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Abstract— In stream authentication protocols used for large-
scale data dissemination in autonomuous systems, authentication
is based on the timing of the publication of keys, and depends
on trust of the receiver in the sender and belief on whether
an intruder can have prior knowledge of a key before it is
published by a protocol. Many existing logics and approaches
have successfully been applied to specify other types of authen-
tication protocols, but most of them are not appropriate for
analysing stream authentication protocols. We therefore consider
a fibred modal logic that combines a belief logic with a linear-time
temporal logic which can be used to analyse time-varying aspects
of certain problems. With this logical system one is able to build
theories of trust for analysing stream authentication protocols,
which can deal with not only agent beliefs but also the timing
properties of an autonomous agent-based system.

I. I NTRODUCTION

Multi-agent systems, typically autonomous real word sys-
tems, need to employ application specific protocols for trans-
ferring data, such as video, audio and sensory data, among
agents. Such protocols are often different from the standard
class of authentication protocols previously analysed by many
researchers using belief logics and/or model checking tech-
niques [3], [4], [5], [7].

As an example, we consider the TESLA (Timed Efficient
Stream Loss-tolerant Authentication) protocol, a multicast
(broadcast) stream authentication protocol for large-scale data
dissemination in autonomous systems, developed by Perriget
al. [17]. In TESLA, authentication is based on the timing of the
publication of keys and the indirect relation of each new keyto
an original key commitment. In fact, any stream authentication
protocol involves not only a key management scheme but also
its critical use of timing. In an autonomous system whose
authentication is based on TESLA, the process for verifying
data packets received to be authentic also depends on trust of
the receiver in the sender, and belief on whether an intruder
can have prior knowledge of a key before it is published by
the protocol.

Many different logics have successfully been applied for
specifying and verifying aspects of some other types of
authentication protocols [3], [5], [15]. However, most of these
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logics are not appropriate for stream authentication protocols
because they lack the ability for modelling and reasoning about
the evolution of the system in which they are applied (that is,
the notion of dynamic change). It has also been understood that
any logical system used for modeling active agents should be
a combined system of logics of knowledge, belief, time and
norms [6] since these are the essential concepts to be reasoned
about. In order to analyse stream authentication protocolsit is
necessary to have a logic that can satisfactorily deal with all
aspects of those concepts. Towards achieving such a goal, we
consider a fibred logic, which combines a belief logic with a
linear-time temporal logic. The fibred logic developed in this
paper has more expressive power than a temporalised belief
logic such as TML+ [11] does. It allows us to express the
behavior and beliefs of an agent as temporal propositions,
which are often needed for analysing stream authentication
protocols.

In analysing a communication protocol, we accept the
fact that honest agents would follow the prescribed steps of
the protocol correctly, but also that an intruder may have
the ability to interfere with it. With the logical framework
proposed in this paper, we encapsulate such assumptions in
notions of trust and represent them by axioms (rules). These
axioms, together with the logic, form a theory, which we calla
theory of trust[9], [13]. Such theories can deal with not only
agent beliefs but also the timing properties of autonomous
agent-based systems, and they provide a basis for analysing
stream authentication protocols.

With the aim of providing solutions based on logic for
analysing communication protocols for autonomous agent-
based systems, we are motivated to investigate methods for
formalizing an authentication protocol with theories of trust,
and to develop techniques for reasoning about security prop-
erties that such a protocol may satisfy.

In the following, we first introduce TESLA and discuss the
fibred logic. We then consider how to establish theories of
trust to specify the behaviour of the TESLA protocol in the
fibred logic. A theory of trust is modular, with each module
providing a collection of rules that specifically describe some
specific aspect of an authentication protocol. We consider the
mechanization of a theory for TESLA with a general send-
receive mode, and discuss the correctness of this protocol.
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Finally, we conclude the paper with a brief discussion.

II. T HE TESLA PROTOCOL

Adopting the notation in the TESLA protocol [17], when we
talk about the protocol,S, R andI are always used to denote
the sender, the receiver and the intruder, respectively. Wealso
use the tuple〈X,Y 〉 to denote the concatenation ofX and
Y . A streamα is divided into chunksMi (called messages),
so we may haveα = 〈M1,M2, . . . ,Ml〉. Each messageMi

is sent in a packetPi, along with additional authentication
information. A message authentication code (MAC) is derived
by applying an authentication scheme, together with a secret
key, to a message.

