative positions on the head of other agents. Techni-
cally, in this paper we develop a formal machinery to capture some building
blocks among those analysed in [16]. In particular, we focus on some basic
aspects of agency and institutionalised power. These concepts are embedded
in a non-monotonic framework based on Defeasible Logic (DL).

As in [16], the background of this paper is Kanger-Lindahl-Pörn [31, 32,
42] theoretical account of organised interaction (see [14]). The main refer-
ences here are some recent contributions [45, 29, 30], which have enriched
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this framework with some substantial refinements. The basic idea is to de-
scribe agents’ interaction within a multi-modal logical setting. The resulting
view is abstract but flexible, as social agency is captured by simply combining
different modal operators, each of them corresponding to notions such as
those of action, power, obligation, and belief.

The paper is confined to two basic aspects of the above line of research:
the modal notion of agency and that of institutionalised power.

Despite some limitations (see [47, 43]), modal logic of agency [14] is still
very much adopted thanks to its flexibility, as actions are simply taken to be
relationships between agents and states of affairs. We will focus on two well-
known agency notions. The first is the idea of personal and direct action to
realise a state of affairs. In the mentioned logical framework, it is formalised
by the modal operatorE, such that a formula likeEiA means that the agent
i brings it about thatA. Different axiomatisations have been provided for it
[20]. Here we will consider two basic logical properties of this operator1:

EiA→ A (T)

EiE jA→¬EiA (EE¬E)

Schema (T) expresses the successfulness of actions that is behind the common
reading of the “bring about” concept. Schema (EE¬E) is a specific axiom
advanced, for example, in [45]. The brings-it-about operator expresses ac-
tions performed directly and personally. Hence, (EE¬E) states a principle
of rationality for modelling co-ordination in institutional organisations: it is
counter-intuitive that the same agent brings it about thatA and brings it about
that somebody else achievesA.

The second aspect of agency considered here is that of attempt, formalised
by the operatorH [45, 30].HiA says thati attempts to make it the case that
A. The operatorHi is not necessarily successful. Here we will simply assume
that each successful action is also an attempt2:

EiA→ HiA (1)

1 Besides these schemata, the logic forE is usually closed under logical equivalence. Other
common properties, which are not considered here, correspond to¬Ei> (No) and(EiA∧
EiB)→ Ei(A∧B) (C).

2 Besides that,H usually enjoys (C) and is closed under logical equivalence. In [45, 30]
a third operatorG has been also defined, corresponding to the idea of indirect successful
action. The reading ofGiA is that i ensures thatA. G enjoys the same general properties of
E. However, instead of (EE¬E), it is adoptedGiG jA→ GiA (GGG). (GGG) differentiates
G from E insofar as the former is meant to represent indirect actions. This operator will not
be considered explicitly here. Besides its most general reading, it can be argued thatGiA, if
strictly analysed in terms of agency, can be thought as any iteration of the formEiEi1 . . .EinA,
wheren≥ 0. Notice that this specific reading ofG is compatible with that originally assigned
to it, since the schemasEiA→GiA, EiE jA→EiG jA andGiE jA→GiG jA are adopted in [45].
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Let us focus now on the idea of institutionalised power. This notion is
central for describing norm-governed organisations of agents and comes from
the distinction between the practical ability to realise a state of affairs –which
is not considered in this paper [14, 20]– and the institutional power to do this
[34]. For example, if in an auctioni raises one hand, this implies that the act
of making a bid is also obtained. In principle, this kind of ability should be
distinguished from the practical capacity to obtain a certain state of affairs.
The attempt to make a bid may not be successful: its being successful, within
the institutional context (the auction), depends on whether that institution
makes it effective. It is up to institutional (constitutive)rules to establish
whetheri’s act makes so that a bid is effective or not, namely, thati’s act
counts asbidding.

The logical nature of this kind of rules has been recently investigated
following different directions (see, e.g., [23, 6, 29, 16]). Many of these ap-
proaches explicitly recognise that constitutive rules are defeasible. In fact, it
is intuitive that, e.g., if the agenti raises one hand, this may count as making
a bid but this does not hold ifi raises one handand scratches his own head.
This paper will adopt the approach provided in [16]. In that work, it is argued
that constitutive rules of the form “X counts asY in the contextC” [46] are
represented within a conditional logic enjoying at least the basic properties
(Reflexivity, Cut, and Cautious Monotonicity) of cumulative reasoning (sys-
tem CU [4]). In [16] the logic was enriched by the modalityDs –originally
introduced in [29] but with a different meaning– to represent institutional
facts. In that specific perspective, the expression “A counts asB in the in-
stitution s”, formally A ⇒s B, was stated to be equivalent by definition to
(AV DsB)∧(DsAV DsB), whereV is the conditional obeying the principles
of cumulative reasoning. This view is meant to capture the fact that counts-as
rules may specify when (1) a brute fact (e.g., destroying the receipt) counts as
a type of institutional act (e.g., freeing the debtor from his obligation), and (2)
an institutional act (e.g., a contract made by personj in the name of person
k) has the same effects of another institutional act (e.g., a contract made by
k). Ds represents the domain of institutional facts and it corresponds to a
classical non-normal modality. However, in this paper we will not consider
the modalityDs, as it is mainly relevant when more institutional contexts
are compared and so the modality is used to mark the different institutions
where institutional facts hold. Accordingly, leaving asideDs, the modelling
of counts-as rules will simply amount in this paper to dealing with cumulative
reasoning.

Notice that the framework we have just recalled is able to capture some
composite concepts regarding the normative co-ordination of agents. In par-
ticular, [16] shows that the introduction of the notion of proclamation allows
to account for the ideas of declarative power and delegation [9, 35]. The
logical representation of these ideas has a counts-as structure. Institutional
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proclamations are formalised by the modal operatorproc: the expression
prociA means that agenti proclaimsA3. The combination ofproc, agency
operators, and the counts-as link enables us to capture two forms of nor-
mative delegation, intended as kinds of true representation [16]. The first is
procj(prociA)⇒s E j(prociA), that is, whenj proclaims thati proclaims that
A, this counts asj ’s making so thati proclaims thatA4. In addition, we can
haveprocj(EiA)⇒s E j(EiA). This type of representation is necessary when
the representative substitutes a principal which would not be able to perform
directly the activity which is delegated to the representative.

Although the above building blocks supply an intermediate level of fine
conceptual analysis, it seems difficult to use them directly for implementa-
tion. This is due to the inherent computational complexity of multi-modal
logics (see, e.g., [25]). In general, the addition of modal operators to the
classical propositional base leads to the increase of complexity of the logic.
This is mainly due to: (1) the rules to introduce modalities, (2) the axioms
governing the behaviour of modalities and their mutual interaction. But some-
thing similar applies as well to the logic of counts-as, due to the well-known
computational limits of conditional logics (see, e.g., [4]).

The aim of this paper is to show how to introduce modalities in a (compu-
tationally oriented) non-monotonic formalism (Defeasible Logic), and then
to apply this methodology to deal with the mentioned basic properties of
institutional agency. In this perspective, some basic patterns of defeasible
reasoning will be extended to account for the institutional dynamics insofar as
counts-as links interact with the notions of direct action and attempt. Notice
that the use of DL to model the counts-as link is immediate, as its basic form
corresponds to cumulative reasoning enjoying the properties we previously
mentioned [5]. As we will see, extending DL to treat modal logic of agency
requires some adjustments and integrations.

The layout of the paper is as follows. Section 2 makes provision of the
basics of standard DL. In Section 3 we show how DL can be extended to deal
with the notion of institutional agency we previously recalled; the formal sys-
tem will be illustrated with the help of some simple examples. In Section 4 we

3 As is well-known, agent communication concepts play an important role in modelling
agent coordination. In [16] the speech act of proclaiming has been defined to capture some
minimal properties of all speech acts that are intended to modify the institutional world.
However, notice that in this paper we will make a trivial use of theproc operator, as we will
not model its logical properties. We will simply use it to denote acts of proclamation. At any
rate, the logic ofproc is characterised by very minimal properties: it is closed under logical
equivalence and includes at least the axiom(prociA∧prociB)≡ proci(A∧B). Of course,proc
is not necessarily successful:prociA is just an attempt to achieveA. Whether it is successful
or not, within a certain institutions, depends on whethers makes it effective by means of
appropriate counts-as rules.

4 Of course, the achievement ofA will depend on the presence on another rule which states
that prociA counts asEiA.
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provide some formal results of our system. Section 5 presents a discussion of
some related work, while Section 6 provides some directions for future work.
The interested reader will find an Appendix with proofs or proof sketches of
the formal properties mentioned in Section 4.

2. Overview of Defeasible Logic

DL is a simple, efficient but flexible non-monotonic formalism which has
been proven able to deal with many different intuitions of non-monotonic
reasoning [3]. Here we propose a non-monotonic logic of agency based on
the framework for DL developed in [1].

