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Abstract. One of Semantic Web strengths is the ability to address incomplete
knowledge. However, at present, it cannot handle incomplete knowledge directly.
Also, it cannot handle non-monotonic reasoning. In this paper, we exdéiit
Defeasible Description Logic with existential quantifier, i. dLE Defeasible
Description Logic. Also, we modify some parts of the logic, resulting in an in-
creasing efficiency in its reasoning.

1 Introduction

Description logics, which is a language based on first order logic, cannot handle incom-
plete and inconsistent knowledge well. In fact, it is often that complete and consistent
information or knowledge are very hard to obtain. Consequently, there is an urgent
need to extend description logics with a non-monotonic part which can handle incom-
plete and inconsistent knowledge better than themselves. Defeasible logic, developed
by Nute [6], is a well-established nonmonotonic reasoning system. Its outstanding prop-
erties are low computational complexityl[4,5] and ease of implementation. Thus, this
logic is the nonmonotonic part of our choice. Governafdri [3] proposes a formalism to
extendALC™ with defeasibility. He combines the description logic formalism with the
defeasible logic formalism, creating a logic that can handle both monotonic and non-
monotonic information coherently. We extend this work to be able to handle existential
quantification.

2 Introduction to Defeasible Logic

Defeasible logic handles non-monotonicity via five types of knowledge: Facts, Strict
Rules (monotonic rules, e.g.OGISTICMANAGE Rx) — EMPLOY EEX)), Defeasi-
ble Rules (rules that can be defeated, &ANAGEDELIV ERX) = EMPLOY EEX)),
Defeaters (preventing conclusions from defeasible rules, BRIJCK DRIV ERX) ~
-~EMPLOQOY EEX)), and a Superiority Relation (defining priorities among rules). Note
that We consider only propositional rules. Rule with free variables will be proposition-
alized, i.e., it is interpreted as the set of its grounded instances. Due to space limitation,
see|[65,2,11] for detailed explanation of defeasible logic.

Defeasible logic is proved to have well behavior: 1) coherence and 2) consistence
[B8I2]. Furthermore, the consequences of a propositional defeasible tbeocay be
derived inO(N) time, whereN is the number of propositional literals b [4]. In fact,
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the linear algorithm for derivation of a consequence from a defeasible logic knowledge
base exploits a transformation algorithm, presentedlin [1], to transform an arbitrary
defeasible theor into abasic defeasible theoryJXGiven a defeasible theoly, the
tranformation procedurBasidD) consists of three steps: 1) normalize the defeasible
theoryD, 2) eliminate defeaters: simulating them using strict rules and defeasible rules,
and 3) eliminate the superiority relation: simulating it using strict rules and defeasible
rules. The procedure then returns a transformed defeasible tBgoi@iven a basic
defeasible theoripy,, defeasible proof conditions inl[3] are simplified as follows:

+0: If P(i+1) = +dqthen either

1. +AqeP(1.i)or

2. (a) Ir e R[g],Vac A(r) : +dac P(1..i) and
(b) Vse Rl~q],Jac A(s) : —da e P(1..i)

—d: If P(i+1) = —dqthen

1. —Aqe P(1..i) and either

2. (a) Vr € Ryy[g],Jac A(r) : —dac P(1..i) or
(b) Ise R~ q],Yac A(s) : +dac P(1..i)

3 ALC™ Defeasible Description Logic

In this section, we introduce ad£C~ defeasible description logi¢|[3], i.e., an ex-
tension of ALC™~ description logic with defeasible logic. Also, we introduce several
adjustments for the logic.

Like ALC description logic,ALC~ knowledge base consists of a Thox and Abox(es),
i.e.,X =(7,A). The AboxA, containing a finite set of concept membership assertions
(a: C orC(a)) and role membership assertiori{g,p) : R or R(a,b)), corresponds to
the set of fact$ in defeasible logic. The ThoX contains a finite set of axioms of the
form: CC D | C = D, whereC andD are concept expressions. Concept expressions
are of the form: A| T | L | —~(atomiconlyC | CMD | VR.C whereA is an atomic
concept or concept nam€,andD are concept expressiorR,is a simple role name,