Perrig et al. [17] propose five schemes for the TESLA
Protocol. We consider scheme I, and simply call it the PCTS
(Perrig-Canetti-Tygar-Song) scheme. Within PCTS, the sender
issues a signed commitment to a key that is only known
to itself. To send messageMi, the sender uses that key to
compute a MAC on a packetPi, and later discloses the
key in packetPi+1, which enables the receiver to verify
the commitment and the MAC of packetPi. A successful
verification will imply that packetPi is authenticated and
trusted.

In the notation proposed by Broadfoot and Lowe [2], we
formulate the sequence of message packets as follows:

P0r. R → S: 〈nR〉
P0s. S → R: 〈{f(K1), nR}SK(S)〉
P1. S → R: 〈〈M1, f(K2)〉,MAC (K ′

1, 〈M1, f(K2)〉)〉
...

Pi. S → R: 〈Di,MAC (K ′

i, Di)〉 (for all i ≥ 2)
...

wherenR is a nonce (that is, number used once) generated by
the receiverR, andDi = 〈Mi, f(Ki+1),Ki−1〉 for all i ≥ 2,
K ′

j = f ′(Kj) for all j ≥ 1, and f and f ′ are two different
pseudo-random functions.

Apart from the initial messagesP0r , P0s andP1, any packet
Pi has the standard form〈Di,MAC (K ′

i, Di)〉 for all i ≥ 2
[2]. To send messageMi, the sender first picks a fresh random
key Ki+1 to construct packetPi = 〈Di,MAC (K ′

i, Di)〉,
then sends the packet to the receiver. When the packetPi

is received, the receiver cannot verify the MAC immediately,
since it cannot reconstructK ′

i without knowingKi, which
is contained in packetPi+1. Therefore, only oncePi+1 is
received, the receiver is able to verify the MAC. Packet
Pi+1 = 〈Di+1,MAC (K ′

i+1, Di+1)〉 disclosesKi and allows
the receiver first to verify thatKi is correct (f(Ki) equals the
commitment which was sent inPi−1); and second to compute
K ′

i = f ′(Ki) and check the authenticity of packetPi by
verifying the MAC ofPi.

In analysing the TESLA protocol, we make the following
assumptions:

• The sender is honest and works correctly, following
all requirements, including timing requirements, of the
protocol.

• The receiver accepts packetP1 as authentic only when
it believes the key commitment and the MAC of the
packet have been successfully verified. A streamα =
〈M1,M2, . . . ,Ml〉 is considered valid iff the receiver
accepts all messagesM1,M2, . . . ,Ml as authentic, i.e.,
all packetsP1, P2, . . . , Pl are successfully authenticated.

• The intruder is assumed to have the ability to capture,
drop, resend, delay, and alter packets, can access to a fast
network with negligible delay, and can perform efficient
computations, such as computing a reasonable number
of pseudorandom function applications and MACs with
negligible delay. The intruder may be able to launch two
kinds of attacks:weak attacksandstrong attacks. A weak
attack allows the intruder to inject new packets, but not
delete the packets sent by the sender. Astrong attack
allows the intruder the full control of the channel, and so
he can add, replace, or delete any packets. Nonetheless,
the intruder cannot invert a psedorandom function with
non-negligible probability. Also the intruder can only
create a fake packetP ′

i againstPi when it has received
the packet that discloses keyKi.

The security property for the protocol we need to guarantee
is that the receiver does not believe any packetPi to be
authenticated unless theMi it contains was actually sent by
the sender. To prevent any successful attack by an intruder,the
receiver only needs to be sure that all packetsPi arrive safely
such that the intruder has no time to change the message and
commitment inPi and forge the subsequent traffic. Perriget
al. therefore give a security condition, which we re-state as
follows:

Statement 1 (security condition [17]):
A data packetPi arrived safely, if the receiver can unambigu-
ously decide, based on the synchronized time, that the sender
did not yet send out the corresponding key disclosure packet
Pj , i.e., the timing conditionArrTi < SenTj holds, where
ArrTi stands for the arrival time of packetPi, and SenTj

stands for the time when packetPj is sent out.
Statement 2 indicates that the security of a TESLA scheme

does not rely on any assumption on network latency, but only
on the security condition.

Statement 2 (secure schemes):A TESLA scheme is secure
if the security condition holds for all runs of the protocol
scheme, given the assumptions above.

To analyse the TESLA protocol and show a particular
scheme is secure, we first need a formal framework for
formalizing the protocol. As we have mentioned earlier, we
consider fibring of a belief logic with a temporal logic.