It is not possible to give here a complete formal description of the logic.
We hope to give enough information to make the discussion intelligible and
we refer the reader to [37, 2] for more thorough treatments. As usual with
non-monotonic reasoning, we have to specify 1) how to represent a knowl-
edge base and 2) the inference mechanism.

Accordingly a defeasible theoryD is a structure(F,R,>) whereF is a
finite set of facts,R a finite set of rules (either strict, defeasible, or defeater),
and> a binary relation (superiority relation) overR.

Facts are indisputable statements.Strict rulesare rules in the classical
sense: whenever the premises are indisputable so is the conclusion;defeasible
rules are rules that can be defeated by contrary evidence; anddefeatersare
rules that cannot be used to draw any conclusions. Their only use is to prevent
some conclusions. In other words, they are used to defeat some defeasible
rules by producing evidence to the contrary. Thesuperiority relationamong
rules is used to define priorities among rules, that is, where one rule may
override the conclusion of another rule.

A rule r consists of itsantecedent(or body) A(r) (A(r) may be omitted if
it is the empty set) which is a finite set of literals, an arrow, and itsconsequent
(or head) C(r) which is a literal. Given a setR of rules, we denote the set of
all strict rules inRby Rs, the set of strict and defeasible rules inRby Rsd, the
set of defeasible rules inR by Rd, and the set of defeaters inR by Rd f t. R[q]
denotes the set of rules inR with consequentq. If q is a literal,∼q denotes
the complementary literal (ifq is a positive literalp then∼q is ¬p; and if q
is¬p, then∼q is p).

A conclusionof D is a tagged literal and can be either:

+∆q: q is definitely provable inD (i.e., using only facts and strict rules).

−∆q meaning that we have proved thatq is not definitely provable inD.

+∂q meaning thatq is defeasibly provable inD.

−∂q meaning that we have proved thatq is not defeasibly provable inD.
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Provability is based on the concept of aderivation(or proof) inD. A deriva-
tion is a finite sequenceP= (P(1), . . . ,P(n)) of tagged literals satisfying four
conditions (which correspond to inference rules for each of the four kinds of
conclusion).P(1..n) denotes the initial part of the sequenceP of lengthi.

+∆: If P(n+1) = +∆q then
(1) q∈ F or
(2) ∃r ∈ Rs[q] : ∀a∈ A(r)+∆a∈ P(1..n)

−∆: If P(n+1) =−∆q then
(1) q /∈ F and
(2) ∀r ∈ Rs[q]∃a∈ A(r) :−∆a∈ P(1..n)

The intuition behind the proof conditions is to give conditions under which
we can append a (tagged) literal at the end of a derivation. The definition of
∆ describes forward chaining of strict rules or, in other terms, it corresponds
to Modus Ponens for strict rules. Accordingly, for a literalq to be definitely
provable we need to find a strict rule with headq, of which all antecedents
have been definitely proved previously. To establish thatq cannot be proven
definitely we must establish that for every strict rule with headq there is at
least one antecedent which has been shown to be non-provable.

The inference conditions for negative proof tags are derived from the infer-
ence conditions for the corresponding positive proof tag by applying the Prin-
ciple of Strong Negation introduced in [1]. The strong negation of a formula
is closely related to the function that simplifies a formula by moving all nega-
tions to an innermost position in the resulting formula and replace the positive
tags with the respective negative tags and viceversa. For example, if in a proof
condition for +# we have∀s(+#1A(s)∧−#2B(s)), the strong negation of
the condition is∃s(−#1StrongNegation(A(s))or +#2StrongNegation(B(s))).
Accordingly, in what follows, we will often list only the positive version of
the inference rules.

+∂ : If P(n+1) = +∂q then either
(1)+∆q∈ P(1..n) or

(2.1)−∆∼q∈ P(1..n) and
(2.2)∃r ∈ Rsd[q]∀a∈ A(r) : +∂a∈ P(1..n) and
(2.3)∀s∈ R[∼q] either

(2.3.1)∃a∈ A(s) :−∂a∈ P(1..n) or
(2.3.2)∃t ∈ Rsd[q]: ∀a∈ A(t) : +∂a∈ P(1..n) andt > s

Let us work through this condition. To show thatq is provable defeasibly
we have two choices: (1) We show thatq is already definitely provable; or
(2) we need to argue using the defeasible part ofD as well. In particular, we
require that there must be a strict or defeasible rule with headq which can be
applied (2.2). But now we need to consider possible “attacks”, i.e., reasoning
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chains in support of∼q. To be more specific: to proveq defeasibly we must
show that∼q is not definitely provable (2.1). Also (2.3) we must consider
the set of all rules which are not known to be inapplicable and which have
head∼q (note that here we consider defeaters, too, whereas they could not
be used to support the conclusionq; this is in line with the motivation of
defeaters given earlier). Essentially each such rules attacks the conclusion
q. For q to be provable, each such rules must be counterattacked by a rule
t with headq with the following properties: (i)t must be applicable at this
point, and (ii)t must be stronger thans. Thus each attack on the conclusion
q must be counterattacked by a stronger rule. In other words,r and the rules
t form a team (forq) that defeats the ruless. In an analogous manner we can
define−∂q (see, for example [2]). The purpose of the−∂ inference rules is
to establish that it is not possible to prove+∂ . This rule is defined in such a
way that all the possibilities for proving+∂q (for example) are explored and
shown to fail before−∂q can be concluded. Thus a conclusion tagged with
−∂ is the outcome of a constructive proof that the corresponding positive
conclusion cannot be obtained.

We illustrate how the proof conditions work with the help of the following
theory:

F = {A,C}
R= {r1 : A⇒ B,

r2 : C⇒ E,

r3 : A,D⇒¬B,

r4 : E ⇒¬B}
{r3 > r1, r1 > r4}

SinceA,C ∈ F , we have+∆A and+∆C; by clause (1) we also have+∂A
and+∂C. To prove+∂B we have to ensure that its negation cannot be def-
initely proved (i.e., proved using only facts and strict rules). This follows
immediately since¬B is not a fact and there are no strict rules for¬B. r1 is
a defeasible rule forB whose antecedentA(r1) is {A}, and we have already
proved+∂A, thus clause (2.2) is satisfied. We have two rules for¬B, namely
r3 andr4. Using the same reasoning we can show that+∂E (clause 2.3 for
the derivation of+∂E is vacuously satisfied since there are no rules for¬E).
For r3 we have that−∂D (D /∈ F and there are no rules for it), so clause
2.3 is satisfied forr3 based on clause 2.3.1. Forr4 we can use the superiority
relationr1 > r4, to exhibit a rule (i.e.,r1) for B which is stronger thanr4. Thus
clause 2.3 is true also forr4, and then we are justified to append+∂B at the
end of the derivation.

Sometimes all we want to know is whether a literal issupported, that is
if there is a chain of reasoning that would lead to a conclusion in absence of
conflicts. This notion is captured by the following proof conditions:
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+Σ: if P(n+1) = +Σp then
(1) +∆p∈ P(1..n) or
(2) ∃r ∈ Rsd[p] : ∀a∈ A(r)+Σa∈ P(1..n)

The notion of support corresponds to monotonic proofs using both the mono-
tonic and non-monotonic parts of defeasible theories.

3. A Computational Framework for Institutional Agency

As we have seen in Section 1 multi-modal logics have been put forward to
capture the intensional nature of (institutional) agency. Usually multi-modal
logics are extensions of classical propositional logic with some intensional
operators. Thus any multi-modal logic should account for three components:
(1) the underlying logical structure of the propositional base; (2) the logic
behaviour of the modal operators; and (3) the relationships among the modal
operators. Alas, as is well-known, classical propositional logic is not well
suited to deal with real life scenarios. The main reason is that the descriptions
of real-life cases are, very often, partial and somewhat unreliable. In such cir-
cumstances classical propositional logic might produce counter-intuitive re-
sults insofar as it requires complete and consistent information. Hence modal
logics based on classical propositional logic are doomed to suffer from the
same problems.

On the other hand the logic should specify how modalities can be intro-
duced and manipulated. Some common rules for modalities are, e.g., Neces-
sitation (i.e.,` A/ ` 2A) and RM (i.e.,` A→ B/ ` 2A→ 2B) [10]. Both
dictate conditions for introducing modalities in contrast with the analysis of
institutional agency as outlined in Section 1. To comply with the properties of
this notion, in the setting provided by DL we have to set 1) the rules describ-
ing the logical inferences and 2) the rules to introduce the modal operators of
agencyEi (the agent i brings about), andHi (the agent i attempts). Accord-
ingly we will consider two types of rules (strict, defeasible, and defeaters):
a set of rules for the notion ofcounts-as, and a set of rules for the notion of
results-in.