T (top or full domain) represents the most general concept, lafidottom or empty
set) represents the least general concept. Their semantics are similar to oh@8 in
description logic. In fact, the ThoX corresponds to the set of strict rules in defeasible
logic. Governatoril[3] shows how can we transfadfC~ Tbhox to a set of strict rules,
using a set of axiom pairs and a procedtseéractRulesBasically, an inclusion axiom:
CinCM...MCH E DM D2M...MDy in the Thox7 is transformed into an axiom pair
(@p): ({C1(x),Ca(x),...,Cm(x) },{D1(x),D2(X), ...,Dn(x) }). Eventually, for the Thox,

we get the sefP of all axiom pairs. Then, the procedugtractRulesn Algorithm 1

is used to transformP into a set of strict rules in defeasible logic.
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Algorithm 1 ExtractRule§AP):
if ap= ({C(x)},{D(x)}) € APthen
C(x) = D(X) € Rs
-D(x) — —C(x) € Rs
AP=AP— {ap}
else ifap= ({Ci(Xc1),---,Ccn(*n), R1(Xr1, YR1), - -+
Rn(XrRm, YRm) }5 {D1(Xp1), -+, Dk(Xpk), VS1-Dsi (Xs1)
.., VS&.Dsk(xsK) }) € APthen
forall | € {Dy,...,Dx} do
Ci(xc1),---,Cn(Xcn); Ru(XR1, YR1); - - Rm(XRm, YRm)
— |(X|) €Rs
end for
for 1<i<kdo
AP = AP— {ap}U
{ {({Ca(xc1),---,Cn(Xcn), Ru(Xr1, YR1), }

<oy Rn(XRm, Yrm), S (Xsi, Ysi) }, { D3 (¥si).
ceny D|S'(y5i) s VTls'.Df'(ySi), ...7VT§".D§'(ySi)}>
where
ysiis a new variable (not iap), and
D =D$'M...N D NVTS.DY M. VTS .D}
end for
end if
if APis not an empty sehen
ExtractRulesAP)
end if
return Rg

This procedure progresses recursively until all axiom paisHrare transformed.
Here is an example: 16F = {C1MVR;.Cy C C3MVR.(C4MVYR3.Cs) }. Here are the steps
for strict rules generation.

Step 1: AP = {{{C1(X),VR1.C2(X) }, {C3(X), VR2.(Ca MVR3.Cs5)(X) }) }.

Step 2:ExtractRulegAP) : Ci(X), VR1.C2(X) — C3(X) € Rs.

Step 3:AP = {({C1(X), VR1.C2(X), Ra(X,Y) },

{Ca(y),VRs.Cs(Y) }) }-
Step 4:ExtractRulegAP) : Ci(x), VR1.Co(X), Ra(X,y) — Ca(y) € Rs.
Step 5:AP = {{{C1(x),VR1.C2(X),Ra(X,Y), Rs(Y,2) }

{Cs(2))}
Step 6:ExtractRuleéAP) : Ci(X), VR1.C2(X), Ra(X,Y),

Rs(Y.2) — Cs(2) € Rs.

Step 7:AP = {}, the procedure ends here.

Notice that theExtractRulegprocedure takes care of description logic’s universal
quantified concepts, occurring on the RHS of the Tbox axioms, by transforming those
axioms into first order logic rules. However, description logic’s universal quantified
concepts occurring on the LHS of the Thox axioms still remain in those rules. At this
point, we need additional inference rules to deal with the remaining universal quantified
concepts. However, universal quantified concepts’ semantics take into account all indi-

~—
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viduals in the description logic knowledge base, in particular the Abox. Consequently,
the proof conditions for universal quantified concepts will incorporate the domain of
Abox A, i.e., A% (see[T]), in themselves as follows:

+AVRC: If P(i+1) = +AVR.C(a) thenvb € A%,
1)-AR(a,b) or 2) +AC(b).

—AVRC: If P(i+1) = —AVRC(a) thendb € A7,
1) +AR(a,b) and 2)—AC(b).

+dVRC: If P(i+ 1) = +9VRC(a) thenvb € A%,
1) —9R(a,b) or 2) +aC(b).

—dVRC: If P(i+1) = —9dVRC(a) thendb € A%,
1) +9R(a,b) and 2)—dJC(b).

