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Abstract

This paper presents a method for estimating the instantaneous frequency (IF) of
multicomponent signals. The technique involves, firstly, the transformation of the
one dimensional signal to the two dimensional time—frequency domain using a re-
duced interference quadratic time—frequency distribution. IF estimation of signal
components is then achieved by implementing two image processing steps: local
peak detection of the time—frequency (TF) representation followed by an image pro-
cessing technique called component linking. The proposed IF estimator is tested on
noisy synthetic monocomponent and multicomponent signals exhibiting linear and
nonlinear laws. For low signal to noise ratio (SNR) environments, a time—frequency
peak filtering preprocessing step is used for signal enhancement. Application of the
IF estimation scheme to real signals is illustrated with newborn EEG signals. Finally,
to illustrate the potential use of the proposed IF estimation method in classifying sig-
nals based on their TF components’ IFs, a classification method using least squares
data—fitting is proposed and illustrated on synthetic and real signals.
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1 Introduction

The IF is a signal parameter which is of significant importance in many real
applications, such as radar, sonar, telecommunications and biomedicine [1].
For an analytic |2|, monocomponent signal,

2(t) = a(t)e’?® (1)
the instantaneous frequency is defined as

fi(t) = 1 4

27 dt 2)

where a(t) and ¢(t) are two real functions that are referred to as the instan-
taneous amplitude and instantaneous phase respectively.

A review of techniques for estimating the IF, such as phase difference estima-
tors, zero crossing-based IF estimation, adaptive parameterization methods
and TF based techniques, can be found in [3]. Among those, TF based IF esti-
mation techniques have received considerable attention recently, as illustrated
by the papers [4-10].

As discussed in [1], an ideal TF representation of a monocomponent signal of
the form (1) would exhibit a peak about the IF, with an amplitude related to
the signal envelope. It has been shown that some quadratic time-frequency
distributions (QTFDs), such as the Wigner—Ville distribution (WVD) and
modified B-distribution (MBD) [11, 12|, provide a peak centered at the IF
for linear frequency modulated (LEM) signals. Therefore, an intuitive method
for estimating the IF is to take the peak of these QTFDs, as described in
|3]. However, care must be taken with nonlinear frequency modulated signal
components as the peak estimate is biased (see [5,6,12] for further details).

Consider now a multicomponent signal, z(t), composed of a sum of monocom-
ponent signals corrupted with complex-valued additive white Gaussian noise,
r(t), with independently and identically distributed (i.i.d) real and imaginary
parts, such that

2(t) = ; a;(t)e’* 0 +r(t) (3)

where a;(t) and ¢;(t) are the amplitude envelope and instantaneous phase of
the i*" signal component respectively and M is the number of signal compo-
nents. In this paper, we classify a multicomponent signal as being either TF
separable or TF nonseparable. A TF nonseparable signal is defined as a signal
whose TF components are either too close to separate in the TF domain or
with components that actually intersect. A TF separable multicomponent sig-
nal is, however, a signal whose TF components are clearly separated in the TF



domain and hence possess a unique TF decomposition. We restrict our present
study to the case of TF separable multicomponent (referred to from this point
on as just multicomponent) signals whose TF components are characterized
by continuous IFs. This characteristic is shared by most physiological signals
such as newborn EEG [13| and heart rate variability [14].

The idea of a single IF for a multicomponent signal, as defined by (3), becomes
a meaningless [1]. Instead, estimation of the IF of each individual component
is the desired information to be extracted from multicomponent signals.

Component IF estimation for multicomponent signals using the local peaks of
QTFDs has previously been proposed. In [12], an adaptive QTFD was pre-
sented and local peaks were used to estimate the IF of components. However,
this method requires a priori information about the ratio between signal com-
ponent amplitudes, assuming the component amplitudes are constant, so that
local maxima caused by crossterms and noise can be ignored by setting an
appropriate threshold level [12]. For this reason, the method was not assessed
with low signal to noise ratio (SNR) signals or real signals with time-varying
amplitudes.

The two dimensional representation of a signal in the joint TF domain has
led to the use of pattern recognition techniques to extract the individual IFs
of multicomponent signals. In [7], the authors developed a method for esti-
mating the parameters associated with LFM signals using a Wigner-Hough
transform. This technique was extended in [8] to be applicable to nonlinear
frequency modulated signals. In [9], the authors proposed a combined Hough—
Radon transform of a positive time—frequency distribution to estimate multi-
component IFs. The authors in [10] developed a technique for multicomponent
IF estimation based on the randomized Hough transform (RHT) of the TF
representation, using edge information obtained from matched filtering-based
edge detection to eliminate spurious votes in the RHT.

The Hough transform, used in each of the methods presented in [7-10], is
a well known method for finding curves in images [15]. However, the Hough
transform requires a priori information about the class of IF law (e.g. linear,
quadratic, cubic, hyperbolic, sinusoidal etc.) contained in the signal so that the
TF representation can be transformed to the appropriate Hough parameter
space. This means that the component IF laws of a signal which contains, for
example, a component with a linear IF law and a component with a sinusoidal
IF law, cannot both be accurately estimated simultaneously. The IF estimation
methods incorporating the Hough transform also provide poor results if the IF
of a signal component is not easily represented by a parametric function [9].