Since we want to reason about actions we extend the language of DL with
a set of action symbols; we will useαi ,βi ,γi to denote atomic actions. The
meaning of an action symbol, for exampleαi , is that the action corresponding
to it has been performed by agenti, while we use¬αi to denote that the action
described byαi has not been performed. Given the modal operatorsEi , Hi ,
andproci we form new literals as follows: i) ifl is a literal thenproci l is a
literal; ii) if l is a literal thenEi l ,¬Ei l , Hi l and¬Hi l are literals ifl is different
from Eim,¬Eim, Himand¬Him, for some literalm. We will use Lit to denote
the set of literals.
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In this perspective a defeasible institutional action theory is a structure
I = (A,F,Rc,{Ri}i∈A,>) where,A is a finite set of agents,F is a set of facts,
Rc is a set of counts-as rules (i.e.,→c,⇒c, ;c), {Ri}i∈A is a family of sets of
results-in rules (i.e.,→i ,⇒i , ;i , ∀i ∈ A), and>, the superiority relation, is a
binary relation over the set of rules (i.e.,>⊆ (Rc∪RA)2), whereRA =

⋃
i∈ARi .

The intuition is that, given an institution,F consists of the description of
the raw institutional facts, either in form of states of affairs (literal and modal
literal) and actions that have been performed.Rc describes the basic inference
mechanism internal to an institution, whileRA encodes the transitions from
state to state occurring as the results of actions performed by the agents within
the organisation. The rules inRA are used to introduce modal operators. To
capture these notions we impose some restrictions on the form of rules: lit-
erals of the formEi l , ¬Ei l , Hi l and¬Hi l are not permitted in the consequent
of results-in rules fori, while actions symbols are not permitted in the con-
sequent of results-in rules. The first restriction is motivated from the fact that
1) results-in rules are the rules to introduce the modalities and in the present
context sequences of modalities for thesameagent are useless5 2) counts-as
rules make possible the derivation of institutional actions (modalised literals)
only when they follow from specific actions (intentionally) performed by the
agent. The second restriction is due to the idea that results-in rules describe,
as their name suggests, the results of actions, not actions themselves.

Let us see by means of some examples the intuition behind this formalism.
We focus here on defeasible rules but similar remarks can be applied to the
other kinds of rules. Suppose the agenti is acting in the context of an auction.
Then we may have cases like the following6:

bidsi , auctionbegun⇒i offer (2)

This rule is an example corresponding to the introduction of the modalityEi .
In fact, agenti’s fulfilment of the conditions in the antecedent produces the
occurrence ofoffer: agenti’s action of bidding has the result thati has made
an offer. As we will see, ifoffer can be derived, this permits the introduction
of Ei(offer).

auctionbegun⇒i ¬offer (3)

The example above does not specify any action in the antecedent (empty
action). This means that, when the auction is begun, agenti’s refraining from
doing any action has the result to have no offer. In logical terms, also this case
can lead to the introduction ofE7.

5 An expression likeEiEiA is useless since it is equivalent toEiA.
6 Bold type expressions correspond to action symbols, the italicised ones to state of affairs.
7 The ideas of empty action and refraining from doing a specific action should not be

confused with what it is expressed by¬EiA. As we will see, this last corresponds to the non-
derivability ofA within I , which can depend also on reasons that have nothing to do with agent
i’s refraining from acting to realiseA.
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Now suppose that agenti is acting on behalf of agentj.

bidsi , proci(E joffer)⇒ j offer (4)

This formula means that the fact that agenti makes a bid and proclaims that
agentj makes the offer permits to introduceE j , namely thatE joffer.

Let us consider examples of counts-as rules.

raiseshandi , auctionbegun⇒c bidsi (5)

This rule says that that agenti’s action of raising one hand counts as agenti’s
action of bidding, when the auction is begun.

auctionbegun, Ei(offer)⇒c ¬raisesoffer i (6)

Also here we have agenti’s generic refraining from doing any action in the
antecedent. This example represents the institutional connection linking such
refraining, andthe factthat agenti made an offer when the auction is begun,
to agenti’s specific refraining from raising a new offer. Notice that the same
meaning is assigned to counts-as rules where the antecedent contains only
non-modal literals.

auctionbegun, raiseshandi ⇒c offer (7)

This rule is an example of the institutional analogous of results-in rules, where
an action and a state of affairs occur respectively in their antecedent and con-
sequent. However, in this case the result is an institutional fact and follows by
convention only within the institution. In fact, that an offer is a consequence
of agenti’s raising one hand is not a simple matter of agenti’s action results.
The attempt of agenti to make an offer by raising the hand is effective only
if the institution recognises this.

Let us see a couple of examples with more than one agent. As above, agent
i is acting on behalf of agentj.

proci(E joffer)⇒c Ei(E joffer) (8)

This rule says that if agenti proclaims that agentj makes an offer, then this
counts as agenti brings it about that agentj makes such an offer.

proci(E joffer), raiseshandi ⇒c bids j (9)

Rule (9) expresses that agenti’s proclamation that agentj makes an offer
counts as agentj ’s action of bidding.

It is worth noting that no explicit reference is made here to the modalityDs

[16], as discussed in Section 1. In fact, the present setting accounts for the idea
of institution in terms a special kind of defeasible theory. Each institutional
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action theoryI encodes in itself all possible inferences that can be drawn
within the domain of institutional facts relative to a givens. This means
that s may be identified withI since all action results are obtained within
such a domain of facts. In other words, the introduction of the modalityDs

corresponds here to the general definition of derivability using counts-as and
results-in rules. Technically, counts-as rules are meant to capture the case
DsA V DsB mentioned in Section 1. Roughly speaking, on the other hand,
the caseA V DsB will be treated as a special kind of results-in rule, where
the manipulation of the consequent is made under the constraints designed
to account for the idea of institutional consequence. This is just a technical
device to differentiate the two cases: the logical behaviour of the counts-as
link as described in [16] is here encoded in the whole formal machinery
corresponding to the definitions of the proof conditions.

Before moving to the proof conditions we have to introduce the notion
of complementary literals. In standard DL two literals are complementary
to each other if one is the negation of the other. This means that the two
literals cannot hold at the same time. The extension with modal operators
has to consider when modal literals are in conflict with each other. Since the
agency operatorE is successful (i.e.,EiA → A), it is not possible to have
togetherEiA for some agenti andA. In a similar way we have to capture the
strong notion of agency we intend to model within our framework, i.e., where
EiE jA→¬EiA.

Given an atomic literalp we useE p to denote any stringEi1 . . .Ein p where
Ei1 . . .Ein is a (possibly empty) string of positive modal operators such that
∀1≤ j < n, i j 6= i j+1. Let l be a literal,C (l) denotes the complement ofl ,
i.e., the set of literal that cannot be true whenl is.

− if l = p, thenC (l) = {E∼p};

− if l = Ei p, thenC (l) = {E∼p,E¬Ei p};

− if l = ¬Ei p, thenC (l) = {EEi p}.

The meaning of the first condition is that ifp is true then no agent prevented
p; for the second condition we have that if an agenti has realisedp, then no
other agent preventedp and no agent preventedi from realisingp. Finally if
an agenti has refrained from doingp, then it is not possible that some other
agents achieved thati did p.

We are now ready to give the proof conditions for institutional agency. We
begin with the conditions for counts-as derivations.

+∆c: if P(n) = +∆cp, then either:
(1) E p∈ F or
(2) ∃r ∈ Rs[E p] : ∀a,α,E jb∈ A(r),+∆ca,+∆cα,+∆ jb∈ P(1..n).
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The conditions are in essence the same as those for definite conclusions for
DL given in Section 2. The first difference is in clause (1) where to prove a
literal p we can use any fact of the formE p, let us say, for exampleEiE j p.
This is due to the successfulness of theEi operator (see Section 1); in the
limit caseE is the empty sequence, and we recover the basic condition of DL.
Similarly, in clause (2) we look for applicable counts-as rules forE p instead
of simply p. The last difference is that a rule is now applicable if the literals in
the antecedent are proved with the right mode:+∆c for unmodalised literals
and action literals and+∆i for modal literals whose main operator isEi . This
follows the intuition that modal rules for agenti behave as introduction rules
for the modal operatorEi .

−∆cp: if P(n) =−∆cp, then both:
(1) E p /∈ F , and
(2) ∀r ∈ Rs[E p]: ∃a∈ A(r),−∆ca∈ P(1..n) or

∃α ∈ A(r),−∆cα ∈ P(1, ,n) or
∃Eib∈ A(r),−∆ib∈ P(1..n).

The intuiton for the condition for−∆c is similar to that of−∆ with the re-
marks about the condition for+∆c. The only issue we want to point out is
that to reject a rule (to show that a rule cannot be applied) we have to show
that there is at least one literal in the antecedent which is not provable with
the appropriate mode. Finally, it is easy to verify that the condition for−∆c

is the strong negation of the condition for+∆c.
We can introduce the conditions for defeasible derivations. Again, the

basic intuition is the same as DL with the additional considerations as the
conditions for strict derivations.

