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Abstract

The possible worlds semantics is a fruitful ap-
proach used in Artificial Intelligence (AI) for both
modelling as well as reasoning about knowledge in
agent systems via modal logics. In this work our
main idea is not to model/reason about knowledge
but to provide a theoretical framework for knowl-
edge assessment (KA) with the help of Monatague-
Scott (MS) semantics of modal logic. In KA ques-
tions asked and answers collected are the central el-
ements and knowledge notions will be defined from
these (i.e., possible states of knowledge of subjects
in a population with respect to a field of informa-
tion).

Keywords: Modal & Epistemic Logics for Question Answer-
ing Systems, Question processing: interpretation models.

1 Introduction
Modelling and reasoning about knowledge in agent systems is
an active research area within the AI community [Fagin et al.,
1995; Huth and Ryan, 2000]. It is often the case that the log-
ical tool used to represent and reason about knowledge is that
of modal logic1 with the underlying possible worlds [Hin-
tikka, 1962] model. There is also an interpreted system (IS)
model which aims to give a computational flavour to S5 in
terms of the states of computer processes [Halpern and Zuck,
1992; Fagin et al., 1995] and this in turn makes it more suit-
able in one of the major application areas of knowledge rea-
soning namely Multi-Agent Systems (MAS). Recent works
show that the IS model can also be used for the specification
of cognitive attitudes other than knowledge like belief, desire
and intention (BDI) so that techniques like symbolic model
checking can be used to verify the different agent properties
inherent in the specification [Su et al., 2005]. In this paper
we deviate from the works above in the sense that our main
idea is not to model/reason about knowledge but to provide
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1The modal logic KT45 (also called S5) is usually used to reason
about knowledge.

a framework for knowledge assessment using some tools and
techniques in modal logic.

To make the idea of knowledge assessment precise con-
sider the list of questions given in Table1. It is common
practice that for assessing a student’s knowledge in elemen-
tary mathematics question formats as in Table1 is presented
and is followed by a written examination. Thereafter the stu-
dents answers are collected and finally the examiner returns
an appreciation which usually boils down to a single num-
ber or percentage. As pointed out in [Doignon, 1994] such a
testing procedure provides limited information because pro-
vided that a student gives correct answers to questions a, c
and e it only shows a numerical appreciation (60 percent)
of his/her work. What it hides is the information related to
the student’s knowledge/mastery in performing multiplica-
tion and deficiency in division operation. Moreover, the re-
sponses (answers) also indicate that there is some dependency
among the questions. For instance, question e (a multidigit
multiplication) in table 1 relies on elementary multiplication
tested in question a. Consequently from a correct answer to
question e we should infer a correct answer to question a.
Obtaining and exploiting the most precise information from
an assesment procedure is particulary needed in programmed
courses as it reveals the weakness as well as strong points of
the student’s preparation and hence advices for further study
can be inferred. Similarly any computer assisted instruc-
tion system should entail a module for uncovering the user’s
knowledge. We take motivation for this work from the knowl-

a 2×378 = ????
b 322÷7 = ????
c 14.7×100 = ????
d 6442÷16 = ????
e 58.7×0.94 = ????

Table 1: An Excerpt of a test in Mathematics

edge structure (KS) theory as outlined in [Doignon, 1994;
Albert and Lukas, 1999]. Knowledge structure theory pre-
supposes that the knowledge of an individual in a particular
domain of knowledge can be operationalised as the solving
behaviour of that individual on a domain specific set X of
problems. If the solution result for each problem is binarily
coded by true/false, then the knowledge state of an individual
in the given field of knowledge can be formally described as
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the subset of problems from X he/she is capable of solving.
To tackle the problem of solution dependencies that can exist
between problems of a certain field of knowledge KS theory
employs the concept of a surmise system. The idea is to asso-
ciate each problem x ∈ X with a family of subsets of X called
clauses, with the interpretation that, if a person is capable of
solving x then he/she is capable of solving all problems in
at-least one of these elements.

In this work we describe a theoretical framework based on
the possible worlds model to capture the main ingredients of
KS theory as mentioned above which in turn can be used for
Knowledge Assessment. Since our main aim is with respect
to the assessment of knowledge we need to have a definition
of knowledge that can fit in with this intuition. Hence, instead
of defining knowledge as truth in all possible worlds, which is
the common interpretation given for knowledge models based
on possible worlds semantics, an agent’s knowledge is explic-
itly described at a state/(in our case with respect to a question
q) by a set of sets of states (set of prerequisites for the ques-
tion q). In other words, our possible worlds framework for
knowledge assessment is based on Montague-Scott (MS) se-
mantics rather than the usual Kripke semantics.