This paper proposes a new technique for multicomponent IF estimation with-
out requiring a threshold to be set for local peaks in the TF domain or a prior:



knowledge of the class of IF law. The technique involves a TF transformation
of the signal using a high resolution, reduced interference QTFD. Component
IFs are then extracted by a two step process: detection of local peaks in the TF
representation to produce a binary image, followed by component linking. To
allow for low SNR environments, a time—frequency peak filtering (TFPF) [16]
preprocessing step is applied for signal enhancement.

The paper is organized as follows. Section 2 introduces QTFDs and TFPF
preprocessing and gives a detailed description of the local peak detection and
component linking algorithms that make up the proposed IF estimation tech-
nique. In section 3, the IF estimation algorithm is demonstrated on noisy
synthetic monocomponent and multicomponent signals with components ex-
hibiting linear and nonlinear IF laws. The performance of the proposed IF
estimation when applied to real newborn EEG data is also given. In section
4, a method of classifying the extracted components IF laws using linear and
nonlinear least squares data—fitting is outlined. A discussion and interpreta-
tion of the results obtained using the proposed IF estimation and component
classification techniques are presented in section 5.

2 TIF Estimation Algorithm
2.1 Quadratic Time-Frequency Distributions

QTFDs are commonly used for joint TF representation. The most basic QTFD
is the Wigner—Ville distribution (WVD). All other QTFDs can be obtained
by a TF averaging or smoothing of the WVD [17]. The general formula for a
QTFED of a real signal, s(t), is expressed as [17]

(1. f) = /_ Z /_ ‘: Gt —u,7)2(u+ D)2 (u — De > dudr  (4)

where G(t,7) is the time-lag kernel which defines the QTFD and z(t) is the
analytic associate of s(¢) [18]. The WVD has the simplest time-lag kernel,
expressed as G(t,7) = 0(t).

The WVD satisfies many mathematically desirable properties of a TF repre-
sentation (see [17| for a detailed list of WVD properties). However, it also ex-
hibits spurious features called crossterms which result from the bilinear nature
of the Wigner-Ville TF transformation. In many applications, these crossterms
can severely mask true signal components in the TF domain, resulting in a
poor representation.



In [12], the authors proposed the time-lag kernel

—28
Git.7) = Galt) = =) 5)

for a QTFEFD which retains high resolution of signal components while signif-
icantly reducing the effect of crossterms. The parameter, (, which satisfies
0 < B < 1, controls the resolution—crossterm elimination tradeoff in the dis-
tribution. It was also shown in [12| that this distribution, referred from here
on as the modified B-distribution (MBD), produces a peak along the IF for
LFM components. For the proposed IF estimation algorithm, the MBD will
be used to represent signals in the TF domain.

2.2 Time—Frequency Peak Filtering

TFPF was proposed in [16,19] as a preprocessing method for enhancing a
signal buried in noise at low SNR. The algorithm consists of two basic steps:

(1) Encode the real noisy signal, s(t), via frequency modulation as:
2(t) = ej2wufjoo s(\)dA (6)

where u is a scaling parameter analogous to the frequency modulation
index.

(2) Estimate the peak of the WVD of the analytic, monocomponent signal
z(t):

_ argmax[W, (¢, f)]

W

where W, _(t, f) is the WVD of z,(¢). The reason for choosing the WVD in the
TFPF procedure is that the encoded signal, z4(¢), is monocomponent with
fast variations in the IF. It was recently shown that the WVD outperformed
other reduced interference QTFDs in estimating the IF of monocomponent
signals for the case where the IF changed rapidly [6]. The use of the WVD in
the TFPF should not be confused with the use of the MBD to represent the
enhanced multicomponent signal, §(¢), in the local peak estimation procedure
described in the following subsection.

5(t) = f..()

(7)

Discrete implementation of the TFPF method requires signal scaling to a
range inside the band of normalized frequencies (i.e. [0,0.5]) before encoding
to prevent aliasing [16]. The range [0.1,0.4] was chosen arbitrarily for the ap-
plication of TFPF in this paper. In the discrete implementation of the TFPF
procedure, the pseudo-WVD [11], rather than the WVD, is used so that a lag
window length can be selected to reduce the bias in the estimate of the fast



changing IF of the encoded signal. To reduce the bias in the IF estimate in the
TFPF procedure, the lag window length can be minimized or the sampling
frequency increased [16]. However, reducing the lag window length increases
the variance of the IF estimate [6]. In [16], a relationship between the max-
imum allowable window length for TFPF and the amount of oversampling
for a desired maximum bias was derived. The valid lag window lengths for a
maximum deviation of 20% across the kernel window was shown to be [16]

. 1.28 f,
7Tfp

where f; is the sampling frequency and f, is the maximum IF. From (8), it can
be seen that the lag window length can be increased and, correspondingly, the
variance can be reduced, for a given bias by increasing the sampling rate f.
To minimize the variance, for all TFPF in this paper, we have oversampled the
signal by 30 times before down sampling. The maximum lag window length
for a signal 30 times over sampled, using (8), is given by 7, < 24 samples.
Throughout this paper, we use a lag window length of 21 samples for the
TFPF.