+∂c: if P(n) = +∂cp, then:
(1) +∆cp∈ P(1..n), or
(2.1)−∆C (p) ∈ P(1..n) and
(2.2)∃r ∈ Rsd[E p] ∀a,α,Eib∈ A(r):

+∂ca,+∂cα,+∂ib∈ P(1..n) and
(2.3)∀s∈ R[C (p)]: either

(2.3.1)∃a∈ A(s),−∂ca∈ P(1..n) or
(2.3.2)∃α ∈ A(s),−∂cα ∈ P(1..n) or
(2.3.3)∃Eib∈ A(s),−∂ib∈ P(1..n) or
(2.3.4)∃t ∈ R[E p] ∀a,α,Eib∈ A(t):

+∂ca,+∂cα,+∂ib∈ P(1..n) andt > s.

The conditions for−∂i are obtained from that for+∂i using the mentioned
principle of strong negation.
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−∂c: if P(n) =−∂cp, then:
(1)−∆cp∈ P(1..n) and
(2.1)+∆cC (p) ∈ P(1..n) or
(2.2)∀r ∈ Rsd[E p] : either

(2.2.1)∃a∈ A(r) :−∂ca∈ P(1..n) or
(2.2.2)∃α ∈ A(r) :−∂cα ∈ P(1..n) or
(2.2.3)∃Eib∈ A(r) :−∂ib∈ P(1..n) and

(2.3)∃s∈ R[C (p)] ∀a,α,Eib∈ A(r):
+∂ca,+∂cα,+∂ib∈ P(1..n) and

(2.3.1)∀t ∈ R[E p]: eithert 6> s or
∃a∈ A(t),−∂ca∈ P(1..n) or
∃α ∈ A(t),−∂cα ∈ P(1..n) or
∃Eib∈ A(t),−∂ib∈ P(1..n). .

To conclude the presentation of the proof conditions for counts-as conclu-
sions we give the conditions for support.

+Σc: if P(n) = +Σcp, then
(1) E p∈ F or
(2) ∃r ∈ Rsd[p] ∀a,α,Eib∈ A(r):

+Σca,+Σcα,+Σib∈ P(1..n).

−Σc: if P(n) =−Σcp, then
(1) E p /∈ F and
(2) ∀r ∈ Rsd[p]: either

∃a∈ A(r),−Σca∈ P(1..n) or
∃α ∈ A(r),−Σcα ∈ P(1..n) or
∃Eib∈ A(r),−Σib∈ P(1..n).

The conditions are the same as+∆ and−∆; the only difference is that for
support we consider both strict and defeasible rules instead of only strict
rules, and the two conditions are the strong negations of each other.

The conditions for derivations involving results-in rules are more compli-
cated since we have to cater for more possibilities. First of all we have that
I `Ei p if either I `+∆i p or I `+∂i p,8 andI `Hi p if I `+Σi p. In other words
it is possible to deriveEi p if we have either a strict or defeasible derivation of
p using both results-in and counts-as rules, and that agenti (in an institutionI )
attemptsp (Hi p) if I supportsp using counts-as ad results-in rules. The output
of a results-in rule producesEi modal literals, and we have seen in Section 1
that theEi operator is a success operator; therefore we add the conditions that
it is possible to derive+∆cp from +∆i p and+∂cp from +∂i p. In particular, it
is worth noting that a counts-as rule can be used as it were a results-in rule if

8 It is possible to proveEi p from a theoryI also in the case thatI `+∆cEi p or I `+∂cEi p
and similarly forHi .
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all the literals occurring in its antecedent are proved as appropriate results-in
conclusions. In this case, we say that we have aconversionfrom a counts-as
rule into a results-in rule. For example, suppose we have that

auctionbegun, raiseshandi ⇒c offer

If we haveraiseshandi and proveauctionbegunas a results-in conclusion,
in particular asEiauctionbegun, then we can say that agenti brings offer
about, namely thatEioffer. More on conversions can be found in [22].

In the same way we have that−∂i pcorresponds to¬Ei pand−Σi p to¬Hi p
in addition to the cases where the modal literal is provable with a counts-as
derivation (e.g.,I `+∂cEi p). This is in agreement with the principle of strong
negation used to define the inference conditions.

+∆i : if P(n+1) = +∆i p then
(1) EEi p∈ F ; or
(2) +∆cEi p∈ P(1..n); or
(3) ∃r ∈ Ri

s[p] ∀a,α,E jb∈ A(r):
+∆ia,+∆iα,+∆ jb∈ P(1..n) or

(4) ∃r ∈ Rc
s[p]: ∃a∈ A(r)∩Lit, and

∀a,α ∈ A(r): +∆ia,+∆cα ∈ P(1..n).

To prove non-defeasible brings-it-about, we need either that it is given as a
fact (or the set of facts contains a chain of brings-it-about operators where the
last one isEi) (1), or thatEi p has been proved using counts-as rules, or that
we have a strict rule for results-in (an irrevocable policy) whose antecedent
is indisputable (3). However we have another case (4): if an agent knows that
B is an indisputable consequence ofA in the institution (it is always the case
thatA counts asB), and it producesA, then it must realiseB.

−∆i : if P(n) =−∆i p then
(1) EEi p /∈ F and
(2)−∆cEi p∈ P(1..n) and
(3) ∀r ∈ Ri

s[p]: either
∃a∈ A(r),−∆ca∈ P(1..n) or
∃α ∈ A(r),−∆cα ∈ P(1..n) or
∃E jb∈ A(r),−∆ jb∈ P(1..n), and

(4) ∀r ∈ Rc[p], either
A(r)∩Lit = /0 or
∃a∈ A(r) :−∆ia∈ P(1..n) or
∃α ∈ A(r) :−∆cα ∈ P(1..n).

As usual the condition for−∆i is the strong negation of that for+∆i . The
only points to notice are clause (2) where we have to consider thatEi p is not
provable using counts-as rules, and the first condition of clause (4) that im-
poses that conversions from counts-as rules to results-in rules is not possible
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if the antecedent of the counts-as rule does not contain any literal (even if it
may contain actions). According to clause (4) of the two conditions above,
given the factsEiA andβ j we can use the ruleA,β j →c B to derive+∆iB and
consequentlyEiB, but not the ruleβ j →c B.

We give now the proof condition for support fori (±Σi).

+Σi : if P(n+1) = +Σi p then
(1) Ei p∈ F ; or
(2) ∃r ∈ Ri

sd[p] ∀a,E jb,α ∈ A(r):
+Σca,+Σ jb,+Σcα ∈ P(1..n); or

(3) ∃r ∈ Rc
sd[p] ∃a∈ A(r)∩Lit and,

∀a,α ∈ A(r) : +Σia,+Σcα ∈ P(1..n).

The inference conditions forHi are very similar to those for strong results-in
rules; essentially they are monotonic proofs using both the monotonic part
(strict rules) and the supportive non-monotonic part (defeasible rules) of a
defeasible institutional action theory. Given the close similarity between the
conditions for+∆i and+Σi and the fact that all pairs of proof conditions for
the proof tags given in this paper are in agreement with the principle of strong
negation the conditions for−Σi are omitted.

To capture the results of defeasible actions we have to use the superiority
relations to resolve conflicts. Thus the inference conditions for+∂i are:

+∂i ; P(n) = +∂i p then
(1) +∆i p∈ P(1..n) or
(2.1)−∆C (Ei p),−∆iEkp∈ P(1..n) and
(2.2)∃r ∈ Ri

sd[p]∪Rc
sd[EEi p] : ∀a,α,E jb∈ A(r),

+∂ca,+∂cα,+∂ jb∈ P(1..n) or
∃r ∈ Rc

sd[p]: A(r)∩Lit 6= /0, and
∀a,α ∈ A(r),+∂ia,+∂cα ∈ P(1..n); and

(2.3)∀s∈ R[C (Ei p)]∪Ri [Ekp]: either
∃a∈ A(s) :−∂ca∈ P(1..n) or
∃α ∈ A(s) :−∂cα ∈ P(1..n) or
∃E jb∈ A(s) :−∂ jb∈ P(1..n), and

∀s∈ Rc[Ekp]: either
A(s)∩Lit = /0 or
∃α ∈ A(s) :−∂cα ∈ P(1..n) or
∃a∈ A(s) :−∂ia∈ P(1..n); or

(2.3.3)∃t ∈ Ri [p]∪Rc[EEi p] : t > s and
∀a,α,E jb∈ A(t),+∂ca,+∂cα,+∂ jb∈ P(1..n) or
∃r ∈ Rc[p]: A(t)∩Lit 6= /0, and