III. T HE FIBRED LOGIC

We combine, using the fibring technique, the Typed Modal
Logic (TML), a variant of the modal logic KD of beliefs [11],
with the Simple Linear-time Temporal logic (SLTL) which
is suitable for specifying events that may run on different
clocks (time-lines) of varying rates of progress [10]. We show
that in the resulting fibred belief logic (FL) we can specify
and reason about not only agent beliefs but also the timing



properties of a system effectively. With this logical system
one is also able to build theories of trust for the description
of, and reasoning about, authentication protocols for/in multi-
agent systems. The details of the fibring construction for TML
and SLTL is given elsewhere [12]. This section gives a more
informal and intuitive introduction to the fibred logic and its
constituents for completeness.

The fibred logic (FL for short) has two classes of modal
operators: (1) belief operators; (2) temporal operators. The
belief operator,Ba, is intended to denote “agenta believes
that”. The belief operators are those of TML whereas the
temporal operators are those of SLTL. SLTL is a linear-time
logic where the collection of time points is the set of natural
numbers with its usual ordering relation<. It has two temporal
operators,first and next, which refer to the initial moment
and the next moment in time respectively [10]. The meaning
of SLTL formulas are defined with respect to given local
clocks (subsequences of a global clock). The global clock is
the increasing sequence of natural numbers, i.e.,(0, 1, 2, . . .)
and a local clock (or simply, a clock) is defined as an infinite
subsequence of the global clock.

Using the temporal operators of SLTL, the assertions such as
“Bob has the key initially” and “Alice has the key tomorrow”
can be expressed by formulas “first has(bob, key)” and
“next has(alice, key)” respectively. Table I gives an intuitive
explanation of the interpretation of the temporal operators of
SLTL.

Formula Truth value
A T T F F T F T F . . .

first A T T T T T T T T . . .
next A T F F T F T F . . . . . .

Time t0 t1 t2 t3 t4 t5 t6 t7 . . .

TABLE I

INTERPRETATION OF TEMPORAL OPERATORS(A IS A FORMULA; T

REPRESENTS VALUEtrue AND F VALUE false)

In the table, suppose thatA is the formulahas(bob, key)
and ck = (t0, t1, t2, t3, t4, t5, t6, t7 . . .) is a given local clock
where eachti is a moment on the clock. Suppose that the
meaning of formulaA over the clockck is as given in the
first line of Table I (whereA is true at timest0 and t1 and
false at timest2 and t3 and so on). Since the initial time of
ck is t0, the meaning of a formula of the formfirst A at any
given moment in time is defined by the meaning ofA at time
t0 (e.g., true in the above example). The meaning of a formula
of the formnext A at any given moment in timeti is defined
by the meaning ofA at time ti+1; for example, at timet3 A
is false, butnext A is true becauseA is true at timet4.

More formally, we have the following definition of the
semantics of atomic formulas of SLTL:

Definition 1 (time models):A time model for the logic
SLTL has the form c = 〈C,<, π(c)〉, where C =
(t0, t1, t2, . . .) is a clock,< is the usual ordering relation
overC, andπ(c) is an assignment function that gives a value

π(c)(t, q) ∈ {true, false} for any any time pointt in C and
any atomic formulaq.

Then the semantics of the temporal operators of SLTL are
given as follows:

• c, ti |= first ϕ iff t0 |= ϕ.
• c, ti |= next ϕ iff ti+1 |= ϕ.
• satisfaction in the model〈C,<, π(c)〉 is defined as satis-

faction at some time point onC.
Let us assume that there aren agentsa1, . . . , an and there

are n corresponding modal operatorsBa1
, . . . ,Ban

in the
logic, whereBai

(1 ≤ i ≤ n) stands for “agentai believes
that”. A classical Kripke model[8] for TML is defined as a
tuple m = 〈S,R1, . . . , Rn, π〉, whereS is the set of states
or possible worlds; and eachRi, i = 1, . . . , n, is a relation
overS, (called thepossibility relationaccording to agentai),
and is defined as follows:Ri is a non-empty set consisting
of state pairs(s, t) such that(s, t) ∈ Ri iff, at state s,
agentai considers the statet possible (or accessible); and
π is the assignment function, which gives a valueπ(s, q) ∈
{true, false} for any s ∈ S and atomic formulaq. Formula
ϕ is satisfiable in the modelm if there existss ∈ S such that
m, s |= ϕ.

