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ABSTRACT

This paper examines two controversies arising within classical electromagnetism which are relevant to the optical
trapping and micromanipulation community. First is the Abraham–Minkowski controversy, a debate relating
to the form of the electromagnetic energy–momentum tensor in dielectric materials, with implications for the
momentum of a photon in dielectric media. A wide range of alternatives exist, and experiments are frequently
proposed to attempt to discriminate between them. We explain the resolution of this controversy and show that
regardless of the electromagnetic energy–momentum tensor chosen, when material disturbances are also taken
into account the predicted behaviour will always be the same. The second controversy, known as the plane wave
angular momentum paradox, relates to the distribution of angular momentum within an electromagnetic wave.
The two competing formulations are reviewed, and an experiment is discussed which is capable of distinguishing
between the two.

Keywords: Abraham–Minkowski controversy, Khrapko’s paradox, photon momentum, electromagnetic momen-
tum, angular momentum

1. INTRODUCTION

The ongoing drive towards miniaturisation which began in the latter half of the twentieth century has spurred
the development of many new technologies capable of manipulating matter over a vast range of scales. One
such technology is that of optical micromanipulation,1 which may lie at the heart of the micromachines or
microassembly plants of tomorrow. However, if this technology is to be widely and reliably used then the
fundamental theory underlying its operation must be clearly understood. Optical tweezers offer tremendous new
opportunities to probe the interactions between physical objects and electromagnetic radiation.

Two important questions of fundamental physics are raised in this paper, both of which have bearing upon
the accurate modelling of behaviour of objects undergoing optical micromanipulation. Both have engendered
some degree of controversy in the published literature, and both are amenable to resolution, one through theory
and the other through experiment.

We shall first discuss the Abraham–Minkowski controversy, in which the form of the electromagnetic energy–
momentum tensor in a dielectric medium has been debated for almost a century, and show that this controversy
has been successfully resolved and poses no threat to our understanding of the behaviour of optical tweezers.

Secondly, we shall discuss Khrapko’s paradox,2 which asks about the distribution of angular momentum
within an electromagnetic wave and addresses the contentious question, “Does a plane wave carry spin?” We
examine a modification of Khrapko’s original experiment which is capable of producing qualitative results.
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2. THE ABRAHAM–MINKOWSKI CONTROVERSY

2.1. Background

“What happens to the momentum of a photon when it enters a dielectric medium?” This seemingly innocuous
question lies at the centre of a century-long debate. The answer is tied to the closely-related question, “What is
the energy–momentum tensor of an electromagnetic wave traversing a dielectric material?”

The energy–momentum tensor describes the propagation of energy and momentum in a four-dimensional
space–time. To derive the appropriate expression for an electromagnetic wave propagating in free space is
relatively straightforward and the result is known as Maxwell’s tensor. Its derivation may be found in more
advanced texts on electromagnetism3 or special relativity.4, 5 It is only within material media that uncertainty
arises.

The first expression for the electromagnetic energy–momentum tensor in a dielectric medium was proposed by
Minkowski in 1908.6, 7 According to the Minkowski electromagnetic energy–momentum tensor, the momentum
flux density of an electromagnetic wave increases from p in free space to np in a material medium, where n is
the refractive index of the medium, and the electromagnetic momentum density is given by D × B. However,
the tensor which Minkowski proposed came under heavy criticism on account of its lack of diagonal symmetry, a
fact which was held incompatible with conservation of angular momentum. In response to this, first Einstein and
Laub8, 9 and later Abraham10, 11 developed symmetric energy–momentum tensors. However, under these tensors
the momentum of an electromagnetic wave decreases on entering a dielectric medium from p to p/n, and the
electromagnetic momentum density is given by (1/c)E × H. The tensor of Einstein and Laub did not purport
to be valid outside of the rest frame of the material medium, whereas that of Abraham was rigorously developed
in accordance with the principles of special relativity and hence rapidly gained favour.

Numerous arguments and thought experiments were proposed, attempting to discriminate between the two
tensors (for example, Refs. 5, 12–15) though neither gained a convincing upper hand. In 1954, Jones and
Richards performed an experiment16 to measure the momentum transferred by a beam of light to a reflecting
surface suspended within a dielectric medium, and demonstrated that the magnitude of the momentum transfer
was np, but Jones comments that this is consistent with both the Minkowski and the Abraham tensors, if one
recognises that under the Abraham tensor, the electromagnetic wave is also accompanied by a disturbance within
the dielectric medium carrying momentum (

n − 1
n

)
p. (1)

In 1973, another significant experiment was performed by Ashkin and Dziedzic17 in response to a theoretical
paper by Burt and Peierls,18 in which they considered the behaviour of a liquid interface traversed by a laser
beam. As the electromagnetic wave traversed the air–liquid interface it would either increase or decrease in
momentum, and conservation of momentum required that an equal and opposite quantity of momentum be
imparted to the fluid interface, which would then either bulge inwards or outwards accordingly. Burt and Peierls
argued that the material disturbance in the medium in the Abraham case described above would propagate far
slower than the electromagnetic radiation, and hence the initial response of the interface would depend upon the
electromagnetic momentum alone.