(8)

To improve the signal estimate in extremely low SNR, an iterative TFPF al-
gorithm may be applied. This method simply repeats the TFPF process on
the estimated signal until a satisfactory signal estimate is achieved. Conver-
gence of the iterative TFPF algorithm has only been studied through simu-
lations [16,19]. It was found that suitable estimates of the signal occurred in
approximately three or four iterations.

2.8 Local QTFD Peak Estimation and Component Linking

The TF representation, p;(t, f), of the analytic associate, Z(t), of time—frequency
peak filtered signal, 5(t), is obtained using the MBD. The MBD is then trans-
formed into a binary image, B(t, f), by assigning the locations of local peaks
the value one, and assigning zero for all other locations. For the continuous TF
representation, p;(t, f), the binary image is given by the following conditions

o {22 o) {2 <o)

0 : else

B(t, f) = 9)

where @ is the boolean AND operator.

The process of defining edges in images generally includes two steps: edge
enhancement (i.e. binary transformation) followed by a component linking
procedure [20]. The process of obtaining the binary image, B(t, f), estimated
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Fig. 1. Tllustration of connected neighbouring sets.

from the local peaks of p; (¢, f) can be thought of as an edge detection process.

A linked or connected component in a binary image is said to be a sepa-
rate and independent object [21]. Using an 8-connected neighbouring set, any
pixel (x,y) in a connected component has at least one other pixel with the
coordinate in the set [21]

{(l‘—l,y—1),(11—1,y),(l’—1,y—|—1),(l‘,y—1),
(r,y+1),(z+1Ly—1),(z+1Ly),(x+1Ly+ 1)}

(10)

The standard 8-connected neighbouring set is illustrated in Fig. 1(a)

A threshold for the number of connected pixels, P;, which defines a true
connected, or linked, component is generally set to remove falsely detected
components. The threshold value is application dependent. For example, in
component IF estimation, the number of pixels in a linked component is di-
rectly related to the time support of the signal component. Therefore, the
threshold value is chosen as the minimum time duration for which a signal
component can exist.



2.4 Discrete Analysis of Component Linking

2.4.1 Discrete modified B distribution

For implementation, the MBD must be discretized to provide a discrete QTFD
of the form [22]

pln. k| =2 DFT {Gln,m] 5 R [n. m]} (1)

where DFT{-} is the discrete Fourier transform, x refers to convolution in
n

n and R.[n,m] is the discrete instantaneous autocorrelation function (IAF),
given as

R.[n.m] = ([n + m]=*[n — m]) (12)
The discrete time—lag kernel for the discrete MBD is given as
cosh ™ n
Gln,m|=G = 13
) = Galnl = = (13)

For smoothing and localization [12], as well as improving the bias—variance
tradeoff [5,6|, a window function, wy,[m], of length h samples can be applied
to the TAF, such that the discrete MBD is expressed as [22]

p-[n. ks wn) = 2 DFT {Gﬁ[n] « (wy[m] R. n, m])} (14)

The number of frequency samples, which we refer to as the frequency resolu-
tion, in the discrete QTFD now becomes a function of window length, h. Larger
window lengths allow for more data points in the DF'T, therefore more fre-
quency samples or higher frequency resolution. Shorter window lengths mean
there are fewer data points for the DFT resulting in fewer frequency samples
or lower frequency resolution.

2.4.2 Linking using an 8-connected neighbouring set

The linking of a component in a discrete QTFD is now shown to be dependent
on the maximum of the first derivative of the IF. Consider a signal with N
samples which is transformed to a discrete TF representation using the discrete
MBD. The resulting discrete QTFED, p,[n, k; wy], is an N x K matrix with N
time samples and K frequency samples, where K is determined by the lag
window length h in (14) (i.e. K = h, see [22] for details).

The interval, or period, between neighbouring samples along the time axis in



pz[n, k;wy] is simply the sampling period given by

_ 1
s

where f; is the sampling frequency. The interval between neighbouring fre-
quency samples is
s/2
N2

K

At =T, (15)

(16)

Using an 8-connected neighbouring set, the maximum rate of change of the
IF in either the positive or negative direction, such that the component can
be linked, is one frequency sample, Af, per time sample, At. That is,

o) 3

Substituting (15) and (16) into (17), we get

ma {0} - L2 (19

The equation (18) suggests that max{wzl—it) }, such that a component can be
linked using an 8-connected neighbouring set, is dependent on the sampling

frequency, fs, and the number of frequency samples in the discrete QTFD.

. dfi(t
To increase max{ 4hit)

o }, the sampling frequency f; can be increased or the
number of frequency samples K can be decreased. Increasing the sampling
frequency, f,, results in the addition of irrelevant information, according to the
Nyquist sampling theorem [23], and an increase in computation complexity.

These are both undesirable.

Assuming that the bias for the IF estimate obtained from the peak of the
discrete MBD is negligible, a decrease in the number of frequency samples,
K, or frequency resolution, will result in an increase in Af, as seen from (16).
The mean square error (MSE) of the IF estimate caused by resolution error
for uniform sampling of the frequency axis is [23]

Af?