In the comming sections we briefly discuss the knowledge
structure theory along with surmise systems and outline the
technical apparatus of MS-structures. Then we show how
MS-strucutres can be used as a tool for Knowledge Assess-
ment and conclude the paper with a discussion.

2 Knowledge Structures, Surmise Systems
and MS-models

As mentioned in the previous section a knowledge structure
consists of a finite set Q together with a collection K of sub-
sets of Q wherein the elements of Q are the questions and the
members of K are the knowledge states. For example, as-
sume that the set of questions in Table (1) is given for a test.
Now, any student who took the test is characterised by the
subset of questions he/she correctly answered and this sub-
set constitutes his/her knowledge state. So for instance, we
can have K1 = {a,b,c}, K2 = {d}, K3 = /0 representing
respectively the knowledge states corresponding to three stu-
dents. What we can infer from the knowledge states is that
the first student gave correct responses to questions a, b and
c whereas the last student to none at all. Similarly one can
come up with a collection K of knowledge states represent-
ing all possible knowledge states by observing a population
of students as given in (1).

K = { /0,{a},{d},{a,b,c},{a,d,e},{b,c,d,e},
{a,b,c,d,e}}

(1)
It should be noted that not any subset of Q needs to be a
knowledge state as solution dependencies could exist among
the members of the set Q. Therefore K comprises of all
those subsets of Q which constitutes the set of all empirically
expectable solution patterns. Also, from (1) it can be seen
that questions b and c belong exactly to the same knowledge
states, i.e., {a,b,c} and {b,c,d,e}. Hence as mentioned
in [Albert and Lukas, 1999] one can say that b and c de-
fine the same notion. But this is not the case for questions b

and e because they are disinguished by the knowledge state
{a,b,c} and this means b and e test different skills. As
pointed out above solution dependencies can exist between
problems of a certain field of knowledge. In our case ques-
tion e in Table1. relies on question a and hence from a correct
response to question e we should infer a correct response to
a, i.e., we say that we surmise mastery of question a from
mastery of question e. In general we want to infer from the
knowledge of one question the complete knowledge of at least
one set of questions among some list of sets. We call these
sets the clauses for the original question q. For example let
Q denote the set of questions in table 1 and ν a mapping that
associates to any element q inQ a non-empty collection ν(q)
of subsets of Q as given in Figure1. Here question a has only

1. ν(a) = {{c}} 2. ν(b) = /0 3. ν(c) = /0
4. ν(d) = {{a,c},{b}} 5. ν(e) = {{a,b,c}}

Figure 1: Solution dependencies for the questions in Table1.

one clause which is that of c and question b has the empty set
as its only clause. What this means is that there is only one
way to know question a which is through the acquisition of
question c while there is no prerequisite for b.

Definition 1 A surmise system on a finite set Q is a mapping
ν that associates to any element q inQ a nonempty collection
ν(q) of subsets of Q and satisfies the following conditions;

1. Any clause for question q contains q

2. If q′ ∈ C, with C a clause for question q, there exists
some clause C′ for q′ satisfying C′ ⊆C.

3. Any two clauses for question q are incomparable in the
sense that neither is included in the other.

We denote a surmise system by (Q,ν).

2.1 MS/Neighbourhood Semantics
Montague-Scott semantics, also known as Neighbourhood
semantics is considered the most general kind of possible
worlds semantics in the sense that it is compatible with retain-
ing the classical truth-table semantics for the truth-functional
operators. In this section we outline the main ingredients of
neighbourhood semantics needed to develop a framework for
knowledge assessment.

Definition 2 A neighbourhood model is a structure

M= 〈W,π,ν〉

where W is a set of worlds and π(w) is a truth assignment to
the primitive propositions for each state w ∈ W. Intuitively
π(p) = {w1,w2} represents the fact that p is true at w1,w2
and false at W\{w1,w2}. ν(w) is a mapping from W to sets
of subsets of W, i.e., ν : W→℘(℘(W)). 〈W,ν〉 is called a
neighbourhood frame.

The basic idea of this definition is that each world w of W
has associated with it a set ν(w) of propositions that are nec-
essary at w. Since a proposition in possible worlds semantics



is a subset of W2 the set of propositions necessary at w, ν(w),
is a set of subsets of w. There are no assumptions about ν ex-
cept that it is a function from W→℘(℘(W)) and ν(w) may
be any set of propositions including the empty set. When
interpreted in terms of knowledge in agent-systems the mem-
bers of ν(w) can be considered as the propositions an agent
knows. We will talk more about this knowledge interpretation
in the next section. Inorder to state the truth conditions of a
neighbourhood model we need to take care of the definition
of a truth set.
Definition 3 The truth set,|| A ||M, of the formula A in the
modelM is the set of worlds in M at which A is true; formally

|| A ||M= {w in M :M,w |= A}
Definition 4 (Truth Conditions) Let w be a world in a model
M= 〈W,π,ν〉.
• M,w |=2A ⇔|| A ||M∈ ν(w)