Ashkin and Dziedzic performed this experiment, and discovered that the interface bulged outward, into the
medium of lower refractive index. However, they also recognised the then-unpublished work of Gordon19 who
performed a more detailed analysis and showed that the role of the material disturbance was not negligible and
that the predictions of the two tensors would be identical after all.

Gordon recognised that the disturbance in the dielectric medium arises as a result of interactions between
the medium and the electromagnetic wave. It is established by the leading edge of an electromagnetic pulse
as it traverses the medium, and restored to normal by the trailing edge. The material disturbance therefore
propagates at the speed of the electromagnetic wave, and not at the speed of sound in the medium, as previously
supposed. Pressure effects arising from the edges of the beam were also found to play a significant role.

Gordon’s work provided a very practical demonstration of the equivalence of the Abraham and Minkowski
tensors but was confined to fluids with a dielectric constant ε � 1. It was later extended to elastic solids by
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Peierls,20, 21 who demonstrated a number of interesting effects including the generation of phonons in an elastic
solid by a beam of finite width.

However, in 1968 and 1975 two experiments were performed which were taken to strongly support the
Abraham electromagnetic energy–momentum tensor over the Minkowski case. When the force density arising as
a result of the Abraham and Minkowski energy–momentum tensors is calculated, the two tensors yield expressions
which are identical except for a single term yielded by only the Abraham tensor, and hence known as the Abraham
force:

fAbr =
εµ − 1

c2

∂S
∂t

. (2)

Both James22, 23 and Walker et al.24, 25 successfully detected the existence of the Abraham force. It was not
until 1978 that Israel pointed out that these results were nevertheless compatible with the Minkowski energy–
momentum tensor provided the Minkowski tensor was also accompanied by an appropriate disturbance in the
medium.

Israel’s conclusion placed the Minkowski and Abraham tensors on an equal footing once more, and consid-
eration of the material counterparts to the two electromagnetic energy–momentum tensors have subsequently
yielded a number of explicit proofs of equivalence not only for the Abraham and Minkowski electromagnetic
energy–momentum tensors,26–30 but also for other tensors proposed by Grot31 and de Groot and Suttorp32 (see
Ref. 33).

These were not the first proofs of equivalence but they were the first to be published in a succinct and
comparatively accessible format. They were, however, preceded by Penfield and Haus,34 who also considered
the tensors arising from the Boffi,35 Amperian,36 and Chu34, 37 formulations of electromagnetism, and also by de
Groot and Suttorp,32 upon whose work we shall now draw to demonstrate the theoretical foundations underlying
these proofs.

2.2. Theoretical Analysis

The argument pursued by de Groot and Suttorp, and also by many of the later authors cited above, arises
from considerations of global conservation of energy and momentum. From the law of conservation of linear
momentum we obtain a constraint on the total energy–momentum tensor T αβ

tot ,

∂αT αβ
tot = 0. (3)

Similarly, from conservation of angular momentum we may obtain

T αβ
tot = T βα

tot . (4)

However, these constraints only apply to the total linear and angular momentum of a system. When an elec-
tromagnetic wave enters a dielectric medium, momentum may be carried both within the electromagnetic wave
itself, and within excitations of the electromagnetic dipoles of the material. We may therefore write

Ttot = TEM + Tmat (5)

where TEM and Tmat are the electromagnetic and material energy–momentum tensors respectively.

Upon examination of the full expression of the total energy–momentum tensor (which may be found in
all the above proofs of equivalence, with Refs. 26, 32, 34 being perhaps the clearest) it becomes apparent that
the distinction between electromagnetic and material terms is not absolute. There exist terms which describe
an excitation of the dipoles of the material medium, but which are dependent upon the magnitude of the
electromagnetic wave. If these terms are included in the electromagnetic energy–momentum tensor, one obtains
a tensor resembling the Minkowski tensor, whereas if they are assigned to the material tensor, one obtains a
tensor resembling the Abraham tensor.
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We now note that Eqs. (3) and (4) apply only to the total energy–momentum tensor, and not to the
electromagnetic or material components in isolation, i.e.