∀a,α ∈ A(t),+∂ia,+∂cα ∈ P(1..n)

The conditions for proving the results of defeasible actions are essentially the
same as those given for defeasible derivations in Section 2. Also here, at each
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stage, we have to check for two cases, namely: (1) the rule used is a results-in
rule; (2) the rule is a counts-as rule. In the first case we have to verify that fac-
tual antecedents are defeasibly proved/disproved using counts-as (±∂c), and
brings-it-about antecedents are defeasibly proved/disproved using results-in
rules (±∂i). In the second case we have to remember that a conclusion of a
institutional counts-as rule can be transformed (converted) into a results-in if
all the literals in the antecedent are defeasibly executed. For the attack phase
(clause 2.3) we have to consider all rules inC (Ei p) as well as all results-
in rules for agenti for Ekp, i.e., rules meaning that agenti does something
so that agentk personally doesp (again, see Section 1 for the motivation and
intuition behind this condition). Finally, for the same reason we have to ensure
that all counts-as rules forEk (k 6= i) do not behave as results-in rule for agent
i. This means we have to verify that either the rule cannot be converted into
a results-in rule fori (i.e., A(r)∩Lit = /0) or that the conversion is blocked,
i.e., that there is a literal which is not provable for∂i . This means that the
event corresponding to the literal is not under the control of agenti, and so
the whole conclusion, which would correspond to the delegation to agentk,
is not under the influence of agenti.

For−∂i we have:

−∂i : if P(n) =−∂i p then
(1)−∆i p∈ P(1..n) and
(2.1)+∆C (Ei p) ∈ P(1..n) or +∆iEk ∈ P(1..n)
(2.2.1)∀r ∈ Ri

sd[p]∪Rc[EEi p] either
∃a∈ A(r) :−∂ca∈ P(1..n) or
∃α ∈ A(r) :−∂cα ∈ P(1..n) or
∃E jb∈ A(r) :−∂ jb∈ P(1..n), and

(2.2.2)∀r ∈ Rc[p] either
A(r)∩Lit = /0 or
∃a∈ A(r) :−∂ia∈ P(1..n) or
∃α ∈ A(r) :−∂cα ∈ P(1..n), or

(2.3)∃s∈ R[C (Ei p)]∪Ri [Ekp] : ∀a,α,E jb∈ A(s),
+∂ca,+∂cα,+∂ jb∈ P(1..n) or

∃s∈ Rc[Ekp]: ∃a∈ A(s)∩Lit, and
∀a,α ∈ A(r),+∂ia,+∂cα ∈ P(1..n), and

(2.3.1)∀t ∈ Ri [p]∪Rc[EEi p] eithers 6> t or
∃a∈ A(t) :−∂ca∈ P(1..n) or
∃α ∈ A(t) :−∂cα ∈ P(1..n) or
∃E jb∈ A(t) :−∂ jb∈ P(1..n), and

(2.3.2)∀t ∈ Rc[p] either
A(s)∩Lit = /0 or
∃a∈ A(t),−∂ia∈ P(1..n) or
∃α ∈ A(t),−∂cα ∈ P(1..n) or s 6> t.
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Let us examine the above conditions at work with the help of some examples.
We assume the following theory:

F = {αi , p,E jq},
R= {r1 : αi , p,E jq⇒i s; r2 : s⇒i r; r3 : r ⇒c t}.

In this theory we are able to proveEit. The facts firer1, thus we can prove
+∂is (Eis). Now, sinceshas been brought about,s is the case. We can use this
to fire the ruler2. Hence we obtain+∂ir, which isEir. This implies that all
the requisites ofr3 have been brought about; butr3 states thatr counts ast;
this means thatt has been brought about, hence+∂it andEt.

Let us replacer3 with r ′3 : p, r ⇒c t. This time we can prove+∂ct, but not
Eit (+∂it). The reason is thatp is the case without a specific “intention” of
the agent to bring it about. Similarly, if we replacer3 by r ′′3 : Eir ⇒c t we can
no longer deriveEit. HereEir is understood as a mere institutional fact, and
not as the successful intention of the agent to realiser in order to realiset.

In the previous example we have seen how we can argue in favour ofEi p
(for same literalp). Let us examine the conditions to attack it. LetI be the
following institutional defeasible theory

F = {αi , p,q},
R= {r1 : αi , p⇒i s; r2 : q⇒c r; r3 : p, r ⇒c ¬s}

Clearly Eis (+∂is) is not derivable from the given theory since there is an
applicable rule for¬s. r3 is applicable since we can derive+∂cr. Similarly,
if we replacer2 with q⇒i r, r3 is still applicable. We can prove+∂ir: this
means that there is a successful action resulting inr. In general to discard
a rule we have to show that some of the premises cannot be derived. With
a factual literal we have to show that the literal is not the case (or, in other
terms, that there are no literals that count as it), and that the literal is not the
result of a successful action: results of successful actions are indeed the case.
Finally we replacer3 with r ′′3 : p, r ⇒i E js. Again we cannot concludeEis;
see the motivation for the principle (EE¬E) in Section 1.

Let us now consider how to represent the following business scenario. For
normal orders a company has pre-defined invoices and the finance department
can delegate the preparation of the invoices to the shipping department. The
preparation of an invoice requires to check that the details in it are correct
and to sign it. However special orders require more care and processing, and
the finance department is in charge for their invoices. Finally goods can be
delivered only after the finance department has prepared the invoice. This
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scenario is depicted by the following institutional theory,

r1 : procF(ES(invoice ready)),ES(invoice ready)⇒F invoice ready
r2 : specialorder,ES(invoice ready)⇒c ¬invoice ready
r3 : sign invoiceX ⇒X invoicechecked
r4 : invoicechecked⇒c invoice ready
r5 : EF(invoice ready)⇒c ship order

wherer2 > r1 andr2 > r4. Here ruler1 is the rule governing the delegation of
the preparation of the invoice, wherer2 is an exception to it.r3 is a schema
that establishes that the act of signing an invoice by an agent (a role)X results
in the invoice being checked byX. The meaning ofr4 is that according to the
business rule of the company is that once an invoice has been checked then
the invoice is ready to be sent. Finallyr5 states that items can be shipped only
after their invoice has been approved by the finance department.

Let us consider the following scenario. The company receives an order.
The finance department considers the order to be a standard order and it
delegates the whole process to the shipping department, which processes
it and a clerk in this department signs the invoice. In this case the facts
areprocF(ES(invoice ready)), andsign invoiceS. We can applyr3 to derive
ES(invoicechecked). According to ruler4 we have that the invoice is ready.
However the invoice has been signed by a clerk in the shipping office, the
result of this action is qualified as an act performed by the shipping depart-
ment. This means that we carry over the qualification from the antecedent
to the consequent of ruler4. Hence we obtainES(invoice ready). Since the
shipping department was delegated by the finance department to process the
invoice, we can apply ruler1 to derive that the invoice had been prepared by
the finance department via delegation (EF(invoice ready)) and the order can
be delivered. On the other hand, if an order is classified as a special order,
then the only alternative is that the finance department process the invoice by
itself, that is somebody in the finance department has to sign the invoice.

4. Properties of the Logic

First of all, as it was mentioned in Section 1, it is worth noting that the con-
sequence relation induced by the defeasible relation for the counts-as –which
is characterised by proof conditions for standard DL– is a cumulative conse-
quence relation and thus it obeys the basic properties of Reflexivity, Cautious
Monotonicity and Cut we previously required for the counts-as conditional.
The proof for this result can be found in [5].

Let us see some properties of the logic we have just described.
The purpose of the−∆ and−∂ inference rules is to establish that it is

not possible to prove a corresponding tagged literal. These rules are defined
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in such a way that all the possibilities for proving+∂ p (for example) are
explored and shown to fail before−∂ p can be concluded. Thus we have
a constructive proof that the corresponding positive conclusion cannot be
obtained.

As a result, there is a close relationship between the inference rules for
+∂ and−∂ , (and also between those for+∆ and−∆, and+Σ and−Σ). The
structure of the inference rules is the same, but the conditions are negated in
some sense. This feature allows us to prove some properties showing the well
behaviour of defeasible logic.

THEOREM 1. Let # = ∆c,∂c,Σc,∆i ,∂i ,Σi , and I be an institutional action
theory. There is no literal p such that Ì+#p and I` −#p.

The above theorem states that no literal is simultaneously provable and
demonstrably unprovable, thus it establishes the coherence of the defeasible
logic presented in this paper.

THEOREM 2. Let I be an acyclic institutional action theory, and M∈
{c, i}, i ∈ A. I `+∂M p and I`+∂M∼p iff I `+∆M p and I`+∆M∼p.