Figure 1 gives an intuitive explanation of the interpretation
of belief operators of TML. Recall thatRi is the possibility
relation for agentai. In other words, given statew, agent
ai considers all the statesw1, w2, . . . , wn possible. Then a
formula of the formBai

A is true at a given statew if and
only if A is true at all states accessible fromw with respect
to the relationRi (statew may or may not be accessible from
w itself).
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Fig. 1. Interpretation of belief operators (Ri is the possibility relation for
agentai; w1, . . . , wn are the states inS that are accessible fromw)

In earlier work, we proposed a temporalised belief logic
called TML+ [11], It also has these two classes of modal
operators. However, there are certain restrictions on the use
of temporal and belief operators, because of the hierarchical
combination of belief and temporal logics used. There the
temporal logics SLTL is plussed onto the belief logic TML
in such a way that temporal operators can never be within
the scope of a belief operator in TML+. Hence in TML+,
we cannot express a statement asserting that some agent
believes an event to happen at some time, e.g., we can have
the formulafirst Bjohn holds(bob, k), but can not have the



formula Bjohn first holds(bob, k). The latter formula could
be used to express the assertion thatjohn believes that at the
initial time bob holds the keyk. Such assertions are often
needed in analysing stream authentication protocols, so we
therefore consider a more powerful combination technique
called fibring [6], which treats temporal operators and belief
operators equally.

In FL, both the assertionsfirst Bjohn holds(bob, k) and
Bjohn first holds(bob, k) are legal formulas. The first formula
means that at the initial moment time John believes that
Bob has the keyk; the second formula means that John
believes that at the initial moment time Bob has the keyk.
FL has stronger expressive power than TML+ , since these
operators can occur in any order in formulas, e.g., we may
have next Balice first next Bjohn holds(bob, k), which
means that “at the next moment Alice believes that at the
next moment after initial time John believes that Bob has the
key k.”

The formulas of FL may contain any number of applications
of the temporal operators and/or the belief operators without
any restrictions. To be able to interpret a formula of TML
whose main operator is a temporal operator, we need to use
the meaning of the temporal operators with a time reference.
To be able to interpret a formula whose main operator is a
belief operator, similarly, we need to use the meaning of the
belief operators with a state reference. This will require us to
move between time references and state references freely. The
fibring method [6] is used to interweave the semantics of the
constituent logics using fibring functions (that move context
between time references and state references) in such a way
that any formula of FL is interpreted in its proper context.

The discussion of the fibred semantics in the case of the
Kripke models for TML with time models for SLTL can
be laid out in three levels: using a single time model, or
considering a set of time models with the same clock, or based
on different clock models. In this paper, we assume the single
time model in which all formulas are defined on the same
(global) clock. We refer the reader to the literature for the
technical details of how the two logics TML and SLTL have
been fibred [12].

In the following, we discuss the axioms and rules of
inference of TML that may be used in reasoning about trust
theories for authentication protocols in agent-based systems.

The axiom set of FL consists of the following axiom
schemata. LetO = {B1, . . . ,Bn,first,next} be the set of
modal (temporal or belief) operators of BL.

A0. all axioms of classical first-order logic.
A1. 5(ϕ→ ψ) ∧5ϕ→ 5ψ, for all 5 ∈ O.
A2. 5(ϕ ∧ ψ) ↔ (5ϕ) ∧ (5 ψ), for all 5 ∈ O.
A3. ∀X(5ϕ(X)) → 5(∀Xϕ(X)), for all 5 ∈ O.
A4. Bi(¬ϕ) → ¬(Bi ϕ) for all i (1 ≤ i ≤ n).
A5. first(¬ϕ) ↔ ¬(first ϕ).
A6. next(¬ϕ) ↔ ¬(next ϕ).
A7. first(first ϕ) ↔ first ϕ.
A8. next(first ϕ) ↔ first ϕ.

The rules of inference in the logic FL include:

R1. Fromϕ andϕ→ ψ infer ψ. (Modus Ponens)
R2. From∀Xϕ(X) infer ϕ(Y ). (Instantiation)
R3. Fromϕ(X) infer ∀Xϕ(X). (Generalisation)
R4. Fromϕ infer 5ϕ for all 5 ∈ O. (Necessitation)

The soundness for the logic FL depends on the soundness
theorems for belief logic and SLTL, and is not difficult to
prove. The completeness theory for FL can be proved by the
techniques used in [6]; we omit the details.

IV. FORMALIZING AUTHENTICATION PROTOCOLS

For analysing a scheme of the TESLA protocol, we first
need to establish a theory that describes its behavior or
functions of the protocol within the scheme. To gain such a
theory, we first analyse the behavior of the protocol (within,
for example, the PCTS scheme), identify various aspects of
the behavior of the protocol and set them into an appropriate
module, and finally transfer informal descriptions of all these
aspects into formulae.