• M,w |=3A ⇔ (W− || A ||M) 6∈ ν(w)
Example 1 Let W = {a,b,c}, π(p) = {a,b},π(q) = {b,c}
and ν(a) = {{a,b,c},{b},{a,c}}, ν(b) = {{a},{b},{c}}
and ν(c) = { /0,{a}}
be a neighbourhood modelM according to Definition 2. Then
some of the formulae that are satisfied by M are
M,a |=2> (since || > ||M= W = {a,b,c})
M,a |=2(p∧q) (since || p∧q ||M= {b})
M,b |=2(p∧¬q) (since || p∧¬q ||M= {a})
M,b 6|=2> (since W 6∈ ν(b))
M,c |=2⊥ (since || ⊥ ||M= /0)

3 Assessing Knowledge
In this section we show how to use the technical apparatus of
Neighbourhood models as outlined above for knowledge as-
sessment. We write the modal connectives as K to emphasise
the knowledge aspect. Initially we do not want to bind K with
any properties but just as a replica of the modal operators.

Consider a neighbourhood model M = 〈W,π,ν〉 where
W = {a,b,c,d,e} be the set of questions as given in Table1
and ν be as in Figure. 1. Let π be given as follows

π(∗) = {a,c}, π(÷) = {b}
By π(∗) = {a,c} we mean that multiplication is true/holds
for questions a and c. For question e this need not be the case
because to solve e one needs the knowledge of both multipli-
cation and division. Similar argument holds in the case of
π(÷) = {b}. Now we can say that a model M and question
q satisfies the knowledge of multiplication if and only if the
truth set of multiplication is in the list of sets related to ques-
tion q. Formally

M,q |= K(∗)⇔|| ∗ ||∈ ν(q) (2)
To give an example if we substitute question a from Table 1.
in place of q we get

M,a 6|= K(∗) (since || ∗ ||M 6∈ ν(a)) (3)

2In possible worlds semantics (any kind) a proposition is identi-
fied with a set of possible worlds.

because || ∗ ||= {a,c} and {a,c} 6∈ ν(a). From a knowl-
edge assessment perspective (3) has much to offer. For in-
stance, suppose that we have a collection K of knowledge
states as given in (1) in Section 2. where we have a set {a}.
Then (3) shows the incomplete knowledge of a student with
respect to multiplication. In other words (3) helps in assess-
ing a student’s knowledge in multiplication with respect to
(from the viewpoint of) the answer set provided by him/her.
In this case we can assess that a correct response to question
a is not enough for a student to solve (have complete knowl-
edge of) other questions related to multiplication. In a similar
manner from (3) we can also reason about a student’s lack of
knowledge in division because

M,a 6|= K(÷) (since || ÷ ||M 6∈ ν(a)).

It should be kept in mind that it is possible to make the model
M satisfy certain conditions so as to fit in with the notion of
a surmise system as outlined in the previous section. For in-
stance, the first item of Definition 1 generalises the reflexivity
condition for a relation and we will show later on how to give
such conditions for a neighbourhood model M. Now, let us
take d and repeat the same process. This time we can see that

M,d |= K(∗) (since || ∗ ||M, i.e.,{a,c} ∈ ν(d)) (4)

holds which tells us that a student who has provided the an-
swer set d knows or have mastered multiplication. From (4)
we can also infer

M,d |= K(÷) (since || ÷ ||M, i.e,{b} ∈ ν(d)) (5)

which shows that a student who has provided the answer set
d knows division. At the same time from (4) and (5) we get

M,d 6|= K(∗∧÷) (|| ∗∧÷ ||M, i.e,{a,b,c} 6∈ ν(d)) (6)

which tells us that from answer set d one cannot assess
the knowledge of both multiplication and division. For in-
stance, from Figure1 it can be seen that question d can
be mastered along two different approaches, one implying
the mastery of the sole question b, the other requiring the
mastering of questions a and c. In other words, accord-
ing to our model, for a student to solve question d he/she
needs to know multiplication or division and not both. (6)
shows exactly this and more in the sense that it avoids
the problem of logical omniscience (LO)3 [Hintikka, 1962;
Moreno, 1998] which plague knowledge models based on
possible worlds. Now let us consider e;

M,e |= K(∗∧÷) (|| ∗∧÷ ||M, i.e,{a,b,c} ∈ ν(e)) (7)