∂α

(
T αβ

EM + T αβ
mat

)
= 0 (6)(

T αβ
EM + T αβ

mat

)
=

(
T βα

EM + T βα
mat

)
. (7)

It therefore follows that the lack of diagonal symmetry in Minkowski’s electromagnetic energy–momentum tensor
does not violate conservation of angular momentum as a complementary asymmetry in the material energy–
momentum tensor ensures that the total energy–momentum tensor is symmetric. Any choice of electromagnetic
energy–momentum tensor is equally valid provided the corresponding material counterpart is also taken into
consideration, as it is only the total energy–momentum tensor which is uniquely defined.

2.3. Consequences

The consequences for optical tweezers are threefold. First, there is the recognition that the form of the elec-
tromagnetic energy–momentum tensor in a dielectric medium is not of crucial importance. This also serves to
validate the usage of the relative refractive index for a body suspended within a dielectric fluid: This change has
no effect on the total energy–momentum tensor, and so although the medium is eliminated by converting to an
equivalent situation in vacuum, no physically relevant information is lost.

Second, there is the important recognition that the Minkowski electromagnetic energy–momentum tensor has
a material counterpart. Historically this was overlooked for a long time because the counterpart carries no linear
momentum and hence is unnecessary in experiments such as Jones and Richard’s16 mentioned above. However,
the material counterpart does carry angular momentum and this is illustrated extremely well by the thought
experiment described by Padgett et al.38 where a laser beam carrying orbital angular momentum is passed
through a glass disc. The Abraham tensor pair demonstrates a transfer of angular momentum to the glass disc,
whereas if the Minkowski electromagnetic energy–momentum tensor is considered in isolation, this does not take
place.

Third, we have discovered that the material disturbance may have significant physical effects on experimental
predictions, and travels at the same speed as the electromagnetic wave.19 It is therefore inappropriate to
treat material objects as rigid bodies when analysing their behaviour, as this corresponds to instantaneous, i.e.
superluminal, transfer of momentum throughout the body, whereas in reality the traversal of the electromagnetic
wave is inevitably accompanied by physical pressures and deformations within the medium, and at the boundaries
of both the medium and the beam. It is similarly wrong to neglect the material counterpart entirely or to assume
that its propagation is negligibly slow.

3. KHRAPKO’S PARADOX

3.1. Background

In 2001, Khrapko asked in American Journal of Physics, “Does plane wave not carry spin?”[sic].2 This question,
which is not as simple as it first appears, arises from the existence of two separate expressions for the total
angular momentum of an electromagnetic wave. These are

L =
∫

V

(r × S/c2) dV (8)

and

L =
∫

V

Re
[
iε (E∗ × E)

2ω

]
dV, (9)

where L represents total angular momentum, r is the position vector, S is the real instantaneous Poynting vector,
c is the speed of light, ω is the angular frequency of the electromagnetic wave, and E is the complex electric field.
We shall term Eq. (8) the macroscopic expression, and Eq. (9) the microscopic expression. The former arises
from the obvious construction of r × p, where p represents linear momentum, and the latter may be obtained

Proc. of SPIE Vol. 6326  63260H-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/14/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



either by considering the action of the electric field on the dipoles of a material medium, or from the former
using integration by parts.39, 40 Equation (8) is usually also accompanied by boundary terms dependent upon
the profile of the beam, but these are cancelled out during the integration by parts to leave Eq. (9) a pure volume
integral.

Khrapko’s paradox arises as both the above expressions are held to be directly true for a plane wave, which is
asserted to have no boundaries. However, this leads authors to consequently infer angular momentum densities
of either

l =
r × S

c2
(10)

or

l = Re
[
iε (E∗ × E)

2ω

]
, (11)

the former being zero for a circularly polarised plane wave and the latter being non-zero. Indeed, the popularity
of the former view leads not infrequently to papers stating that a plane wave carries no spin (e.g. Refs. 41, 42),
and yet is nevertheless capable of generating rotation on interaction with matter (e.g. Ref. 43).

3.2. Theoretical Analysis

It is possible that this controversy has to some extent been fuelled by the abstract nature of a plane wave.
Extending to infinity in all directions, such edgeless beams obviously cannot be reproduced in the laboratory.
We shall therefore address this controversy both for a circularly polarised plane wave, and for a realistic beam
such as may be produced in the laboratory.

For the plane wave, one need go no further than the excellent analysis of Mansuripur,44 who notes that
the product r × p ranges to ∞ × 0 and hence is indeterminate. To overcome this, he considers four identical
plane waves initially propagating at an angle θ from the z axis, and allows them to converge to form a single
plane wave. By means of careful limit-taking procedures applied to the central interference fringe he is able to
demonstrate that a plane wave does in fact carry angular momentum with a density in free space of

lz =
4ε0E

2

2πf
. (12)

lz is the z component of the angular momentum density, E is the electric field of the plane wave, ε0 is the
dielectric constant and f is the frequency of the wave. As the energy density of the wave is 4ε0E

2 and the
energy of a photon of frequency f is hf , this expression corresponds to an angular momentum per photon of h̄,
in agreement with quantum mechanics. The position that a circularly polarised plane wave carries no angular
momentum may therefore be rejected, and we find that correctly applied, both treatments yield an angular
momentum distributed evenly throughout the beam.