With the purpose of making the logic FL appropriate for
specifying the protocol, we restrict the time model of FL to
guarantee that the time interval between any moment and its
next moment in time has the same length, 1 unit of time, and it
matches the special timing property that the TESLA scheme
satisfies:the sender sends packets at regular time intervals.
The assumption makes our discussion simple without harming
its correctness.

We set a theory for specifying (the PCTS scheme of)
TESLA consisting of four modules,Msr (send-receive
mode specification), Mmk (message receiving and knowl-
edge gained), Mms (message sending), and Mar (authenti-
cation rules). Each module consists of several axioms (axiom
schemata). We assume the basic types include

A,B, S,R, I: Agents
X, Y,D: Messages
K,K1,K2: Keys

In the following, we consider three modes, denoted PCTS-
0, PCTS-1, and PCTS-2 respectively, as examples, and present
the theories that specify these particular schemes of TESLA.



A. A Theory for the Scheme PCTS-0

Send-receive mode specification depends on what kind of
mode is adopted. We first consider the scheme PCTS-0, for
which the send-receive mode is calledthe zero-delay mode.
It is based on two assumptions: (1) Zero time (based on
the global clock) is spent between sending a message and
receiving this message, i.e., the sending time of a packetPi

on the sender’s clock is equal to the receiving time of the
packet on the synchronized receiver’s clock, for anyPi; and
(2) the packet rate is assumed to be 1 (i.e., 1 packet per unit
time).

With scheme PCTS-0, moduleMsr consists of the following
axiom schemata:

Z1. send(A,B,X) → receive(B,X).
Z2. first send(S,R, 〈{f(K1), nR}SK(S)〉).
Z3. first next send(S,R, 〈〈M1, f(K2)〉,MAC (f ′(K1),

〈M1, f(K2)〉)〉.
Z4. send(S,R, 〈D,MAC (f ′(K), D)〉) ↔

next send(S,R,X) ∧K ∈ X .

Considering this module specific to PCTS-0, we writeM
(0)
sr =

{Z1, Z2, Z3, Z4}. Other modules are given below.

Module Mmk (message receiving and knowledge gained)

G5. receive(A, 〈X,Y 〉) →
(receive(A,X) ∧ receive(A, Y )).

G6. receive(A,X) → know(A,X).
G7. know(A,K) → know(A, f(K)) ∧ know(A, f ′(K)).
G8. know(A, {X}SK(B)) → know(A,X).
G9. (know(A,K) ∧ know(A,X)) →

know(A,MAC (K,X)).
G10.know(A,X) → next know(A,X).

whereSK(B) is the private key of agentB and its corre-
sponding public key can be known by anybody, so we have
G8.

Module Mms (Message sending)

G11. send(A,B, 〈X,Y 〉) →
(send(A,B,X) ∧ send(A,B, Y )).

G12. send(A,B,X) → has sent(A,B,X).
G13. has sent(A,B,X) → next has sent(A,B,X).

Module Mar (Authentication rules)

G14. is auth(〈X,MAC (f ′(k), D)〉) ↔
verify success(f(K))
∧verify success(MAC (f ′(K), D)).

G15. is auth(X) → has been auth(X).
G16. BR has been auth(X) →

next BR has been auth(X).
G17. receive(R, 〈X,MAC (f ′(K), D)〉)∧

BR ¬has sent(S,R,K) →
BR arrive safe(〈X,MAC (f ′(K), D)〉).

G18. arrive safe(X) → has arrive safe(X).

G19. BR has arrive safe(X) →
next BR has arrive safe(X).

G20. BR verify success(f(K)) ↔
BR has arrive safe(〈X,MAC (f ′(K), D)〉)

∧know(R,K)
∧BR has been auth(〈D′,MAC (f ′(K), D′)〉)
∧f(K) ∈ D′.

G21. BR verify success(MAC (f ′(K), D)) ↔
BR has arrive safe(〈X,MAC (f ′(K), D)〉)∧
know(R,K) ∧ MAC (f ′(K), X) = MAC (f ′(K), D).

We now have the following:

Mmk = {G5,G6,G7,G8,G9,G10},

Mms = {G11,G12,G13}, and

Mar = {G14,G15,G16,G17,G18,G19,G20,G21}.

Thus, for the scheme PCTS-0, we have the theory

T0 = M(0)
sr ∪ Mmk ∪ Mms ∪ Mar.