Now, we have a complete formalism to deal withCC™~ literals. Since a rule,
however, can consists literal(s) with variable(s), there carvdmgue rulessuch as:
C(x),D(y) — E(2). In this rule, variables in one literal are not bounded/connected with
variables in any other literals. Given a rule, we say that the ruleviareable con-
nected ruleif, for every literal in the rule, there exists another literal which has the
same variables as the literal, andague ruleotherwise . Here are examples of variable
connected rulesS(x), D(x) — E(x) andC(x),R(x,y) = P(y,z). In this thesis, we only
allow variable connected rules in the knowledge base.

Governatori([3] also shows that£C~ defeasible description logic is coherent and
consistent. He also proves that the complexity4fC~ defeasible description logic
w.r.t. a defeasible description theddyis O(n*), wheren is the number of symbols iD.

This proofis based on two steps: 1) propositionalization the theory, and 2) analyze proof
conditions for universal quantified concepts. For the first step, in short, since the logic
allows roles (binary predicates), the size of resulting theo@@(sdf‘)z), assuming

the number of rules is much less than the size\gf For the second step, the proof
conditions for universal quantified concepts are embedded in the propositionalization
procedure. Leh be the size ofA4. For each universal quantified literdR C(x) in an
antecedent of a rule, i.&J,, create the following propositional auxiliary rules:

for everya; in A7,
RQa,al),...,RQai,an) — VR.C(a)
for everya; in A7,
~R(a,a;) — RC(a;,a))
C(aj) — Rc(ai,aj)-

,using theAuxiliaryRulegU ) procedure. In fact, each universal quantified literal in an-
tecedent adds at mo&t%)? auxiliary rules to the theory. Thus, the size of the new
propositionalized theory ©((A%)%) in size of the original theor. As mentioned be-
fore that a consequence of a propositional defeasible tHe@an be derived i©(N)
time, whereN is the number of propositional literals I [4], thus, a consequence of
a propositionaldLC ™~ defeasible description logic theory can be derived in polynomial
time, i.e.,O(N(A%)%) time.

In summary, to reason with adLC~ defeasible description logic, we must do the
following steps:
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Step 1: Transform7 to Rs using theExtractRulegprocedure, and transform to
F, henceDpp, = (7, A,R,>) is reduced t® = (F,R,>). Given a theonDpp. and a
conclusionT (i.e., a query), this step is designed such gt - T iff DT [3].

Step 2:Propositionalizeéd to Dpyop, including propositional auxiliary rules for uni-
versal quantified literals¥R C(x)) in antecedents of rules. Given a theddyand a
conclusionT (i.e., a query), this step guarantees tBat T iff Dpop - T. It is easy
to verify that this statement follows immediately from the first step statement plus the
nature of propositionalization.

Step 3:Apply LinearProvegBasiqDprop)), the linear algorithm. Note that and7
are normalized in this step.

Even the complexity of the logic is polynomial in time, in practice, the reasoning
process oMALC~ defeasible description logic still suffers a huge number of additional
propositionalized rules, regardless of the linear time complexity reasoning for a propo-
sitionalized theory. Consequently, it is essential to optimize the reasoning, especially
the propositionalization step (Step 2).

Before we proceed with the optimization, we show that the propositionalization step
is not trivial. First, we re-consider (variable-connected) simple strict rules:

r1:C(x),D(x) — E(X)
r2:C(x),R(x,y) — E(X)
r3:C(x),D(x) — R(xy)
r4:R(x,y),P(y,z) — C(x)

As you can naotice that there is no variable quantifier in the rules. In fact, the above four
rules are equal to the following rules:

rl:vx C(x),D(x) — E(x)
r2:vxvy C(x),R(x,y) — E(X)
r3:vxvy C(x),D(x) — R(XYy)
ra : vxvyvz Rx,y),P(y,z) — C(x)

Let n be the number of individuals in the domair;. In ruler1, there is only one vari-
able, thus it is propositionalized topropositional rules. In rule2 andr3, there are two
variables in each rule, thus each rule is propositionalized? toropositional rules. In
ruler4 there are three variables. In fact, the nudés equivalent t&/xvyvzRRx,y,z) —
C(x), whereVxvyWzRRX,Y, z) = VXVyWzRX,y) A P(y,z). Consequently, the rule4 is
propositionalized ta® propositional rules, which will make the complexity of a con-
clusion derivation inA£C~ defeasible description logic increase@(n®). In fact, the
size of propositionalized theory @(n™) of the size of the original theory, wheng is
the maximum number of variables in rules.