MSE = — 19

13 (19)
which is the same error function associated with quantization errors. There-
fore, decreasing K will significantly increase the mean square error of the IF
estimate caused by the sampling of the frequency axis, which is highly unde-
sirable.



2.4.8 Linking using a 10-connected neighbouring set

Consider now a new 10-connected neighbouring set

{(l’—1,y—1),(%—1,y),($—1,y+1)7
(x+Ly—1),(x+1Ly),(z+1,y+1) (20)
(x—1y—2),(zr—Ly+2),(z+1Ly—2),(z+1Ly+2)}

where x and y represent the time and frequency axis respectively. This neigh-
bouring set is illustrated in Fig. 1(b). This neighbouring set does not continue
a search in the frequency direction only, as, by definition, there is only one
instantaneous frequency at any given time instant for a signal component [1].
However, the maximum change in IF in either the positive or negative di-
rection, which allows for component linking using the defined 10-connected
neighbouring set, now becomes

afit) |\ _ |£2Af] _ f2
) pf w

This results in a doubling of the allowable max{‘#;—f)‘}, such that a com-

ponent can still be linked, than is attainable with the 8-connected neigh-
bouring set. In fact, by increasing the neighbouring set in this fashion, the
max{ df;y)l’}, such that a component can still be linked, can be continually

owever, the issue of false component linking because of an exces-

increased.
sively large neighbouring set, arises. The relationship between false component
linking, max ﬂ df;it)j, and size of neighbouring set is beyond the scope of this
paper but will be addressed in the future. Instead, we restrict the component
linking algorithm to the use of the defined 10-connected neighbouring set in
our proposed IF estimation algorithm. Simulations have demonstrated that
false component linking using the 10-connected neighbouring set occurs only

at very low SNR. However, low SNR is overcome by the TFPF preprocessing.

An example of a single connected component using the 10-connected neigh-
bouring set is shown in Fig. 2. It can be seen from Fig. 2 that although the
IF' has changed rapidly from time x = 4 to x = 5, the component linking
algorithm is able to link the component.

10
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Fig. 2. A binary image showing a linked component using the 10-connected neigh-
bouring set.

3 Performance Assessment and Discussion
3.1  Monocomponent Signal with 2" Order Polynomial Phase in WGN

The combined Wigner-Hough transform for IF estimation of 2°¢ order polyno-
mial phase, or LFM, signals was originally presented in [7]. The phase function
for a LFM signal is given as

dLem(t) = 27 (fo + Lt)t (22)
where fj is the start frequency of the LFM and f, is the linear frequency rate.

The performance assessment of the proposed IF estimation algorithm begins
with a noisy, monocomponent LFM signal as it allows for 1) a comparison with
the Cramer-Rao bound (CRB), calculated from [24| and 2) a direct comparison
with the Wigner-Hough transform IF estimator [7]|. IF estimation using the
peak of the QTFD [1], in our case the MBD, was included in the comparison.

The LFM signal of length N = 256 samples used in this performance assess-
ment has a sampling rate of f; = 1Hz, a start frequency of f, = 0.2Hz, a
frequency rate of f, = 3.9 x 107*Hz/s and unit amplitude. White Gaussian
noise (WGN) was then added to the LFM signal to obtain noisy signals with
signal to noise ratios (SNRs) in the range of 15dB down to -25dB.

Monte Carlo simulation was employed using 20 realizations of the noisy signal
for each SNR. The results of the three IF estimators; namely, the peak of
the MBD (Peak), the proposed component linking method (Linked) and the
combined Wigner-Hough transform based method (WHT), with and without
TFPF preprocessing, are presented in Fig. 3(a) and (b) respectively.

In this paper, unless otherwise stated, we have set the minimum length, in

11
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Fig. 3. MSE results from Monte Carlo simulations for three IF estimators; Peak of the
MBD, component linking and Wigner-Hough transform with (a) no preprocessing
and (b) TFPF preprocessing.

connected pixels, for a component to be considered a true signal component
to be P, = |3N/4| samples. It can be seen in Fig. 3(a) that the Linked
algorithm only provides IF estimates for SNR > 1dB . For SNR < 1dB the
Linked algorithm fails to link a true component from the QTFD, therefore,
no IF estimate can be achieved (see Fig. 3(a)). However, for SNR > 1dB the
Linked algorithm approximately follows the CRB. The MSE offset from the
CRB for the Linked algorithm is a result of the resolution error caused by the
discretization of the QTFD, as discussed in section 2.4.

It can also be seen from Fig. 3(a) that the Linked algorithm provides better
IF estimation results than the Peak algorithm for SNR > 1dB. The improved
performance of the Linked IF estimator over the Peak algorithm can be at-
tributed to the extra imposed constraint that component IF estimates for each
time instant must be linked to a previous and a future local peak using the
defined neighbourhood set in (20). As the SNR drops, the MBD may exhibit
global peaks which are away from the true IF [6|. The component linking al-
gorithm, instead, searches for significant local peaks that are linked, and this
generally occurs in proximity to the true IF.