In this scheme, what the intruder,I, is able to do is that,
after receiving the packetPi, I waits for the next packetPi+1

and, once receivedPi+1, creates a fake packetP ′

i usingKi

contained inPi+1 and then masquerades as the sender to send
P ′

i to the receiver. This is a weak attack, with both packetsPi

andP ′

i reaching the receiver. We express this intruder process
by the following formulas:

I1. send(S,R, Pi) ∧ next send(S,R, Pi+1) →
(receive(I, Pi) ∧ next receive(I, Pi+1) →

next create(I, P ′

i )).
I2. create(I, P ′

i ) →
(send(I(S), R, P ′

i ) → receive(R,P ′

i ))

Such an attack can be detected by the receiver easily. In fact,
the receiver knows that keyKi, which the intruder uses to
createP ′

i , has been sent out and the receiver may have received
it (within packetPi+1) at the time whenP ′

i arrives. Therefore,
it is impossible that the receiver acceptsP ′

i as authentic.

B. Scheme PCTS-1

PCTS-0 is an idealized mode with zero time spent between
sending and receiving messages. We now discuss the scheme
PCTS-1, for which a different send-receive mode with a
smaller time granularity is adopted. In this mode, we can
conveniently deal with time intervals when the network delay
from the sender to the receiver must be considered. We assume
that this mode satisfies the following two assumptions: (1) The
arrival time of a packet sent at the current moment in time can
be the ‘next’ moment or the ‘next next’ moment or the ‘next
next next’ moment in time; and (2) The packet rate is 1/4
(i.e., 1 packet per 4 units time). With this mode,M

(0)
sr should

be replaced byM(1)
sr , which consists of axioms S1 – S4 as

follows:

S1. send(A,B,X) →
(next receive(B,X) ∨ next

(2)receive(B,X)

∨next
(3)receive(B,X)).



S2. first send(S,R, 〈{f(K1), nR}SK(S)〉).
S3. first next

(4) send(S,R, 〈〈M1, f(K2)〉,
MAC (f ′(K1), 〈M1, f(K2)〉)〉.

S4. send(S,R, 〈D,MAC (f ′(k), D)〉) ↔
next

(4) send(S,R,X) ∧K ∈ X .

where next
(i) denotes i applications of next. Here S1

corresponds to Z1, and it specifies the initial action of the
scheme. The other three axioms capture the change of the
receiving interval and the packet rate, are different from those
in the mode PCTS-0. Thus, for the scheme PCTS-1, we
have the theoryT1 = M

(1)
sr ∪ Mmk ∪ Mms ∪ Mar, where

M
(1)
sr = {S1, S2, S3, S4}.

The intruder may do weak attacks in the PCTS-1 scheme
as in PCTS-0. This mode also allows the receiver to detect
such attacks easily. It is not difficult to show that PCTS-
1 satisfies the security condition, but the receiver may not
definitely believe that a packet is authenticated at times (see
next section).

C. Scheme PCTS-2

Now let us consider a mode regarded as an example of
a failure mode. There are two assumptions for the scheme
PCTS-2: (1) The arrival time of a packet sent at the current
moment in time can be in a time interval between the next
moment and the next fourth moment in time; and (2) the packet
rate is 1/2 (i.e., 1 packet per 2 units time). With this mode,
we have the following axioms that correspond to Z1 – Z4,
respectively:

F1. send(A,B,X) →
(next receive(B,X)

∨next
(2)receive(B,X)

∨next
(3)receive(B,X) ∨ next

(4)receive(B,X).
F2. first send(S,R, 〈{f(K1), nR}SK(S)〉).
F3. first next

(2) send(S,R, 〈〈M1, f(K2)〉,
MAC (f ′(K1), 〈M1, f(K2)〉)〉.

F4. send(S,R, 〈D,MAC (f ′(K), D)〉) ↔
next

(2) send(S,R,X) ∧K ∈ X .

Thus, for the scheme PCTS-2, we have the theoryT2 =

M
(2)
sr ∪ Mmk ∪ Mms ∪ Mar, whereM

(2)
sr = {F1,F2,F3,F4}.

In the scheme PCTS-2, the intruder is able to make strong
attacks.

Consider the case as follows: assume that packetsPi and
Pi+1 are sent out by the sender at timet (the current moment
in time) and att + 2 (the next next moment), respectively.
The intruder,I, first interceptsPi at t+ 2 and then, att+ 3,
again interceptsPi+1 when it arrives. By creating a packetP ′

i ,
instead ofPi, using keyKi in packetPi+1, I masquerades as
the sender send packetP ′

i to the receiver. The attach will be
successful ifP ′

i reaches the receiver att+ 4.