Second, we re-consider (variable-connected) strict rules with universal quantified
concepts (e.g.YRC(x)) in their consequents. For example, the rode: ¥xC(x) —
VRYP.D(X) is transformed tol : ¥xvyvzC(x), R(x,Y), P(y,z) — D(z), using theExtrac-
tRuleprocedure, which is, in turn, propositionalizedriopropositional rules. In fact,
given a rule of this kind, propositionalization will generate additiofat * rules, where
dy is depth of the nested universal quantified consequentde.g- 2 for VR YP.D(x).
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Third, we re-consider (variable-connected) strict rules with universal quantified
concepts (e.g¥R.C(x)) in their antecedents. For example, the milevxvR.YP.D(x) —
C(x) is propositionalized ta propositional rules, plus the following propositional aux-
iliary rules:

for everya; in A7,
RvYPC(a,a1), ..., R¥PC(ai,an) — YRYPC(a;)
for everya; in A%,
~R(ai,a)) — RYPC(a;,a))
vPC(a;) — RClar.aj)
PC(aj,a),...,PC(aj,a) — VP.C(a;)
for everyay in A%,
~ P(aj>ak) - PC(aj,ak)
Claw) — PC(a}, ).

It is easy to verify that the number of propositional auxiliary rules generate(®is+

1), or aboutn®. In fact, given a rule of this kind, propositionalization will generate
additionaln(2n+ 1)% auxiliary rules for each universal quantified antecedent, where
dy is depth of the nested universal quantified antecedentde.g: 2 for VR.VP.D(X).

At this point, the size of the new propositionalized theDgy,, can excee®((A%)*)
in size of the original theorp. In fact, the size of the new propositionalized theory
Dprop is O((A%)™=x) in size of the original theoryd, wherenmax is the maximum of
(ny+dRHSdLHS 4 3), ny is the maximum number of variables in each ralgSis depth
of the biggest nested universal quantified antecedentd\ﬁ'ﬁais depth of the biggest
nested universal quantified consequent. However, we can modigiractRulesand
AuxiliaryRulesprocedures such that size of the resulting propositionalized theory is
0O(n®) andO(n*) the size of the original theory respectively.

Since we allow only variable-connected rules with at most two variableExhe
tractRulesprocedure is transformed ExtractRules. In the algorithm 2, we introduce
the notion ofintermediate literalsThe intermediate literal correctness follows imme-
diately from the semantics of universal quantified concept in description logic. Here is
a simple example demonstrating a usage of the algorithm Z fet{C; MVR;.C; C
CsMVR,.(C4MVR3.Cs) }. Here are the steps for strict rules generation.

Step 1: AP = {{{Ci1(X),VR1.C2(X) }, {C3(X), VR2.(Ca MVR3.Cs5)(X) }) }.

Step 2:ExtractRulegAP) : ¥x,C1(x), VR1.C2(X) — C3(X) € Rs.

Step 3:AP = {{{Ci1(x),VR1.C2(X), Ra(%,¥) },{Ca(y)

[ReCs(¥)}), {{ReC5(X)}, {¥Ra.Cs(x)})}.
Step 4:ExtractRulegAP) :
- VXY, C1(X), VRL.C2(X), Ra(X,y) — Ca(y) € Rs.
- VXv)ﬂ C]_(X),VR]_.CZ(X), RZ(X7 Y) - %%(y) €Rs.

Step 5:AP = { ({RsCs(X)}, {YRs.Cs(X)}) }.

Step 6:ExtractRule§AP): get no rule.