Divergence from the CRB for the Peak and WHT algorithms occurs for SNR <
3dB and SNR, < 1dB respectively. The divergence points indicate the SNR at
which the algorithms begin to breakdown. Therefore, it can be seen from Fig.
3(a) that both Linked and WHT algorithms break down at lower SNR than
the Peak algorithm. For SNR = 1dB to 9dB, the WHT algorithm provides
slightly better estimates than the Linked algorithm. This was expected as the
variance associated with the resolution of the discrete QTFD can be reduced
by estimating the underlying parametric IF function such as in the WHT-

12



based method'. However, for SNR > 9dB, the WHT exhibits a flat MSE.
This error is determined by the resolution of the discrete Hough parameter
space [25], which can be improved but at the expensive of an increase in
computational load.

The results achieved by the algorithms when TFPF is applied, are shown in
Fig. 3(b). It can be seen that the results are similar to the results when no
preprocessing is applied, except for a shift towards lower SNRs. In this figure
we have plotted the IF estimation error against the received signal SNR. The
TFEFPF improves the SNR of the received signal by filtering out noise power.
Therefore, a better IF estimate for the receive signal SNR is achievable because
the TFPF preprocessing has improved the actual SNR. This is the reason for
the shift towards lower SNR for the plots in Fig. 3(b).

3.2 Monocomponent Signal with Non-Parametric IF in WGN

In [9], it was stated that the Hough-Radon transform based IF estimator could
be used to estimate any IF that satisfied a parametric constraint. This is true
for any IF estimation technique which relies on the Hough transform of the
TF representation such as those in [7-10].

A signal with an IF that is not easily parameterized is used for the sake of
this performance assessment. The signal is of length N = 1024, and has a
sampling rate of f; = 1Hz. The signal was constructed with an IF which could
be separated into three sections: hyperbolic frequency modulation (HFM), a
constant tone and then LFM (see Fig. 4). The real discrete, amplitude and
frequency modulated, signal used in this assessment is given by

s[n] = a[n] cos(4[n]) (23)

where the phase function is given by

2005 1(1 — 0.0017n) : 1 <n <400

d[n] = { $[400] + 270.16(n — 400) : 401 < n < 624

6[624] + 27 (0.16 + 209052 (n — 624)) (n — 624) : 625 < n < 1024
(24)
and the time—varying signal envelope by

a[n] =1+ 0.075 cos(270.00195n) (25)

1 This is analogous to the use of linear regression of observed data for improved
estimation of a known, underlying, linear function.

13
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Fig. 5. Modified B-distribution of a noisy synthetic monocomponent signal with SNR
= -9dB.

The MBD of the noise free, non—parametric IF signal is shown in Fig. 4.

Monte Carlo simulations (20 realizations with additive WGN) for varying
levels of SNR revealed that the proposed IF estimation algorithm failed to link
a component at SNR = 1dB with no preprocessing and SNR = -10dB when
using TFPF preprocessing. The MBD of one realization of the noisy signal at
-9dB is shown in Fig. 5. It can be seen that the distinct ridge following the IF
law in Fig. 4 is now severely masked by the additive WGN in Fig. 5.

Fig. 6 shows the MBD of the noisy monocomponent signal after four iterations
of the TFPF procedure. The window size for the pseudo-WVD was chosen to
be 21 samples according to [16]. The IF estimate, extracted using the proposed
algorithm, for the noise reduced signal in Fig. 6 is shown in Fig. 7.

A comparison with IF estimators based on the Hough transform was not un-
dertaken for this signal as there is no way to easily parameterize the signal
IF with sufficient accuracy. For example, if the true IF function is approxi-
mated with a 9'" order polynomial, which equates to a 10 dimensional Hough
parameter space, the minimum MSE achievable, in the noise—free case and
infinite Hough space resolution, is 6.92 x 10~5. Compare this to Table 1 which
shows the MSE for the Linked and Peak algorithms at SNR = 2dB with no
preprocessing and SNR = -9dB using TFPF preprocessing. Table 1 also shows

14



W

025 E 045 05
Frequency (Hz)

Fig. 6. Modified B-distribution of noisy monocomponent signal after four iterations
of TFPF.

Time (sample)

. . . . . . . .
0 005 01 015 02 025 03 035 04 045 05
Normalized Frequency

Fig. 7. True and Estimated IF of the monocomponent signal.

Table 1

Performance comparison of Peak and Linked algorithms with and without TFPF
preprocessing.

SNR MSE Bias Variance
Peak 2dB 1.93x10°% —86x10° 1.91x 106
Linked 2dB 79x1077 —998x107° 7.8 x 107"

Peak (TFPF) -9dB 1.07x107% —-93x107° 1.05x 107
Linked (TFPF) -9dB 5.6 x 1077 —88x10™° 55x 1077
that the Linked algorithm provides a better estimate than the Peak algorithm.

This improved performance is again attributed to the extra constraint that
component IF estimates for each time instant must have linked local peaks.

