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Abstract. One of Semantic Web strengths is the ability to address incomplete
knowledge. However, at present, it cannot handle incomplete knowledge directly.
Also, it cannot handle non-monotonic reasoning. In this paper, we extendALC−
Defeasible Description Logic with existential quantifier, i.e.,ALE Defeasible
Description Logic. Also, we modify some parts of the logic, resulting in an in-
creasing efficiency in its reasoning.

1 Introduction

Description logics, which is a language based on first order logic, cannot handle incom-
plete and inconsistent knowledge well. In fact, it is often that complete and consistent
information or knowledge are very hard to obtain. Consequently, there is an urgent
need to extend description logics with a non-monotonic part which can handle incom-
plete and inconsistent knowledge better than themselves. Defeasible logic, developed
by Nute [6], is a well-established nonmonotonic reasoning system. Its outstanding prop-
erties are low computational complexity [4,5] and ease of implementation. Thus, this
logic is the nonmonotonic part of our choice. Governatori [3] proposes a formalism to
extendALC− with defeasibility. He combines the description logic formalism with the
defeasible logic formalism, creating a logic that can handle both monotonic and non-
monotonic information coherently. We extend this work to be able to handle existential
quantification.

2 Introduction to Defeasible Logic

Defeasible logic handles non-monotonicity via five types of knowledge: Facts, Strict
Rules (monotonic rules, e.g.,LOGISTICMANAGER(x)→EMPLOYEE(x)), Defeasi-
ble Rules (rules that can be defeated, e.g.,MANAGE DELIVER(x)⇒EMPLOYEE(x)),
Defeaters (preventing conclusions from defeasible rules, e.g.,TRUCK DRIVER(x) ;

¬EMPLOYEE(x)), and a Superiority Relation (defining priorities among rules). Note
that We consider only propositional rules. Rule with free variables will be proposition-
alized, i.e., it is interpreted as the set of its grounded instances. Due to space limitation,
see [6,2,1] for detailed explanation of defeasible logic.

Defeasible logic is proved to have well behavior: 1) coherence and 2) consistence
[3,2]. Furthermore, the consequences of a propositional defeasible theoryD can be
derived inO(N) time, whereN is the number of propositional literals inD [4]. In fact,
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the linear algorithm for derivation of a consequence from a defeasible logic knowledge
base exploits a transformation algorithm, presented in [1], to transform an arbitrary
defeasible theoryD into abasic defeasible theory Db.Given a defeasible theoryD, the
tranformation procedureBasic(D) consists of three steps: 1) normalize the defeasible
theoryD, 2) eliminate defeaters: simulating them using strict rules and defeasible rules,
and 3) eliminate the superiority relation: simulating it using strict rules and defeasible
rules. The procedure then returns a transformed defeasible theoryDb. Given a basic
defeasible theoryDb, defeasible proof conditions in [3] are simplified as follows:

+∂ : If P(i +1) = +∂q then either

1. +∆q∈ P(1..i) or

2. (a) ∃r ∈ R[q],∀a∈ A(r) : +∂a∈ P(1..i) and
(b) ∀s∈ R[∼ q],∃a∈ A(s) :−∂a∈ P(1..i)

−∂ : If P(i +1) =−∂q then

1. −∆q∈ P(1..i) and either

2. (a) ∀r ∈ Rsd[q],∃a∈ A(r) :−∂a∈ P(1..i) or
(b) ∃s∈ R[∼ q],∀a∈ A(s) : +∂a∈ P(1..i)

3 ALC− Defeasible Description Logic

In this section, we introduce anALC− defeasible description logic [3], i.e., an ex-
tension ofALC− description logic with defeasible logic. Also, we introduce several
adjustments for the logic.