(7) shows the mastery/knowledge of a student in multiplica-
tion and division with respect to question e or in other words
a student who has provided the answer set e knows both mul-
tiplication and division. There are two main reasons for hav-
ing such an assessment procedure; 1) It is usually the case that
in an oral examination teachers strongly reduce the number of

3LO usually refers to a family of related closure conditions. In
the case of (6) we avoid closure under conjunction, i.e., the condition
that if an agent i knows both ϕ and ψ , then agent i knows ϕ ∧ψ .



questions by making inferences from the collected answers
and 2) because of 1 they can specifically select the next ques-
tion. These two features also show the superior efficiency of
oral testing over written testing. Any good automated pro-
cedure should encompass these features and exploit them to
minimise the test duration. Our aim in this paper is to give
a theoretical model based on modal logic to account for the
above mentioned features. Of course there are other mod-
els (probabilistic models) that can account for such an assess-
ment proceudre but the main idea here is to show the usability
of modal logic as a tool for knowledge assessment.

3.1 Models Satisfying certain conditions
So far we have been trying to build a framework based on
modal logic for knowledge assessment so as to decide what
formulas should be valid for the knowledge reading of 2 (i.e.
when we interpret 2 to be a modality representing knowl-
edge). We did not impose any constraints on the model M.
Since we want to relate our knowledge assessment model
with that of a surmise system we need to make sure that our
model satisfies conditions given in Definition1. In this sec-
tion we show how to achieve this. The following conditions
can be given for items 1, 2 and 3 of Definition1.

1. X ∈ ν(w)⇒ w ∈ X (reflexivity condition)
2. X ∈ ν(w)⇒ {w′ ∈W : X ∈ ν(w′)} ∈ ν(w) (transitivity

condition)
3. ∀X ,Y ∈ ν(w),X 6= Y ⇒∃x,y : x ∈ X ,x /∈ Y,y ∈ Y,y /∈ X

(Any two clauses are incomparable)
It should be kept in mind that given a function ν : W→℘(W)
it is always possible to define a function f : ℘(W)→℘(W)
such that f (X) = {w : X ∈ ν(w)}. In this manner we can
define every function ν of Definition 2 in terms of a function
like f as follows;

w ∈ f (X)⇔ X ∈ ν(w) (8)

Hence truth conditions for 2A in terms of f can be given as

M,w |=2A ⇔|| A ||M∈ ν(w)⇔ w ∈ f (|| A ||M), i.e.,
||2A ||M= f (|| A ||M)

The corresponding model conditions using (8) for reflexivity
( f (X) ⊆ X) and transitivity ( f (X) ⊆ f ( f (X)) is much more
concise and easy to use. This alternate characterisation of ν-
models is nothing more than a notational variant and should
not be seen as a new model. A question which naturally
comes to mind then is why not define conditions like reflex-
ivity, transitivity etc. before hand on the set of questions so
as to have a relational model (A binary relation on the set
of questions so as to formalise the surmise idea). rather than
constructing a surmise system as discussed in the previous
sections. One reason for not adopting a relational model as
pointed out in [Doignon, 1994] is that the knowledge struc-
ture associated to a surmise relation is closed under intersec-
tion and union whereas that of a surmise system is closed
under union alone. Put in other words, if two students char-
acterised by their knowledge states K and K′ meet and share
what they know they will both end with the union K ∪K′ as
their common knowledge state. In the case of intersection

similar motivation doesn’t exist and the only argument that
could be given is that the two students would decide to re-
tain their common knowledge, i.e., K ∩K′ which according
to [Doignon, 1994] is weak because cognitive development
is considered to be cumulative over time. And from a modal
logic point of view we can avoid the problem of LO which
as pointed out earlier is not a good property to have as far as
knowledge assessment is concerned. Also, in the relational
model the accessibility relation must be given before defining
satisfiability in a world because the satisfiability of a formula
containing a modal operator is defined in terms of the acces-
sibility relation. We can avoid this using the MS-models.

4 Discussion
We have outlined a modal logic based approach for knowl-
edge assessment where questions asked and answers col-
lected form the main ingredients and knowledge notions are
defined from these. Our approach is different when com-
pared to other modal logic theories of knowledge in Artificial
Intelligence where modelling/reasoning about knowledge is
the main focal area. The current work is in the preliminary
stages and lot needs to be done. We have only outlined the
syntax and semantics of our framework and have completely
neglected the multi-agent aspect. What we would like to have
ideally is to efficiently uncover, given a student in the popula-
tion, which member of K represents his/her knowledge state.
From a multi-agent perspective we can think of modifying ν

to νi where i represents an agent and assign the propositions
he/she knows. But in the case of knowledge assessment it is
not that simple because we cannot assign randomly the ques-
tions a particular agent/student knows as the assessment is
done based on the questions asked and answers collected.
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