3.8 Multicomponent Signal in WGN

The multicomponent signal used in this performance assessment consists of
three components. The signal components include a LFM component, a si-
nusoidal frequency modulated component (SFM) and a hyperbolic frequency

15
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modulated component (HFM). The phase function for LFMs was presented
in subsection 3.1. The phase function for a SFM is given by

Gspm(t) = 2 fot + £ sin(27 frt + 6) (26)

where f. is the center frequency, m is the maximum variation, f,, is the sinu-
soidal modulation frequency and 6 is the phase offset of the sinusoidal modu-
lation. The phase function for a HFM is given by

dupn(t) = Z I [1+ ft] (27)

where fj is the start frequency of the HFM and f, is the hyperbolic frequency
rate.

The synthetic signal is of length N = 1024 samples and has a sampling fre-
quency of f; = 1Hz. The time support for all components was the entire signal
length. The phase functions and signal envelopes for each component are given
by:

(1) LEM:
-5
¢[n] = 2m(0.05 + 28210 _p)p
aln] = 1+ 0.075 cos(270.00195n)

(2) SFM:

[n] = 270.25n + 12.5 sin(270.002n)

aln] = 1+ 0.075 cos(270.00195n + 1)
(3) HFM:

¢[n] = 2% (1 — 3.3 x 10~*n)

a[n] =1+ 0.075 cos(270.00195n + 2.5)
Fig. 8 shows the MBD of the multicomponent signal used in this performance
assessment. It can be seen from Fig. 8 that the MBD clearly shows the three

signal components with minimal crossterms.

Monte Carlo simulations (20 realizations with additive WGN) for varying

16



XX
S RORERALIN T AR
. A{JAW&A”

I\
B WA A
2 SETE A SR
XN D

RS RSACT
0 \“/~‘._ QQ\, w'
200 N&OW

P e
o """‘”"“" e
oS A s

AN oD
ROATA A I NI =T
R I

Time signal 005 01 015 02 025 03 035 04 045 05
Frequency (Hz)

Fig. 9. Modified B-distribution of a noisy synthetic multicomponent signal with SNR
= -11dB.
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Fig. 10. Modified B-distribution of noisy multicomponent signal after four iterations
of TFPF.

levels of SNR indicated that the Linked algorithm began failing to extract the
IFs for the three components at SNR = 0dB with no preprocessing and SNR,
= -12dB with TFPF preprocessing. The MBD of one realization of the noisy
signal, with SNR = -11dB, is shown in Fig. 9. It can be seen that the clear
component ridges in Fig. 8 are now severely masked in Fig. 9.

The pseudo-WVD based iterative TFPF algorithm, repeated four times, was
applied to the noisy signal for signal enhancement. A lag window length of 21
data points was chosen. The MBD of the estimated signal from the iterative
TFPF procedure is shown in Fig. 10. It can be seen from Fig. 10 that the
signal components are now distinguishable from the reduced noise level.

Fig. 11 shows the binary image, B(t, f), obtained from the detection of local
peaks of the MBD in Fig. 10. It can be seen from Fig. 11 that many local
peaks exist in the TF representation. However, only the signal components
are linked from approximately the beginning of the signal to the end. Fig. 12
shows the estimated IFs of the linked components and the true IF of the signal
components.

A comparison with IF estimators based on the Hough transform of the TF
representation could not be made for this example as each of the signal compo-
nents exhibit different parametric functions. That is, if the TF representation

17
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Fig. 12. True and Estimated IFs of the multicomponent signal.

Table 2
Performance of Linked algorithm for noisy multicomponent signals, with and without
TFPF preprocessing.

SNR MSE Bias Variance
LFM 1dB 256 x 107 1.53 x107® 2.54 x 107°
SFM 1dB 293 x107% 4.15x107% 291 x 107
HFM 1dB 578 x107% —3.9x10™ 5.6 x107°

LFM (TFPF) -11dB 1.7x107® —43x107° 1.7x107°
SFM (TFPF) -11dB 2.0x107% 44x107° 1.99 x 1076
HFM (TFPF) -11dB 2.6 x107% —1.1x10"* 2.58 x 107°

was transformed to the Hough line space, even in the noise-free case, only
an accurate estimate for the LFM could be obtained. A comparison with the
Peak algorithm could not be made as the signal exhibits multiple components.
However, using the TFPF preprocessing, the proposed IF estimation scheme
can provide accurate estimates down to SNR = -11dB. For SNR > -11dB, the
algorithm begins failing to link the IFs of signal components. The IF estima-
tion results with and without TFPF are shown in Table 2.
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3.4 Application of IF Estimator to Newborn EEG Seizure

The multicomponent characteristic of newborn EEG was reported in [26] and
studied in detail in [13]. The number of components and the IF of signal
components are important features characterizing the newborn EEG seizure.
Extraction of this information using QTFDs has, previously, been a difficult
and time consuming task involving supervised local peak estimation using
subjective thresholding and subjective determination of the number of signal
components. However, using the proposed IF estimation scheme, this infor-
mation can be extracted automatically in an objective manner.

The newborn EEG data used in this section was recorded at the Royal Bris-
bane and Women’s Hospital in Brisbane, Australia. The raw EEG data was
sampled at 256Hz. However, the majority of spectral energy in the newborn
EEG (i.e. > 95% of spectral energy) is concentrated in the first two frequency
bands (0 and 6), which consist of frequencies between 0.4-8Hz [27]. Therefore,
the raw EEG was low pass filtered, with a cutoff frequency at 8Hz, before
being down sampled to 20Hz.