LikeALC description logic,ALC− knowledge base consists of a Tbox and Abox(es),
i.e.,Σ = 〈T ,A〉. The AboxA, containing a finite set of concept membership assertions
(a : C or C(a)) and role membership assertions ((a,b) : R or R(a,b)), corresponds to
the set of factsF in defeasible logic. The TboxT contains a finite set of axioms of the
form: C v D | C

.= D, whereC andD are concept expressions. Concept expressions
are of the form: A | > | ⊥ | ¬(atomiconly)C | CuD | ∀R.C whereA is an atomic
concept or concept name,C andD are concept expressions,R is a simple role name,
> (top or full domain) represents the most general concept, and⊥ (bottom or empty
set) represents the least general concept. Their semantics are similar to ones inALC
description logic. In fact, the TboxT corresponds to the set of strict rules in defeasible
logic. Governatori [3] shows how can we transformALC− Tbox to a set of strict rules,
using a set of axiom pairs and a procedureExtractRules. Basically, an inclusion axiom:
C1uC2u ...uCmv D1uD2u ...uDn in the TboxT is transformed into an axiom pair
(ap): 〈{C1(x),C2(x), ...,Cm(x)},{D1(x),D2(x), ...,Dn(x)}〉. Eventually, for the TboxT ,
we get the setAP of all axiom pairs. Then, the procedureExtractRulesin Algorithm 1
is used to transformAP into a set of strict rules in defeasible logic.
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Algorithm 1 ExtractRules(AP):
if ap= 〈{C(x)},{D(x)}〉 ∈ AP then

C(x)→ D(x) ∈ Rs

¬D(x)→¬C(x) ∈ Rs

AP= AP−{ap}
else ifap= 〈{C1(xC1), ...,CCn(xn),R1(xR1,yR1), ...,
Rm(xRm,yRm)},{D1(xD1), ...,Dk(xDk),∀S1.DS1(xS1)
...,∀Sk.DSk(xSk)}〉 ∈ AP then

for all I ∈ {D1, ...,Dk} do
C1(xC1), ...,Cn(xCn),R1(xR1,yR1), ...,Rm(xRm,yRm)
→ I(xI ) ∈ Rs

end for
for 1≤ i ≤ k do

AP= AP−{ap}∪
〈{C1(xC1), ...,Cn(xCn),R1(xR1,yR1),
...,Rm(xRm,yRm),Si(xSi,ySi)},{DSi

1 (ySi),
...,DSi

l (ySi),∀TSi
1 .DSi

1 (ySi), ...,∀TSi
p .DSi

p (ySi)}〉

 ,

where
ySi is a new variable (not inap), and
Di = DSi

1 u ...uDSi
l u∀TSi

1 .DSi
1 u ...u∀TSi

p .DSi
p

end for
end if
if AP is not an empty setthen

ExtractRules(AP)
end if
return Rs

This procedure progresses recursively until all axiom pairs inAP are transformed.
Here is an example: letT = {C1u∀R1.C2vC3u∀R2.(C4u∀R3.C5)}. Here are the steps
for strict rules generation.

Step 1:AP= {〈{C1(x),∀R1.C2(x)},{C3(x),∀R2.(C4u∀R3.C5)(x)}〉}.
Step 2:ExtractRules(AP) : C1(x),∀R1.C2(x)→C3(x) ∈ Rs.
Step 3:AP= {〈{C1(x),∀R1.C2(x),R2(x,y)},

{C4(y),∀R3.C5(y)}〉}.
Step 4:ExtractRules(AP) : C1(x),∀R1.C2(x),R2(x,y)→C4(y) ∈ Rs.
Step 5:AP= {〈{C1(x),∀R1.C2(x),R2(x,y),R3(y,z)}

,{C5(z)}〉}.
Step 6:ExtractRules(AP) : C1(x),∀R1.C2(x),R2(x,y),

R3(y,z)→C5(z) ∈ Rs.
Step 7:AP= {}, the procedure ends here.
Notice that theExtractRulesprocedure takes care of description logic’s universal

quantified concepts, occurring on the RHS of the Tbox axioms, by transforming those
axioms into first order logic rules. However, description logic’s universal quantified
concepts occurring on the LHS of the Tbox axioms still remain in those rules. At this
point, we need additional inference rules to deal with the remaining universal quantified
concepts. However, universal quantified concepts’ semantics take into account all indi-
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viduals in the description logic knowledge base, in particular the Abox. Consequently,
the proof conditions for universal quantified concepts will incorporate the domain of
AboxA, i.e.,∆IA (see [7]), in themselves as follows:

+∆∀R.C: If P(i +1) = +∆∀R.C(a) then∀b∈ ∆IA,
1)−∆R(a,b) or 2)+∆C(b).