Step 7:AP = {({ReCs(x), Rs(x,Y)}. {Cs(y) })}

Step 8:ExtractRule§AP): Vxvy, RsCs(x), Ra(X,y) — Cs(y) € Rs

Step 9:AP = {}, the procedure ends here.
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Algorithm 2 ExtractRules(AP):
if ap= ({C(x)},{D(x)}) € APthen
VX,C(X) — D(X) € Rs
X, =D(x) — —C(X) € Rs
AP=AP—{ap}
else ifap= ({C1(x), ...,Ccn(X), Ri(X,Y), ..., Rm(X,¥) },
{D1(x),...,Dk(x)}) € APthen
forall | € {Dy,...,Dx} do
VXYY, C1(X), ..., Cen(X), RL(X, Y), ..., Rm(X, ) — 1(X)
end for
AP=AP—{ap}
else ifap= ({C1(x),...,Cen(X), Ru(X,Y), ..., Rm(X,¥) },
{D1(X),...,Dk(X),¥S1.Dg1(X), ..., VS.Dsi(X) }) € APthen
forall | € {Dy,...,Dx} do
VXYY, C1(X), ..., Cn(X), Ri(X,Y), ..., Rm(X,y)
—1(x) €Rs
end for
for 1<i<kdo
AP=AP-— {ap}U
<{C1(X)’ ...7Cr_1(X), Rl(xa_y)v S Rm(X,y),
S(x,2)},{D3(2),...,.D7(2), TSDS(2), ...,
T5'Dp'(2) 1) ({TPDE'(%)}, :
{VTPDP(9})...({Te'DR(x)},
{vTSD'0})
where
y andz are new variables (not iap),
Di = D3'M1...MDF NVTS.DYM...NVTS.D3),
andT2DF(x), ..., TP'DF'(X) areintermediate
literals.
end for
end if
if APis not an empty sahen
ExtractRules(AP)
end if
return Rg

It is easy to verify that th& xtractRules procedure in algorithm 2 generates the
resulting propositionalized theory of the si2én?) the size of the original theory.

Regarding theAuxiliaryRulesprocedure, since we allow only variable-connected
rules with at most two variables, for each universal quantified litéral VR.C(x) in an
antecedent of a rule, call the procedéwexiliaryRules(U ):
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Algorithm 3 AuxiliaryRuleg(U ):

Vx,RC(X,a1), ..., RC(X,an) — > VRC(X) € Rs

VXY, ~ R(X,y)— > RC(X,y) € Rg

VXWY,C(y)— > RC(X,y) € Rs.

if C(y) is a universal quantified literal, then
AuxiliaryRules(C(x))

, whereAf‘ is {ay,...,an}, andn is the size ofAf‘. After this, we can propositional-
ize the additional auxiliary rules as usual. It is easy to verify that the size of of the
propositionalized theory i©(n*) the size of the original theory.

In summary, if we limit the number of variabie = 2, and use the above specifica-
tions for universal quantified literals (both antecedent and consequent), we will regain
complexity of the modifiedd £LC~ defeasible description logic to l&(n*) again.

Fourth, we show how a defeater can be propositionalized. A defeater is only used
to prevent a conclusion, thus its consequent is a negative literal Zi&i- defeasible
description logic, only atomic negation is allowed. In addition, we only allow variable-
connected rules with at most two free variables in each rule. Consequently, a defeater
can be of the formx(Vy),LHS~» =C(x) | ¥xvy,LHS~> =R(x,y). In proposition-
alization, a defeater is treated as a rule. For exampleAfet= {a,b,c}, a defeater
Vx,C(x) ~ —~D(x) is propositionalized toC(a) ~ —=D(a) € Ryit,C(b) ~ —D(b) €
Ryft,C(c) ~ —D(c) € Rytt. A propositionalized defeater will prevent conclusion by
not firing defeasible rule(s) whose head(s) has(have) literal(s) which is(are) negativity
of the defeater head if all literals in the defeater body are provable. Since, a defeater is
propositionalized in the same way as a rule is, it will prevent correct propositionalized
defeasible rule(s) from firing. Hence, the size of propositionalRed is O(n?) the
size of originalRy ;. Thus, complexity of thed LC~ defeasible description logic is still
o(n®).

Lastly, we show how can we extend the superiority relation to cover the propo-
sitionalized rules. Since the superiority relation is defined over pairs of rules, in par-
ticular defeasible rules, which have contradictory heads, we only need to extend the
superiority relation to cover the corresponding pairs of propositionalized rules. We
illustrate this fact by a simple example. L&, = {a,b,c}, we have a set of rules:
r1:vx,C(x) = E(x),r2:vx,D(x) = —E(x), and the superiority relation = {(r1,r2)}.

The set of rules are propositionalized tda : C(a) = E(a),rlb: C(b) = E(b),rlc:
C(c) = E(c),r2a: D(a) = —E(a),r2b: D(b) = —E(b),r2c: D(c) = —E(c), and the
extended superiority relation = {(rla,r2a),(rlb,r2b),(rlc,r2c)}. Hence, the size
of extended superiority relation @(n?) the size of original superiority relation. Thus,
complexity of theA£C~ defeasible description logic is stlli(n*). Note that the propo-
sitionalizedRy ¢; and the extendeg: will be absorbed intdyq in the linear algorithm
for a conclusion derivation.