Fig. 13 shows the MBD of an epoch of noisy newborn EEG seizure. This TF
representation does not reveal any clear signal components which have been
previously documented in [13,26]. Fig. 14 shows the MBD of the enhanced
signal after the TFPF procedure. Subjective analysis, through visual inspec-
tion of the TF representation, suggests that there are two signal components.
Fig. 15 shows the results of the proposed IF estimation method. It can be
seen from Fig. 15 that two components have been extracted from the signal
and their individual IFs have been estimated. This information was extracted
automatically and did not require any supervision.

19



Filtered Signal

A He——

IR

Time (s)

3 4
Frequency (Hz)

PSD

L

Fig. 14. Time-frequency representation of noisy newborn EEG seizure epoch after
TFPF.

Component IFs

201

0 i 2 3 4 s 0 7
Frequency (Hz)

Fig. 15. IF estimates of the two component newborn EEG seizure signal.

4 Classification and Parameter Estimation of Signal Components

Classification is a very important application in signal and image processing.
For nonstationary signals, IFs of signal components are often very informative
and can be used as features in signal classification [13,26]. To show a potential
application of the proposed IF estimation technique for multicomponent sig-
nals, we propose a signal classification method based on the IF estimates of a
multicomponent signal. The classification process is composed of the following
stages: IF estimation, IF modelling, and classification of the IF based on the
estimated model parameters. The proposed classification method is applied
to both synthetic and real signals. It should be noted here that many other
applications of the proposed IF estimation technique are possible. Examples
of applications include: detection, filtering and signal synthesis. Since the first
stage of the classification process has been detailed in section 2, we now discuss
the two remaining stages.
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4.1 IF modelling

A signal component class, defined by its IF, is any set of functions [8]

C:{(>]27Tf _ ficr)d } (28)

Ypew

where f; ¢ is an IF functional model defining the class. The IF functional model
is parameterized by an L-dimensional vector, 1, where ¥ is the set of all valid
vectors for the IF class model f; . The dimension, L, of the parameter vector
is class dependent. Three examples of component classes, (LFM, SFM and
HFM), were defined earlier in section 3. The IF functional models, f; «(t) and
the parameter vectors, v, for the LEFM, SFM and HFM classes are expressed
as:

(1) LEM: firrm(t) = fo+ fit, ¥ = [fo, [:].
(2) SFM: fi,SFM( ) fC+mCOS(27Tfmt+9)a w = [fwma fmae]
(3) HEM: fZ,HFM(t) - 1+f t? w [vafT]‘

Many other classes of IF law for signal components may be defined including
quadratic, cubic, higher order polynomial and piecewise linear.

4.2 Parameter Estimation and Classification

The first step in automatic signal classification requires the formation of signal
classes based on the observed characteristics. For example, if a real signal can
exhibit J classes of IF law, the set of IF functional classes can be defined as

D = {Cv}v:1,2 ..... J (29)

The next step is to find the optimal parameter vector, ¢, (and therefore op-
timal IF function, f; ¢, (t)) for each C, € D, that fits the estimated IF, f;(t),
in a least squares sense.

The fitting of data to linear lines, and more generally polynomial functions,
using least squares fitting is a well established technique [28|. However, the
fitting of data to nonlinear models (nonlinear parameter estimation) is more
complicated. To find ¢, (and f; ¢, (¢)) for each C, € D, we have used a Large—
Scale optimization algorithm that is a subspace trust region method based
on the interior-reflective Newton method [29]. This method was chosen as it
allows for setting upper and lower bounds on the L parameter vector variables,
unlike Medium—Scale algorithms such as the Gauss—Newton and Levenberg—
Marquardt methods [30].
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Table 3

Parameter estimation results for noisy multicomponent signals

Estimate Values
Component |V | True Value | mean std

fo 0.05 0.0499 | 2.58e—4
LFM

fr 9.766e-5 9.775e-5 | 4.731e-7

fe 0.25 0.2499 | 8.725¢-5

m 0.025 0.0243 1.762e-4
SFM

fs 0.002 0.002 2.780e-4

0 0.0 -0.0129 0.0094

i _
HFM 0.3 0.3002 1.038¢e—4

fr | —3.258¢e—4 |-3.250e—4 5.697e-7

Signal components are classified using the MSE between the optimal IF para-
metric model in each class, f; ¢, [n], and the estimated IF of the component,
filn]. The signal component class is determined as

s iy {5 (7~ 1))

(30)

4.2.1 Synthetic Signals

To demonstrate the proposed classification procedure, testing was conducted
on twenty synthetic, noisy, multicomponent signals. The deterministic part of
the multicomponent signals used in this section consist of the same LFM, SFM
and HFM components used in section 3 (see Fig. 8). Twenty realizations of real
stationary white Gaussian noise with a SNR of -9dB, were each individually
added to the deterministic part to form the twenty signals.