−∆∀R.C: If P(i +1) =−∆∀R.C(a) then∃b∈ ∆IA,
1) +∆R(a,b) and 2)−∆C(b).

+∂∀R.C: If P(i +1) = +∂∀R.C(a) then∀b∈ ∆IA,
1)−∂R(a,b) or 2)+∂C(b).

−∂∀R.C: If P(i +1) =−∂∀R.C(a) then∃b∈ ∆IA,
1) +∂R(a,b) and 2)−∂C(b).

Now, we have a complete formalism to deal withALC− literals. Since a rule,
however, can consists literal(s) with variable(s), there can bevague rulessuch as:
C(x),D(y)→ E(z). In this rule, variables in one literal are not bounded/connected with
variables in any other literals. Given a rule, we say that the rule is avariable con-
nected ruleif, for every literal in the rule, there exists another literal which has the
same variables as the literal, and avague ruleotherwise . Here are examples of variable
connected rules:C(x),D(x)→ E(x) andC(x),R(x,y)⇒ P(y,z). In this thesis, we only
allow variable connected rules in the knowledge base.

Governatori [3] also shows thatALC− defeasible description logic is coherent and
consistent. He also proves that the complexity ofALC− defeasible description logic
w.r.t. a defeasible description theoryD is O(n4), wheren is the number of symbols inD.
This proof is based on two steps: 1) propositionalization the theory, and 2) analyze proof
conditions for universal quantified concepts. For the first step, in short, since the logic
allows roles (binary predicates), the size of resulting theory isO((∆IA)2), assuming
the number of rules is much less than the size of∆IA. For the second step, the proof
conditions for universal quantified concepts are embedded in the propositionalization
procedure. Letn be the size of∆IA. For each universal quantified literal∀R.C(x) in an
antecedent of a rule, i.e.,U , create the following propositional auxiliary rules:

for everyai in ∆IA,
RC(ai ,a1), ...,RC(ai ,an)→∀R.C(ai)
for everya j in ∆IA,

∼ R(ai ,a j)→ RC(ai ,a j)
C(a j)→ RC(ai ,a j).

,using theAuxiliaryRules(U) procedure. In fact, each universal quantified literal in an-
tecedent adds at most(∆IA)2 auxiliary rules to the theory. Thus, the size of the new
propositionalized theory isO((∆IA)4) in size of the original theoryD. As mentioned be-
fore that a consequence of a propositional defeasible theoryD can be derived inO(N)
time, whereN is the number of propositional literals inD [4], thus, a consequence of
a propositionalALC− defeasible description logic theory can be derived in polynomial
time, i.e.,O(N(∆IA)4) time.

In summary, to reason with anALC− defeasible description logic, we must do the
following steps:



114 Pakornpong Pothipruk and Guido Governatori

Step 1:TransformT to Rs using theExtractRulesprocedure, and transformA to
F , hence,DDDL = 〈T ,A,R,>〉 is reduced toD = 〈F,R,>〉. Given a theoryDDDL and a
conclusionT (i.e., a query), this step is designed such thatDDDL ` T iff D ` T [3].

Step 2:PropositionalizeD to Dprop, including propositional auxiliary rules for uni-
versal quantified literals (∀R.C(x)) in antecedents of rules. Given a theoryD and a
conclusionT (i.e., a query), this step guarantees thatD ` T iff Dprop ` T. It is easy
to verify that this statement follows immediately from the first step statement plus the
nature of propositionalization.

Step 3:Apply LinearProve(Basic(Dprop)), the linear algorithm. Note thatA andT
are normalized in this step.