This theorem gives the consistency of defeasible logic. In particular it affirms
that it is not possible to bring conflicting states about (+∂i p and+∂i∼p) un-
less the information given about the environment is itself inconsistent. Notice,
however, that the theorem does not cover attempts (Σi). Indeed it is possible
to attempt something and its negation. We will say that an institutional theory
is consistent if Theorem 2 holds for the theory.

Let I be an institutional action theoryI . With ∆+
c we denote the set of lit-

erals strictly provable using the counts-as part ofI , i.e.,∆+
c = {p : I `+∆cp}.

Similarly for the other proof tags.

THEOREM 3. Let I be an institutional action theory, and M∈ {c, i}, i ∈
A.

1. ∆+
M ⊆ ∂

+
M ⊆ Σ+

M;

2. Σ−M ⊆ ∂
−
M ⊆ ∆−M;

3. Let I be a consistent institutional action theory such that I` −∆i p. If
I `+∂iE j p then I` −∂i p.

4. For any i,∆+
i ⊆ ∆+

c , and∂
+
i ⊆ ∂ +

c .

Since+∂i and+Σi correspond toEi andHi , we have that that 1. and 2. cor-
respond to the axiomEiA→ HiA. 3. is an immediate consequence of clause
2.3.2 of the inference condition for+∂i . This property corresponds to the
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axiom (EE¬E) of Section 1. Finally 4. corresponds to the successfulness of
theEi operator (i.e., axiom T).

To conclude this section we give a result justifying the choice of DL as our
computational framework. Given an institutional action theoryI , the universe
of I , U I is the set of atomic propositions and action symbols occurring in it.
The extension ofI is the set of all proof tags derivable fromI , restricted to
the (modal) literals that can be built fromU I .

THEOREM 4. Let I be an institutional action theory. The extension of I can
be computed in time linear to the size of the theory, i.e., O(|R| ∗ |U I | ∗ |A|).

The proof is based on a variation of the data structure used by Maher [33] to
prove that the basic DL has linear complexity, see [18, 22].

5. Related Work

An impressive amount of literature has been devoted to agent interaction and
coordination. Our work presents a rule-based system and so it fits into a long
and extensive AI tradition. As regards agent interaction, we can identify in
particular two recent strands: (a) a cognitive account of agents that specifies
their mental attitudes; (b) modelling agents’ behaviour by means of normative
concepts. In this section we simply comment some contributions which are
strictly related to the specific perspective adopted here, a perspective originat-
ing from [16] and which belongs to the research line mentioned under point
(b) above. The current work is a technical extension of [16], as it takes some
of the building blocks used there and re-defines them within a computational
framework, where by “computational framework” we mean a logical system
which enjoys nice computational properties and which is directly designed
for implementation.

Different formal theories of action have been used to deal with institu-
tional agents. Logics such as Event and Situation Calculi, the STIT approach,
Dynamic Logics—just to mention a few examples—were all proven useful
in combination with normative concepts, and especially with deontic notions
(for recent applications in the field, see [13, 15, 26, 7]). However, the aim
of this paper is not to develop an alternative methodology to these theories,
as our approach focuses on very minimal and abstract properties of agency
in the spirit of the modal logic of agency described in [14]. In this specific
perspective, our contribution is meant to show how such minimal properties
can be embedded in DL, and so how they can be re-interpreted within a
non-monotonic system specifically oriented to implementation.

A further goal of this paper was to see how agency can interplay with
counts-as rules. As far as the logical nature of these rules is concerned, the
literature provides different views.
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In a first perspective, the institutional status of constitutive rules is di-
rectly related to some epistemic notions [6]: using the metaphor of normative
systems as agents, this approach attributes to them some peculiar mental atti-
tudes. Hence, norms are considered as mental objects and constitutive rules,
in particular, are modelled as beliefs.

In a second perspective, the attention is rather focused on the role of in-
stitutional rules intended as external factors constraining agents’ behaviour.
Clearly, our paper draws inspiration from this second perspective. Within this
view, we can mention at least two alternative options (see [24] for a fine
discussion of the different meanings of the counts-as link).

A first approach is in line with Goldman’s theory of actions generating
actions [17]. It may be argued that the generation of institutional facts via
counts-as rules is close to the idea of causality. If so, counts-as relations
cannot be reflexive since “it is precisely the property of non-reflexiveness
that distinguishes a generation relation as such” [28]. In [29], Jones and Ser-
got basically follow this approach and develop an analysis of the notion of
institutionalised power by introducing a new (classical but not normal) condi-
tional connective “⇒s”. This connective expresses the “counts as” connection
holding in the context of an institutions. In particular, when applied to action
descriptions, formulas likeEiA ⇒s EiB and EiA ⇒s E jB represent respec-
tively i’s institutional power to produceB whenA is realised andi’s power
to perform an action as if something else were made byj (see [29, 30])9. In
addition, the logic for⇒s is integrated by theKD modalityDs, such thatDsA
means thatA is a “constraint on the institutions”. The connection between
⇒s and Ds is characterised by the schema(A ⇒s B) → Ds(A → B). This
approach differs from our view, as Jones and Sergot state that the counts-as
be non-reflexive and transitive, while we see it as at least enjoying Reflexivity,
Cut, and Cautious Monotonicity. Reflexivity affects the meaning ascribed
to the count-as link. If the defeasibility of counts-as must be accepted, we
have to decide whether reflexivity must prevail over transitivity or the other
way around, since transitivity and reflexivity imply monotonicity (see [4]).
As in [16], we assume that the counts-as link has a classificatory nature,
and defeasible classificatory relations, such as typicality, normally enjoy
reflexivity.

A second approach, by Grossi, Meyer, and Dignum [23], views counts-
as statements as yielding contextual classifications. Hence, as we do here,
it is emphasised the classificatory role of the notion of counts-as, a notion
which is investigated by Grossi and colleagues by means of modal logic tech-
niques from a semantics-driven perspective. In particular, the authors model

9 A computational framework for modelling the counts-as link, insofar as it is viewed
as a kind of causal relation, has been later devised by Sergot [48]. He developed the lan-
guage(C/C+)++ to represent counts-as relations between actions in terms of conventional
generations of actions.
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the counts-as connection within the multi-modal logicKD45i−j
n . Despite its

conceptual clarity, this analysis has two drawbacks. First, the defeasible na-
ture of constitutive rules is disregarded. Second, contextual modalities suffer
of the so-called “omniscience problem”, a problem which also affects Jones
and Sergot’sDs modality: if makinga bid is an institutional act, this would
imply in that approach thatmakinga bid∨ drinking somewater holds as
well within an institution. Our approach tries to avoid this difficulty, as in-
stitutional consequences are derived only if stronger reasons do not block
these derivations.

6. Discussion and Future Work

Our aim was to develop a computational treatment of the notion of institu-
tional agency as described in [16]. In this perspective, our contribution does
not include any explicit refinement (e.g., in terms of articulating new axioms)
of what has been already proposed in [16]. This does not mean, however, that
the model presented here cannot be a potential starting point to achieve new
proof-theoretical results. Let us recall that the propositional base of the modal
logic of agency is classical propositional logic [44, 14]. On the other hand,
any refinement to introduce non-monotonic reasoning as a crucial aspect of
institutional agency has been confined both in [16] and in [29, 30] to account
only for the counts-as link. Although this paper provides a machinery to rea-
son about actions only with regard to institutional domains, it proposes some
inferential mechanisms that may be generalised to define a non-monotonic
theory of agency. How to do this and which is the axiomatisation resulting
from such a generalisation is a matter of future research.

The logic presented here is just one of the many logics that can be defined
using the main idea of the paper. Non-monotonic reasoning is a complex
phenomenon with many facets. Several variants of defeasible logic have been
put forward to deal with different intuitions behind non-monotonic reasoning.
Accordingly a designer of a defeasible logic of agency has to chose the most
appropriate defeasible inference mechanism and the degree of provability cor-
responding to the modalities at hand for the intended application. Similarly,
the designer can chose more or less liberal conditions to use counts-as rules
to derive brings-it-about literals. For example in this paper we have assumed
that we can use a counts-as rule to derive a brings-it-about literal if all the
literal in the antecedent of the rule can be derived as results-in conclusions.
A more liberal condition could just require that only one of them is derived
in such a way.

The aim of the paper was to provide a computationally oriented frame-
work for the notion of counts-as and institutional agency. The model was
given by a multi-modal extension of Defeasible Logic, and we have shown
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that the complexity of the resulting logic is linear. At the same time it is
possible to use the logic as both a conceptual and executable specification
of an institution. Accordingly it is natural to ask whether the logic has been
implemented. While specific implementations for the logic do not exist, [18]
describes an implementation of a similar modal (deontic) variant of Defea-
sible Logic. The implementation follows very closely the data structures and
algorithm used to prove Theorem 4. Therefore the logic presented here can
be easily implemented (indeed a Python prototype for the inference engine
can be implemented with a few hundred lines of code).