In this demonstration, it was assumed a prior: analysis revealed J = 3 classes
of IF law were exhibited by the synthetic signal; LFM, SFM and HFM compo-
nents. In this example, accuracy of IF component classification and accuracy
of parameter estimation were tested.

The classification procedure provided an excellent IF component classification
rate of 100% in this demonstration. That is, every component was correctly
classified into either LFM, SFM or HFM. The parameter estimation results are
summarized in Table 3, showing the true value for each parameter, and the
mean and standard deviation (std) of the estimated values over the twenty
noisy signals. It can be seen from Table 3 that accurate estimates of the
parameter values for the deterministic components were acheived for each of
the noisy multicomponent signals.
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4.2.2  Newborn FEG Signal

Classification of the newborn EEG seizure components was first attempted in
|31] and further detailed in [26]. In |26,31], the newborn EEG were subjectively
classified into various forms of LFM patterns which included:

LFM patterns with quasi—constant frequency.
Short LEM patterns with quasi—constant frequency.
LFM patterns with a decreasing pattern.

Piecewise LFM patterns.

It was shown clearly in [13], however, that newborn EEG seizure has a number
of LFM patterns with increasing frequency, which was left out of the classifi-
cation set in |26, 31].

The proposed component classification procedure was applied to the newborn
EEG seizure signal. According to the subjective classification of newborn EEG
seizure components in [13,26,31, 32|, the only classes of IF law exhibited in
newborn EEG seizure are LFM and piecewise LFM (PLFM)? (i.e. J = 2).
The IF model, f;(t) for the three piece PLEM class of functions is expressed
as [32]

(03] o —

2

o)+ o o e’
! 2t— —1.Bp1 — —23p2+BO

2 2 2
(31)
where ¢ = [«, a1, ag, Bp1, Bps, By]. The parameters of the function are demon-
strated in Fig. 16. However, in our classification of the newborn EEG signal

components, both the SFM and HFM classes of functions were included (i.e.
J =4).

— 0]
It — Bp:| + 2|t — Bpo| +

filt) = —

The newborn EEG seizure component with the lowest frequency content (see
Fig. 15), referred to from here on as component one, was classified as a PLFM

2 A sufficient number of LFM pieces for approximately a 20 second period of EEG
seizure was found to be three [32]. Therefore, the three piece PLFM class of functions
was used for classification.
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component. This objective result supports the previous subjective findings
of [13,26, 31, 32]. However, the second component was classified as an SFM
component according to the proposed classification scheme. This is a new
finding. It also shows the potential of this technique for further classification
of newborn EEG seizure components, which will be utilized in future research.

5 Discussion and Conclusion

The marriage of image processing techniques and TF representations appears
highly suitable for IF estimation. Previous attempts of applying image process-
ing techniques to TF representations, |7-10], have all employed some modified
version of the Hough transform to estimate the IF and parameterize the IF
function. However, many limitations arise when using the Hough transform of
the TF representation for IF estimation. That is, a prior: knowledge of com-
ponent IF class is required for accurate IF estimation, only one class of the IF
law can be exhibited by the signal for IF estimation, and only poor IF esti-
mation can be achieved for signal components with IF laws that aren’t easily
represented by a parametric function. Hough transform-based techniques also
require threshold setting for extraction of signal components from the Hough
space. Therefore, components may be missed if the IF of the component does
not exactly follow a function represented in the Hough parameter space, or
the noise level becomes too high.

Earlier local TF peak detection—based techniques for IF estimation of mul-
ticomponent signal, such as [12], require a threshold to be set so that local
maxima caused by crossterms and noise can be ignored. It was noted in [12]
that the threshold level is application (signal) and distribution dependent and
requires a prior TF analysis of the signal to locate true components, done
manually, to define an appropriate threshold level. The component linking
procedure removes the need for setting threshold levels in the TF domain.
Therefore, the proposed IF estimation algorithm is useful in automatically
and objectively determining the number of signal components and estimating
their individual IFs. By employing TFPF for signal enhancement, it was also
shown that the proposed IF estimation algorithm can still obtain accurate es-
timates of component IFs in low SNR environments. We note that the TFPF
procedure requires oversampling of the signal for accurate filtering. This may
be a disadvantage in some real applications, particularly when the oversampled
signal is not available.

A desirable aspect of the Hough transform-based IF estimation techniques
for some is the ability to parameterize the IF function. Once again, however,
accurate parameterization can only occur for multicomponents that are from
the same class of functions. In this paper, we proposed a method, based on
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linear and nonlinear least squares data—fitting, which allows for: 1) the classi-
fication of multicomponent which belong to differing classes and 2) accurate
parameter estimation of the individual components.

The proposed method of IF extraction presented in this paper is generic and
may be applied to any TF representation. In this paper, the MBD was chosen
as it provides a high resolution, reduced interference TF representation.

In summary, a TF based technique for multicomponent IF estimation which
incorporates simple, yet effective, image processing techniques was developed
in this paper. The technique overcomes many of the limitations associated with
other TF based multicomponent IF estimators. A method for signal compo-
nent classification and parameter estimation, incorporating the proposed IF
estimation technique, was also presented. The proposed classification proce-
dure may be used in many real applications such as newborn EEG seizure
classification.
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