The intruder process is formulated as follows:

I1′. send(S,R, Pi) ∧ next
(2) send(S,R, Pi+1) →

(next
(2) receive(I, Pi)

∧next
(3) receive(I, Pi+1) →

next
(3) create(I, P ′

i )).
I2′. create(I, P ′

i ) → (send(I(S), R, P ′

i ) →
next receive(R,P ′

i ))

According to I1′ and I2′, P ′

i may reach the receiver att + 4
(the next fourth moment in time). The arrival time of packet
P ′

i still belongs to the time interval at which packetPi may
arrive. Therefore, the receiver may fail to detect the attack.

V. CORRECTNESSANALYSIS

The correctness for the PCTS scheme (or any other scheme)
of TESLA should guarantee that if the receiver can verify
that a packet is authentic, then the packet was indeed sent by
the sender. For automatically analysing the correctness ofa
scheme of the protocol, we need to mechanize the theory that
describes the behaviour of the protocol in an appropriate proof
system. The theories developed for specifying a particular
protocol scheme do not depend on a specific implementation.
Therefore, in our approach the user is allowed to freely choose
the tools for mechanizing these theories. Modular structure of
theories further allows the user to translate a theory to an
executable code (program) in a certain proof system, such as
Isabelle [16], the SMV model checker [14], etc.

In this section, we further discuss a common theory for the
PCTS scheme with the general send-receive mode, and, based
on this theory, analyse the TESLA protocol.

Based on our logical framework, the security condition
in Statement 1 can further be formalized as the following
correctness condition:

Statement 3 (correctness condition):
Correctness for a TESLA scheme means that, if receiverR
has verified that a packet is authentic, then the packet was
indeed sent by senderS. That is,

∀X(BR has been auth(X)∧has sent(A,R,X) → A = S).
To prove that a scheme of the TESLA protocol is secure, we

need to show that the correctness condition holds within the
scheme. Furthermore, we extend the definition of send-receive
modes by introducing a more generic form.

Definition 2 (time intervals):
For a send-receive mode, there is a time interval with packet
arrival, denoted as[min,max], such that, for all packetPi,

send(S,R, Pi) → next
(t) receive(R,Pi),min ≤ t ≤ max.

We callmin the minimum moment andmax the maximum
moment in time related to the packet arrival in this mode.

Definition 6 indicates that any packet sent by the sender
must arrive at a moment between themin andmax moments,
defining a time interval during which packets should arrive.

Definition 3 (time distance of sending):
Let d = 1/r, wherer is the packet rate (i.e., number of packets



sent per unit time). We calld the time distance of sending
between two packets.

Noting that all send-receive modes discussed in the previous
section are in fact determined based on the time interval of
packet arrival and the time distance of sending, we have the
formal definition of a mode as follows:

Definition 4 (send-receive modes):
m([u, v], d) is a send-receive mode of the PCTS scheme or,
simply, a mode ifu, v, d ∈ N , the set of all natural numbers,
and u ≤ v, where [u, v] is regarded as the time interval of
this mode, andd is the time distance between sending two
successive messages. Furthermore, we say thatm([u, v], d) is
a safe mode ifv < d.

Thus, the three modes in the previous section can re-
spectively be represented as PCTS-0= m([0, 0], 1), PCTS-
1 = m([1, 3], 4) and PCTS-2= m([1, 4], 2). We claim that
PCTS-0 and PCTS-1 are safe modes, while we demonstrated
that PCTS-2 is not.

With the PCTS scheme, axioms (G5-G10) on message
receiving and knowledge gained, axioms (G11-G13) on mes-
sage sending, and axioms (G14-G21) regarding authentication
(i.e., modulesMmk, Mms, and Mar) are fixed and suitable
for all modes. However,Msr specifying the send-receive
mode depends on the mode itself. For any send-receive mode
m([u, v], d), we have the following generic rules used for
specifying the mode:

G1. send(A,B,X) →
next

(u)receive(B,X) ∨ . . . ∨ next
(v)receive(B,X).

G2. first send(S,R, 〈{f(K1), nR}SK(S)〉).
G3. first next

(d) send(S,R, 〈〈M1, f(K2)〉,
MAC (f ′(K1), 〈M1, f(K2)〉)〉.

G4. send(S,R, 〈D,MAC (f ′(K), D)〉) ↔
next

(d) send(S,R,X) ∧K ∈ X .