Even the complexity of the logic is polynomial in time, in practice, the reasoning
process onALC− defeasible description logic still suffers a huge number of additional
propositionalized rules, regardless of the linear time complexity reasoning for a propo-
sitionalized theory. Consequently, it is essential to optimize the reasoning, especially
the propositionalization step (Step 2).

Before we proceed with the optimization, we show that the propositionalization step
is not trivial. First, we re-consider (variable-connected) simple strict rules:

r1 : C(x),D(x) → E(x)
r2 : C(x),R(x,y) → E(x)
r3 : C(x),D(x) → R(x,y)
r4 : R(x,y),P(y,z) → C(x)

As you can notice that there is no variable quantifier in the rules. In fact, the above four
rules are equal to the following rules:

r1 : ∀x C(x),D(x) → E(x)
r2 : ∀x∀y C(x),R(x,y) → E(x)
r3 : ∀x∀y C(x),D(x) → R(x,y)
r4 : ∀x∀y∀z R(x,y),P(y,z) → C(x)

Let n be the number of individuals in the domain∆IA. In rule r1, there is only one vari-
able, thus it is propositionalized ton propositional rules. In ruler2 andr3, there are two
variables in each rule, thus each rule is propositionalized ton2 propositional rules. In
rule r4 there are three variables. In fact, the ruler4 is equivalent to∀x∀y∀zRP(x,y,z)→
C(x), where∀x∀y∀zRP(x,y,z) ≡ ∀x∀y∀zR(x,y)∧P(y,z). Consequently, the ruler4 is
propositionalized ton3 propositional rules, which will make the complexity of a con-
clusion derivation inALC− defeasible description logic increase toO(n5). In fact, the
size of propositionalized theory isO(nnv) of the size of the original theory, wherenv is
the maximum number of variables in rules.

Second, we re-consider (variable-connected) strict rules with universal quantified
concepts (e.g.,∀R.C(x)) in their consequents. For example, the ruler1 : ∀xC(x) →
∀R.∀P.D(x) is transformed tor1 :∀x∀y∀zC(x),R(x,y),P(y,z)→D(z), using theExtrac-
tRuleprocedure, which is, in turn, propositionalized ton3 propositional rules. In fact,
given a rule of this kind, propositionalization will generate additionalnd∀+1 rules, where
d∀ is depth of the nested universal quantified consequent, e.g.,d∀ = 2 for ∀R.∀P.D(x).
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Third, we re-consider (variable-connected) strict rules with universal quantified
concepts (e.g.,∀R.C(x)) in their antecedents. For example, the ruler1 :∀x∀R.∀P.D(x)→
C(x) is propositionalized ton propositional rules, plus the following propositional aux-
iliary rules:

for everyai in ∆IA,
R∀P.C(ai ,a1), ...,R∀P.C(ai ,an)→∀R.∀P.C(ai)
for everya j in ∆IA,

∼ R(ai ,a j)→ R∀P.C(ai ,a j)
∀P.C(a j)→ RC(ai ,a j)
PC(a j ,ak), ...,PC(a j ,ak)→∀P.C(a j)
for everyak in ∆IA,

∼ P(a j ,ak)→ PC(a j ,ak)
C(ak)→ PC(a j ,ak).

It is easy to verify that the number of propositional auxiliary rules generated isn(2n+
1)2, or aboutn3. In fact, given a rule of this kind, propositionalization will generate
additionaln(2n+ 1)d∀ auxiliary rules for each universal quantified antecedent, where
d∀ is depth of the nested universal quantified antecedent, e.g.,d∀ = 2 for ∀R.∀P.D(x).

At this point, the size of the new propositionalized theoryDprop can exceedO((∆IA)4)
in size of the original theoryD. In fact, the size of the new propositionalized theory
Dprop is O((∆IA)nmax) in size of the original theoryD, wherenmax is the maximum of
(nv+dRHS

∀ ,dLHS
∀ +3),nv is the maximum number of variables in each rule,dLHS

∀ is depth
of the biggest nested universal quantified antecedent, anddRHS

∀ is depth of the biggest
nested universal quantified consequent. However, we can modify theExtractRulesand
AuxiliaryRulesprocedures such that size of the resulting propositionalized theory is
O(n3) andO(n4) the size of the original theory respectively.