Finally, we suggest some conceptual refinements for our future research.
First, the model should cope with a wider range of properties and with

other concepts of agency, such as those mentioned in Section 1, i.e. the no-
tions of ability [14] and indirect successful action. Both of them are crucial in
modelling the co-ordination of agents: (a) the inference of institutional facts
may be conditioned by the practical capability of an agent to do things that
generate by convention these facts; (b) the characterisation of the institution-
alised power may require that an agent is empowered to realise indirectly a
state of affairs without specifying the chain of agents that will bring about
such a state of affairs.

Another issue concerns the relations between different institutions. These
relations are relevant when an action takes place in different institutional
contexts and produces diverse, and possibly contradictory, results. Following
[16], multi-institutional contexts are captured by stipulating thatA⇒s B=de f

(A V DsB)∧ (DsA V DsB)∧ (DsA V Ds′B). They may be represented here
introducing counts-as rules indexed by different institutions: the superiority
relations would play an important role in settling possible contradictions
between different institutional contexts. But that is not all since the matter
regards the complex problem of the relation between normative systems [41].

We also have to develop a more accurate mechanism to deal with con-
flicting institutional results arising from the exercise of different powers and
which lead to dropping institutional facts which were previously derived. This
question requires to develop a dynamic account of the institutional mecha-
nisms. Of course, the idea, according to which the generation of institutional
facts is close to the concept of causality, is a feasible option in this regard.
However, as we said, this diverges from our view of the counts-as link. An
alternative possibility is thus to introduce explicit temporal dimensions, as
done in [21], in order to make explicit when an institutional factp is cancelled
by a conflicting one which results from the subsequent exercise of a different
power, or even of the same power that producedp.

Finally, we have to introduce in the current framework deontic modalities,
as they are, too, crucial in modelling the normative coordination of agents.
Some promising results in this perspective are already provided, for example,
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in [21, 22], but a more extensive work is needed in studying the properties of
the system when deontic concepts are added.
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Appendix

A. Proofs of the Theorems in Section 4

THEOREM 1. Let # = ∆c,∂c,Σc,∆i ,∂i ,Σi , and I be an institutional action
theory. There is no literal p such that Ì+#p and I` −#p.

Proof. The result is a straightforward consequence of the principle of
strong negation [1, 3] used to define the proof conditions for the logic at
hand. According to the principle of strong negation the condition for+# is
the constructive negation of that of−# and the other way around. Thus if
the condition for+# is satisfied the condition for−# fails and the other way
around.

THEOREM 2. Let I be an institutional action theory, and M∈ {c, i}, i ∈ A.
I `+∂M p and I`+∂M∼p iff I `+∆M p and I`+∆M∼p.

Proof.We have to show that if we have both+∂M p and+∂M¬p then the
only possible derivation is one where the two are both justified by clause (1)
of the proof conditions for+∂ , and combinations of justifications where one
of them is justified in terms of clause (2) lead to a contradiction.

It is clear that a combination of clauses (1) does not lead to any
contradiction. Thus we have that both+∆M p and+∆M¬p.

Let us consider the cases where one is justified by clause (2). This means
that clause (2.1) is satisfied thus forM = c we have−∆cC (p), and forM = i
both−∆iC (Ei p) and−∆iEkp. But both¬p∈ C (p) and∼p∈ C (Ei p), thus
we have−∆M p. By Theorem 1 it is not possible that bothI ` +∆M p and
I ` −∆M p. Thus in this case we get a contradiction.

We examine now the situation whereM = c and both conclusions are
justified by clause (2). This means that∃r+ ∈ Rsd[E p] such that the rule is
applicable (i.e., the condition of clause (2.2) is satisfied), and at the same
time we have that∃r− ∈ Rsd[E∼p] such thatr− is applicable.Rsd[E∼p] ⊆
R[C (p)], thus there must be a rulet0 ∈ R[E p] such thatt0 applicable and
t0 > r− (according to clause (2.3.4)). We have two cases (i)t0 is maximal
(i.e.,¬∀s> t0) (ii) t0 is not maximal. For (i) we have thatt0 ∈ R[C (∼p)] and
is applicable thust0 satisfies clauses (2.3) of−∂c. Therefore,−∂c∼p, and
we have a contradiction according to Theorem 1. For (ii) let us consider the
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setT0 = {s : s> t0∧ s∈ R[E∼p]}. Notice thatr− /∈ T0, since the theoryI is
acyclic. FromT0 we eliminate the rules that are not applicable for condition
(2.2) of+∂c, and we call the resulting setS0. Since we have+∂cp this means
that for every rules∈S0 there is a rulet ′ ∈R[E p] such that the rule is applica-
ble and stronger thans. Lets′ andt1 be such rules, Ift1 is maximal we are done
as in the previous reasoning. We build the setT1 = {s : s> t1∧s∈ R[E∼p]}
and thenS1 in the same way asS0. Since the theory is acyclic we have that
S0 ⊂ S1. We can repeat this constructionn times for each rule inS0 until we
reach a point where the rules we have forE p are maximal, and we get that
−∂c∼p, from which we get again a contradiction.

ForM = i we have to consider rules inRc[C (Ei p)]∪Ri [Ekp]∪Rc[Ekp] and
the conditions of applicability of clause (2.2) for+∂i , when we build the sets
Tn andSn, but the reasoning for∂i carries over this case as well.

THEOREM 3. Let I be an institutional action theory, and M∈ {c, i}, i ∈
A.

1. ∆+
M ⊆ ∂

+
M ⊆ Σ+

M;

2. Σ−M ⊆ ∂
−
M ⊆ ∆−M;

3. Let I be a consistent institutional action theory such that I` −∆i p. If
I `+∂iE j p then I` −∂i p.

4. For any i,∆+
i ⊆ ∆+

c , and∂
+
i ⊆ ∂ +

c .
Proof.For 1. The inclusion∆+ ⊆ ∂ + is immediate given clause (1) of the

the proof condition for+∂M, which allows us to extend a derivation with
+∂M p if +∆M p is already in the derivation.

For the inclusion∂
+
M ⊆ Σ+

M, the proof is by induction on the length of
the derivation of+∂M p. Notice that it is not possible to have a defeasible
derivation consisting of a single step: a minimal defeasible derivation has
at least two lines. We will use this case as inductive base. We have two
possibilities. We have (i)P(1) = +∆M p for p = α, α ∈ F or Ei p ∈ F , and
thenP(2) = +∂M p justified byP(1); or (ii) P(1) =−∆∼p (there are no strict
rules for∼p), andP(2) = +∂M p, justified by the fact that there is a strict
or defeasible ruler in RM, A(r) = /0, andR[C (Ei p)]∪R[Ekp] = /0 and either
Rc[Ekp] = /0 or∀s∈ Rc[Ekp],A(s)∩Lit = /0, for k 6= M.

For (i) we have that the justification forP(1) corresponds to clause (1)
of the proof condition for+ΣM, thus we can create a proof for+ΣM p. For
(ii) r ∈ Rsd[p] and the conditions (2) and (3) of the proof condition forΣM

are vacuously satisfied. We can now assume that the property holds for the
derivation of+∂M p of lengthn. For the inductive step we have to consider
whether+∂M p is justified by clause (1) or clause (2) of the proof condition
for +∂M. For (1) we have two sub-cases: the conclusion is a fact and we
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can repeat the argument of the inductive base or either clauses (2) or (3) of
+∆M apply. This means that by inductive hypothesis there is a strict rule that
satisfies either the condition of clauses (2) or (3) ofΣM. In case+∂M p is
justified by clause (2.2) of+∂M, then all we have to notice is that we consider
the same sets of rules as in clause (2) and (3) of+ΣM, plus the inductive
hypothesis.

For 2. The property follows immediately from 1 and the principle of strong
negation.