Let Msr = {G1,G2,G3,G4}. Thus, we have the theory
that specifies the PCTS scheme with the modem([u, v], d):

T = Msr ∪ Mmk ∪ Mms ∪ Mar = {G1, . . . ,G21}.

The theory could be mechanized in a proof systsem. For exam-
ple, with the SMV, the theory itself can be “MODULE main”,
submodules should include “MODULE sr”, “MODULE mk”,
“MODULE ms” and “MODULE ar”, which are mapped from
Msr, Mmk, Mms andMar, respectively.

The theory provides a foundation for analysing the TESLA
protocol. In fact, by the theory, we can show that the following
lemma holds.

Lemma 1:Given a modem([u, v], d). Then the PCTS
scheme with this mode is secure ifm([u, v], d) is a safe mode.

We outline the proof as follows: Within the PCTS scheme,
packetP1 is authenticated with the regular digital signature
scheme and can therefore be conducted using a standard
verification method. Therefore, proving the correctness for the
PCTS scheme of TESLA may be recursively done based on
the assumption that the receiver has the authenticated packet

P1 and it was indeed sent by the sender. That is, we have that

BR has been auth(P1) ∧ has sent(A,R, P1) → A = S.

Then, assuming that for alli(1 ≤ i ≤ n − 1), the formula
BR has been auth(Pi) ∧ has sent(A,R, Pi) → A = S
holds, we need to show that

BR has been auth(Pn) ∧ has sent(A,R, Pn) → A = S.

The above assertion holds true based on axioms G10 and G13
if v < d, i.e.,m([u, v], d) is a safe model.

The theory also gives a basis for the receiver to verify stream
messages received through the PCTS scheme of the TESLA
protocol if the scheme with its send-receive mode satisfies the
correctness condition. From Figure 2, we see that the scheme
with the mode PCTS-0 or PCTS-1 is secure, while with the
mode PCTS-2 it is not a secure scheme, as a successful attack
can be carried out.

Trusting the protocol with a safe send-receive mode, the
receiver can unambiguously be sure that, when a packetPi

arrived, the sender must not yet send out the corresponding
key disclosure packetPj (i.e., Pi+1 in the PCTS scheme).
Therefore, the receiver could verify any packet received based
on the theoryT that describes the behaviour of the protocol.

However, in practice, safe modes, except for the mode
m([0, 0], 1), do not guarantee that the receiver is sure that a
packetPi is authenticated when it arrives, as the sender has not
yet sent out the corresponding key to verifyPi. For example,
let us consider a case with the modem([1, 3], 4): the sender
S sends packetPi to the receiverR at timet, R receives it at
t+ 3; thenS sends packetPi+1 to R at t+ 4 and R receives
it at t+ 5. It is possible thatR may think thatPi+1 was sent
three time units before receiving it, i.e., may think thatPi+1

was sent att + 2. Therefore the receiver may not accept the
fact that, when a packetPi arrived,S had not yet send out
Pi+1 that contains the key to verifyPi. To exclude such a
problem, we recommend a modem([u, v], d) that satisfies the
condition2v − u < d.

VI. CONCLUDING REMARKS

We have presented a logical framework for analysing stream
authentication protocols. With the logic, we use a simple case
of the fibred semantics arising from Kripke models with a
single time model. However, it is not difficult to extend it
by considering other time models. Such extensions would be
needed when one wants to deal with different local clocks
(different subsets of the global clock) for multiple receivers
involved in a protocol.

In analysing the TESLA protocol, Archer [1] uses the
theorem prover TAME, and Broadfoodet al [2] use model
checking techniques. One advantage of those methods is
that some properties of the protocol can easily be captured
through proving systems, but a drawback is that the formal
representations involved in such proofs are often not easily
understood or validated by the user.

Our approach based on the fibred logic is flexible since
the structure of the theory is well-defined, and separating the
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Fig. 2. Modes PCTS-0= m([0, 0], 1), PCTS-1= m([1, 3], 4) and PCTS-2= m([1, 4], 2)

theory from its implementation helps a protocol designer to
capture the meanings of the theory as a whole. Moreover the
modular structure makes it easy for the user to modify a theory.
Our analysis has shown that the PCTS scheme of TESLA with
a safe send-receive mode is secure given that the correctness
condition is satisfied.

We believe that our approach can be easily extended such
that it is also suitable for other schemes of the TESLA
protocol, and for other stream authentication protocols. We
have been developing a tableaux-based theorem prover for
the fibred logic and we will consider its applications to the
verification of stream authentication protocols.
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