Since we allow only variable-connected rules with at most two variables, theEx-
tractRulesprocedure is transformed toExtractRules2. In the algorithm 2, we introduce
the notion ofintermediate literals. The intermediate literal correctness follows imme-
diately from the semantics of universal quantified concept in description logic. Here is
a simple example demonstrating a usage of the algorithm 2: letT = {C1u∀R1.C2 v
C3u∀R2.(C4u∀R3.C5)}. Here are the steps for strict rules generation.

Step 1:AP= {〈{C1(x),∀R1.C2(x)},{C3(x),∀R2.(C4u∀R3.C5)(x)}〉}.
Step 2:ExtractRules(AP) : ∀x,C1(x),∀R1.C2(x)→C3(x) ∈ Rs.
Step 3:AP= {〈{C1(x),∀R1.C2(x),R2(x,y)},{C4(y)

,R3C5(y)}〉,〈{R3C5(x)},{∀R3.C5(x)}〉}.
Step 4:ExtractRules(AP) :

- ∀x∀y,C1(x),∀R1.C2(x),R2(x,y)→C4(y) ∈ Rs.
- ∀x∀y,C1(x),∀R1.C2(x),R2(x,y)→ R3C5(y) ∈ Rs.

Step 5:AP= {〈{R3C5(x)},{∀R3.C5(x)}〉}.
Step 6:ExtractRules(AP): get no rule.
Step 7:AP= {〈{R3C5(x),R3(x,y)},{C5(y)}〉}
Step 8:ExtractRules(AP): ∀x∀y,R3C5(x),R3(x,y)→C5(y) ∈ Rs

Step 9:AP= {}, the procedure ends here.
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Algorithm 2 ExtractRules2(AP):
if ap= 〈{C(x)},{D(x)}〉 ∈ AP then

∀x,C(x)→ D(x) ∈ Rs

∀x,¬D(x)→¬C(x) ∈ Rs

AP= AP−{ap}
else ifap= 〈{C1(x), ...,CCn(x),R1(x,y), ...,Rm(x,y)},
{D1(x), ...,Dk(x)}〉 ∈ AP then

for all I ∈ {D1, ...,Dk} do
∀x∀y,C1(x), ...,CCn(x),R1(x,y), ...,Rm(x,y)→ I(x)

end for
AP= AP−{ap}

else ifap= 〈{C1(x), ...,CCn(x),R1(x,y), ...,Rm(x,y)},
{D1(x), ...,Dk(x),∀S1.DS1(x), ...,∀Sk.DSk(x)}〉 ∈ AP then

for all I ∈ {D1, ...,Dk} do
∀x∀y,C1(x), ...,Cn(x),R1(x,y), ...,Rm(x,y)
→ I(x) ∈ Rs

end for
for 1≤ i ≤ k do

AP= AP−{ap}∪
〈{C1(x), ...,Cn(x),R1(x,y), ...,Rm(x,y),
Si(x,z)},{DSi

1 (z), ...,DSi
l (z),TSi

1 DSi
1 (z), ...,

TSi
p DSi

p (z)}〉〈{TSi
1 DSi

1 (x)},
{∀TSi

1 DSi
1 (x)}〉...〈{TSi

p DSi
p (x)},

{∀TSi
p DSi

p (x)}〉

 ,

where
y andz are new variables (not inap),
Di = DSi

1 u ...uDSi
l u∀TSi

1 .DSi
1 u ...u∀TSi

p .DSi
p ,

andTSi
1 DSi

1 (x), ...,TSi
p DSi

p (x) areintermediate
literals.

end for
end if
if AP is not an empty setthen

ExtractRules2(AP)
end if
return Rs

It is easy to verify that theExtractRules2 procedure in algorithm 2 generates the
resulting propositionalized theory of the sizeO(n3) the size of the original theory.