For 3. To prove this case we have to show how to build a derivation for
−∂i p given a derivation of+∂iEkp, and give the appropriate conditions. If
we can derive+∂iEkp since we have+∆iEkp, then by clause (2.1) we can
derive−∂i p. Otherwise we consider the ruler used to derive the conclusion.
We have two cases (a)r ∈ Ri [Ekp]∪Rc[EEiEkp] or (b) r ∈ Rc[Ekp]. The two
cases are analogous, the only difference is in the condition of applicability of
the rule. We will say thatr is applicable if the appropriate conditions in clause
(2.2) of+∂i are satisfied. We consider two exhaustive cases: (i)r is maximal,
i.e., ¬∃s,s > r, (ii) r is not maximal. For (i) the maximality ofr ensures
that clauses (2.3.1) and (2.3.2) of−∂i are satisfied and then the applicability
of r makes clause (2.3) true. Thus in this case we can derive−∂i p. For (ii)
if r is not maximal we consider the set of rulesS0 = {s : s > r}. Let R∗ =
Ri [p]∪Rc[EEi p]∪Rc[p] If S0∩R∗ = /0, then clauses (2.3.1) and (2.3.2) are
vacuously satisfied and again we are done. Otherwise, consider a rules∈ S0.
If s is discarded, it meets either conditions of clause (2.3) of+∂i , then we
have thats satisfies also either clause (2.2.1) or (2.2.2), and we can removes
from S0. Otherwise ifs is applicable, then there is a rulet that satisfies (2.3.3),
and in particulart > s. At this stage we consider ift is maximal or not. Ift
is maximal we have a rule that satisfies clause (2.3) of−∂i , and again we
are done. Ift is not maximal, we consider the setS1 = {s : s> t}. Since> is
acyclic we have thatS1∩R∗⊂S0∩R∗. We can now repeat the above reasoning
for the rules inS1∩R∗, and we can repeat itn times for each applicable rule
in the set. In this way we remove rules until we arrive at an applicable rule
t ′ ∈ Ri [p]∪Rc[Ei p]∪Rc[p] such that it is either maximal or that all stronger
rules than it inR∗ are discarded. In this way for every applicable rule inR∗ we
have a rule that satisfies clause (2.3) of−∂i , and thus we can conclude−∂i p.

For 4. The proof is by induction on the length of the proof. We start with
definite conclusions. For the inductive base, i.e.,P(1) = +∆i p, eitherEEi p∈
F or there is a ruler ∈ Ri

s[p] such thatA(r) = /0. If EEi p∈ F , thenE′p∈ F
(E′ = EEi) andRi

s[p] ⊆ Rs[E p], thus in both cases we can build a derivation
for +∆cp.

For the inductive step, i.e.,P(n+1) = +∆i p, we assume as usual that the
property holds up to derivation of lengthn. SinceRi

s[p] ⊆ Rs[E p], and the
conditions of applicability of strict rules in clause (3) of+∆i are the same as
those of clause (2) of+∆c we have the same situation as in the inductive base.
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If P(n+1) = +∆i p is justified by clause (4) of+∆i (conversion), then there is
a ruler ∈Ri

s[p] such thatA(r)∩Lit 6= /0 and∀α ∈ A(r), +∆cα ∈ P(1..n), and
∀a∈ A(r),+∆ia∈ P(1..n) are under the inductive hypothesis, thus we have
that we can build a proofP′ where∀a∈ A(r),+∆ca∈ P′(1..m), and thus we
can conclude+∆cp, using clause (2) of+∆c. If P(n+1) = +∆i p is justified
according to clause (2) of+∆i , then we have that eitherEEi p ∈ F or there
is a ruler ∈ Rs[Ei p] such that∀l ∈ A(l),+∆l ∈ P(1..n). In both cases we can
repeat the reasoning for the inductive base to prove that there is a proof for
+∆cp.

For ∂ + the proof is essentially the same as that for∆+. The only dif-
ferences are that we have to consider the two clauses (2.3). It is immediate
to verify that (2.3.1)–(2.3.3) of+∂c and (2.3) of+∂i are identical; in addi-
tion we have that clause (2.3.1) of+∂i (reinstatement by conversion) can be
transformed into clause (2.3.4) of+∂c by inductive hypothesis as we did in
the case for∆+. Finally, for clause (2.1) all we have to do is to notice that
C (p) = {E p} andC (Ei p) = {E∼p,E¬Ei p}, and thusC (p)⊆ C (Ei p).

THEOREM 4. Let I be an institutional action theory. The extension of I can
be computer in time linear to the size of the theory, i.e., O(|R| ∗ |U I | ∗ |A|).

Proof. The proof is based on a modification of the algorithm given by
Maher [33] to show that propositional defeasible logic has linear complexity.

The main idea of the proof is to build appropriate data structure to im-
plement a series of transformations reducing the complexity of the rules, and
where each literal and modal literal is examined only once. The focal point
of the transformations is based on the following properties:

− Let D `+∂ p then

D∪{r : p1, . . . , pn, p⇒ q} ≡ D∪{r : p1, . . . , pn ⇒ q}.

− Let D ` −∂ p thenD∪{r : p1, . . . , pn, p⇒ q} ≡ D.

The properties allow us (1) to remove already proved literals from the body
of rules and (2) to remove rules which have been discarded.

The algorithm has three phases. (1) A pre-processing phase where we
use the transformations given in [2] to transform a theory into an equiva-
lent theory without superiority relation and defeaters; the transformation is
linear. (2) Arule loaderthat parses the theory obtained in the first phase and
generates the data structure that encodes the theory. (3) Theinference engine
applies transformations to the data structure, where at every step it reduces
the complexity of the data structure.

We setV I = /0, then the rule loader first scans the set of rules and extracts
the set of conclusionsCn(I), and the set of atomic literals in itLit (I). For
each elementl ∈Cn(I)∪Lit (I) we addl ,Ei l ,¬Ei for everyi ∈ A to V I if the
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expressions are well formed according to the formation conditions given in
Section 3.10 At this stage the rule loader builds a data structure where every
element ofV I is associated with four hash tables:+h the rules that can prove
the elements,+h the rules that can disprove the element,+b the rules that
need the element to be applicable, and−b the rules that can be discarded by
the element. Each hash table depends on the type of literal it is associated to
according to the following conditions.

For α, we have:

− +h is the list of (pointers to) rules inRc[α];

− −h is the list of rules inRc[∼α];

− +b is the list of rules in{r ∈ R : α ∈ A(r)};

− −b is the list of rules in{r ∈ R :∼α ∈ A(r)}.

For p (a plain literal), we have:

− +h is the list of (pointers to) rules inR[E p];

− −h is the list of rules inR[E∼p];

− +b is the list of rules in{r ∈ R : p∈ A(r)};

− −b is the list of rules in{r ∈ R : E∼p∈ A(r)}.

For Ei p (a modalised literal), we have:

− +h is the list of (pointers to) rules inRi [p]∪Rc[EEi p]∪Rc[p];

− −h is the list of rules inR[E∼p]∪R[E∼Ei p]∪Rc[Ekp]∪Ri [Ekp] for any
k 6= i;

− +b is the list of rules in{r ∈ R : Ei p∈ A(r)}∪{r ∈ Rc : p∈ A(r)};

− −b is the list of rules in{r ∈R : E∼p∈ A(r)}∪{r ∈R : ¬Ei p∈ A(r)}∪
{r ∈ R : EiEkp∈ A(r)}, for anyk 6= i.

Each results-in ruler is represented by the rule loader as a pair(h,b) whereh
is pointer to the head of the rule andb has pointers to the literals inA(r). On
the other hand a counts-as rules is implemented as ann+3-tuple (n= |A|, the
number of agents inI ) (h,a,b,a1, . . . ,an). h is as per results-in rules,a is the
set of pointers for action literals inA(r), b is the set of pointers for non action
literals inA(r), and eachai is either a set of pointers to non action literals if

10 Notice thatV I is in general smaller thanU I , but it is easy to see that for every element
e∈U I −V I , we haveI ` −∂c,ie.
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eitherA(r)∩Lit 6= /0 or there is no literal of the formEi p∈ A(r); otherwiseb
is the special symbolnil .

The Inference Engine is based on an extension of theDelores algo-
rithm/implementation proposed in [33] as a computational model of Basic
Defeasible Logic. In turn

1. It asserts each literall ∈ F as a conclusion and removesl from all rules
in +b(l), and remove all rules (pointers to rules) in the hash tables for
−h. For counts-as rules, ifl = α we removel from thea part of the rules;
if l = p, we remove it from thep part of theb part, and ifl = Eim, then
(1) we remove bothm andEim from the rules in+b(Ei p), and (2) for
counts-as rules we removeEim andm from theb part andp from theai

part as appropriate.

2. Then it scans the set of rules for rules whereb is empty. For counts-
as rules it looks for rules where botha and eitherb or ai are empty
for somei ∈ A. For each of such rules it takesa(r) and Eia(r) (only
Eia(r) for counts-as rule whereai is empty), and it checks that−h(a(r)),
−h(Eia(r)) are empty. If so, it addsa(r), Eia(r) to the set of conclusions
as appropriate.

3. It repeats the first step, using the conclusions obtained from the previous
step.

4. The algorithm terminates when one of the two steps fails. On termination
the algorithm outputs the set of conclusions.11

Notice that all the operations described in the above steps correspond to hash
functions, thus they have constant complexityO(1). It is immediate to see
that the algorithm runs in linear time. Each (modal) atom/literal in a theory is
processed exactly once and every time we have to scan the set of rules, thus
the complexity of the above algorithm isO(|V I | ∗ |R| ∗ |A|).

11 This algorithm outputs∂+; ∂− can be computed by an algorithm similar to this with the
“dual actions”. For∆+ we have just to consider similar constructions where we examine only
the first parts of step 1 and 2.∆− follows from ∆+ by taking the dual actions.