4 ALE Defeasible Description Logic

In this section, we introduce adLE defeasible description logic, i.e., an extension of
ALC™ defeasible description logic with existential quantification constructor.
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ALE knowledge base consists of a Thox and Abox(es), Ee= (7, A). The
Abox A, containing a finite set of concept membership assertian€(or C(a)) and
role membership assertion&(b) : R or R(a,b)), corresponds to the set of fadts
in defeasible logic. The Thog contains a finite set of axioms of the for@:C
D | C =D, whereC andD are concept expressions. Concept expressions are of the
form: A| T | L | ~(atomiconlyC | CrD | VRC | 3R.C whereA is an atomic con-
cept or concept namé& andD are concept expressiorR,is a simple role name]
(top or full domain) represents the most general concept,lafiabttom or empty set)
represents the least general concept. Their semantics are similar to QAEY ide-
scription logic. ThoxZ corresponds to the set of strict rules in defeasible logic. The
algorithm 4 shows how can we transforhCE Thox to a set of strict rules, using
a set of axiom pairs and a procedEeatractRules. Basically, an inclusion axiom:
C1MCeM...MCyHE DM D2M...MDy in the Thox7 is transformed into an axiom pair
(@ap): ({Ci(x),Ca(x), ...,Cm(X) },{D1(X),D2(X), ...,Dn(X) }). Eventually, for the Thox,
we get the seAP of all axiom pairs. Then, the proceduEatractRulegis used to trans-
form AP into a set of strict rules in defeasible logic.

Algorithm 4 ExtractRules(AP):
if ap= ({C1(x),...,Ccn(X), R1(X,Y), .-, Rm(X,¥) },
{D1(X),...,Dk(x),3S1.Dg1(X), ..., 3S.Ds(X) }) € AP then
forall | € {D4,...,Dg} do
VXY, C1(X), ...,Cn(X), Ri(X,Y), ..., Rm(X,¥)
—1(X) €Rs
end for
AP =AP— {ap}U
{ <{Cl(x)v"'aCn(X)aRl(va)’ -'me(XaY)}v }
{S1(%,¥1), Ds1(Y1), -+, Sc(X, ¥k), Dsk(Yk) }) |
else ifap= ({3$.Ds1(X), ..., 3%.Dsk(X) },
{C1(x),...,Cn(X)}) € APthen
AP = AP— {ap}u
{ ({S1Ds1(X), -, SDsk®) }, {C1(%), ....Ca(X) }) }

<{Sl(x? y)7 DSl(X)}7 {SlD81(X)} ree
({S(x.¥), Dsi(x)}, {SDsix)}
elseExtractRules(AP)
end if
if APis not an empty sehen
ExtractRules(AP)
end if
return Ry

It is easy to verify that thé&xtractRules procedure in algorithm 4 generates the
resulting propositionalized theory of the si2én?) the size of the original theory. Con-
sequently, we get a defeasible description logic with very efficient derivation process
for a conclusion.
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5 Discussion and Future Works

This paper introduces several modifications to the existidg — defeasible description

logic such that its derivation can be accomplishe®i{m*). This makes the language
more useful in practice. Further, we extend the logic with existential quantification con-
structor, resulting in a new logic, i.eALE defeasible description logic, which can
handle more expressive knowledge base in the context of non-monotonic reasoning.
Our work is significant because it is a foundation to be extended to higher expressive
non-monotonic description logic. In the history of Description Logics, increasing-in-
expressiveness description logics have been studied chronologically, in order to find the
highest expressive description logic that are still decidable. Also, the maximum bound
of tractable logic has been found. However, those are the case®fwtonicdescrip-

tion logics, not fornonmonotoniaescription logics. This work presents a new result
showing a nonmonotonic description logic that is still tractable, 4£E defeasible
description logic. In the near future, we will study how we can add the full negation
constructor to the logic, resulting id£C defeasible description logic. However, it is

still arguable whether nonmonotonic logic can be extendeSH®ZN (D), which is

equal taALCR" HOZN (D). Transitive roles, role inclusions, one-of operators, inverse
roles, qualified number restriction, and concrete domain must be addedAd’thde-
feasible description logic, in order to achieve e OZN (D) defeasible description
logic. These additions are still open issues.
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