Regarding theAuxiliaryRulesprocedure, since we allow only variable-connected
rules with at most two variables, for each universal quantified literalU = ∀R.C(x) in an
antecedent of a rule, call the procedureAuxiliaryRules2(U):
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Algorithm 3 AuxiliaryRules2(U):
∀x,RC(x,a1), ...,RC(x,an)−> ∀R.C(x) ∈ Rs

∀x∀y,∼ R(x,y)−> RC(x,y) ∈ Rs

∀x∀y,C(y)−> RC(x,y) ∈ Rs.
if C(y) is a universal quantified literal, then

AuxiliaryRules2(C(x))

, where∆IA is {a1, ...,an}, andn is the size of∆IA. After this, we can propositional-
ize the additional auxiliary rules as usual. It is easy to verify that the size of of the
propositionalized theory isO(n4) the size of the original theory.

In summary, if we limit the number of variablenv = 2, and use the above specifica-
tions for universal quantified literals (both antecedent and consequent), we will regain
complexity of the modifiedALC− defeasible description logic to beO(n4) again.

Fourth, we show how a defeater can be propositionalized. A defeater is only used
to prevent a conclusion, thus its consequent is a negative literal. InALC− defeasible
description logic, only atomic negation is allowed. In addition, we only allow variable-
connected rules with at most two free variables in each rule. Consequently, a defeater
can be of the form∀x(∀y),LHS ; ¬C(x) | ∀x∀y,LHS ; ¬R(x,y). In proposition-
alization, a defeater is treated as a rule. For example, let∆IA = {a,b,c}, a defeater
∀x,C(x) ; ¬D(x) is propositionalized to:C(a) ; ¬D(a) ∈ Rd f t,C(b) ; ¬D(b) ∈
Rd f t,C(c) ; ¬D(c) ∈ Rd f t. A propositionalized defeater will prevent conclusion by
not firing defeasible rule(s) whose head(s) has(have) literal(s) which is(are) negativity
of the defeater head if all literals in the defeater body are provable. Since, a defeater is
propositionalized in the same way as a rule is, it will prevent correct propositionalized
defeasible rule(s) from firing. Hence, the size of propositionalizedRd f t is O(n2) the
size of originalRd f t. Thus, complexity of theALC− defeasible description logic is still
O(n4).

Lastly, we show how can we extend the superiority relation to cover the propo-
sitionalized rules. Since the superiority relation is defined over pairs of rules, in par-
ticular defeasible rules, which have contradictory heads, we only need to extend the
superiority relation to cover the corresponding pairs of propositionalized rules. We
illustrate this fact by a simple example. Let∆IA = {a,b,c}, we have a set of rules:
r1 :∀x,C(x)⇒E(x), r2 :∀x,D(x)⇒¬E(x), and the superiority relation> = {〈r1, r2〉}.
The set of rules are propositionalized to:r1a : C(a) ⇒ E(a), r1b : C(b) ⇒ E(b), r1c :
C(c)⇒ E(c), r2a : D(a)⇒¬E(a), r2b : D(b)⇒¬E(b), r2c : D(c)⇒¬E(c), and the
extended superiority relation> = {〈r1a, r2a〉,〈r1b, r2b〉,〈r1c, r2c〉}. Hence, the size
of extended superiority relation isO(n2) the size of original superiority relation. Thus,
complexity of theALC− defeasible description logic is stillO(n4). Note that the propo-
sitionalizedRd f t and the extended> will be absorbed intoRsd in the linear algorithm
for a conclusion derivation.

4 ALE Defeasible Description Logic

In this section, we introduce anALE defeasible description logic, i.e., an extension of
ALC− defeasible description logic with existential quantification constructor.
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ALE knowledge base consists of a Tbox and Abox(es), i.e.,Σ = 〈T ,A〉. The
Abox A, containing a finite set of concept membership assertions (a : C or C(a)) and
role membership assertions ((a,b) : R or R(a,b)), corresponds to the set of factsF
in defeasible logic. The TboxT contains a finite set of axioms of the form:C v
D | C

.= D, whereC andD are concept expressions. Concept expressions are of the
form: A | > | ⊥ | ¬(atomiconly)C | CuD | ∀R.C | ∃R.C whereA is an atomic con-
cept or concept name,C andD are concept expressions,R is a simple role name,>
(top or full domain) represents the most general concept, and⊥ (bottom or empty set)
represents the least general concept. Their semantics are similar to ones inALC de-
scription logic. TboxT corresponds to the set of strict rules in defeasible logic. The
algorithm 4 shows how can we transformALE Tbox to a set of strict rules, using
a set of axiom pairs and a procedureExtractRules3. Basically, an inclusion axiom:
C1uC2u ...uCmv D1uD2u ...uDn in the TboxT is transformed into an axiom pair
(ap): 〈{C1(x),C2(x), ...,Cm(x)},{D1(x),D2(x), ...,Dn(x)}〉. Eventually, for the TboxT ,
we get the setAPof all axiom pairs. Then, the procedureExtractRules3 is used to trans-
form AP into a set of strict rules in defeasible logic.

Algorithm 4 ExtractRules3(AP):
if ap= 〈{C1(x), ...,CCn(x),R1(x,y), ...,Rm(x,y)},
{D1(x), ...,Dk(x),∃S1.DS1(x), ...,∃Sk.DSk(x)}〉 ∈ AP then

for all I ∈ {D1, ...,Dk} do
∀x∀y,C1(x), ...,Cn(x),R1(x,y), ...,Rm(x,y)
→ I(x) ∈ Rs

end for
AP= AP−{ap}∪{
〈{C1(x), ...,Cn(x),R1(x,y), ...,Rm(x,y)},
{S1(x,y1),DS1(y1), ...,Sk(x,yk),DSk(yk)}〉

}
,

else ifap= 〈{∃S1.DS1(x), ...,∃Sk.DSk(x)},
{C1(x), ...,Cn(x)}〉 ∈ AP then

AP= AP−{ap}∪ 〈{S1DS1(x), ...,SkDSk(x)},{C1(x), ...,Cn(x)}〉
〈{S1(x,y),DS1(x)},{S1DS1(x)}〉, ...
〈{Sk(x,y),DSk(x)},{SkDSk(x)}〉

 ,

elseExtractRules2(AP)
end if
if AP is not an empty setthen

ExtractRules3(AP)
end if
return Rs

It is easy to verify that theExtractRules3 procedure in algorithm 4 generates the
resulting propositionalized theory of the sizeO(n4) the size of the original theory. Con-
sequently, we get a defeasible description logic with very efficient derivation process
for a conclusion.
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5 Discussion and Future Works

This paper introduces several modifications to the existingALC− defeasible description
logic such that its derivation can be accomplished inO(n4). This makes the language
more useful in practice. Further, we extend the logic with existential quantification con-
structor, resulting in a new logic, i.e.,ALE defeasible description logic, which can
handle more expressive knowledge base in the context of non-monotonic reasoning.
Our work is significant because it is a foundation to be extended to higher expressive
non-monotonic description logic. In the history of Description Logics, increasing-in-
expressiveness description logics have been studied chronologically, in order to find the
highest expressive description logic that are still decidable. Also, the maximum bound
of tractable logic has been found. However, those are the cases formonotonicdescrip-
tion logics, not fornonmonotonicdescription logics. This work presents a new result
showing a nonmonotonic description logic that is still tractable, i.e.,ALE defeasible
description logic. In the near future, we will study how we can add the full negation
constructor to the logic, resulting inALC defeasible description logic. However, it is
still arguable whether nonmonotonic logic can be extended toSHOIN (D), which is
equal toALCR+HOIN (D). Transitive roles, role inclusions, one-of operators, inverse
roles, qualified number restriction, and concrete domain must be added to theALC de-
feasible description logic, in order to achieve theSHOIN (D) defeasible description
logic. These additions are still open issues.
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