We now turn our attention to a finite beam such as may be employed in the laboratory. For our purposes, it
is convenient to consider a beam of somewhat arbitrary profile such as that shown in Fig. 1(a). The expression
for the electric and magnetic fields of this beam are

E = E0e
− r2

d2

√
1 − e−

r2
a2 ei(ωt−kz)

{
x̂ − iŷ +

[
1
k

(−ix − y)

(
1

a2
(
er2/a2 − 1

) − 2
d2

)]
ẑ

}
(13)

H =
√

ε0
µ0

E0e
− r2

d2

√
1 − e−

r2

a2 ei(ωt−kz)

{
−ix̂ − ŷ −

[
1
k

(x − iy)

(
1

a2
(
er2/a2 − 1

) − 2
d2

)]
ẑ

}
. (14)

We calculate the angular momentum densities according to Eqs. (10) and (11) and obtain the profiles shown in
Fig. 1(b) and (c).

Under both these expressions, the vast majority of the angular momentum of the beam is accounted for
within a few scale lengths of the z axis. If the beam is not truncated, then it falls off to zero at infinite radius,
and hence no edge effects exist and the total angular momentum may be obtained by integrating Eqs. (10) and
(11) over infinite volume. Alternatively, if the beam is truncated at a radius of several scale lengths (e.g. r = 3d),

Proc. of SPIE Vol. 6326  63260H-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/14/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
in

te
ns

ity

0

(a)

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

N
or

m
al

is
ed

 m
ac

ro
sc

op
ic

z 
ax

is
 a

ng
ul

ar
m

om
en

tu
m

 d
en

si
ty (b)

−0.02

−0.01

0

0.01

0.02

N
or

m
al

is
ed

 m
ic

ro
sc

op
ic

z 
ax

is
 a

ng
ul

ar
m

om
en

tu
m

 d
en

si
ty (c)

−1 −0.5 0 0.5 1
r

T
ar

ge
t

Central
portion

of target

(d)

−r
t

r
t

Figure 1. Proposed parameters of the beam. (a) Radial intensity profile. (b) Angular momentum density profile
calculated using the macroscopic approach, normalised to total angular momentum of 1. (c) Angular momentum density
profile calculated using the microscopic approach, normalised to total angular momentum of 1. (d) Optimal structure of
target relative to the beam intensity profile. The inner circular portion of the target has a radius rt.
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Lubricant

Figure 2. Hypothetical beam target. The target consists of an inner disc-shaped central section, and a surrounding outer
section. Both inner and outer sections are made of an absorptive material or are half wave plates, and hence will extract
angular momentum from an incipient circularly polarised beam. They are floated over a microscope slide on a thin layer
of lubricant.

then the change in total angular momentum will necessarily be small and the edge effects introduced in a real
experiment will be negligible.

We now consider an experiment of the sort originally proposed by Khrapko.2 Let the beam fall upon a target
capable of absorbing angular momentum. The target consists of a central disc capable of rotating freely, and an
outer region surrounding the disc and made of the same material. For sake of argument, let them be floated on
a thin layer of lubricant over a microscope slide (Fig. 2). The radius of the inner portion of the target, rt, is
chosen in accordance with Figure 1(d). The value of rt is given by

rt = a

√
ln(1 +

d2

2a2
). (15)

We now consider the interaction of the beam with the target.

Integration of either the macroscopic or the microscopic angular momentum density profile unambiguously
accounts for the total angular momentum density of the beam. There can therefore be no arguments about
the beam carrying angular momentum in potentia. We are therefore left with two options: Either the beam
transfers angular momentum in direct accordance with the profiles illustrated, or a real redistribution of angular
momentum within the beam takes place on interaction with the target. If the former, then we see that under
the two different models, the angular momentum transferred to the disc will be of differing sign, a result easily
detected experimentally.

If the latter, then we must ask what prompts this redistribution of angular momentum. Analysis shows43, 45, 46

that redistribution arises as a result of the interaction between the beam and edges within the structure of the
target. However, complications arise in determining what constitutes an edge. Consider our hypothetical two-
part target. Provided the inner portion remains free to rotate, we may allow the distance between it and the outer
portion to become infinitesimally small. But then what happens if the two portions interact, and there exists an
initial static friction which must be overcome to initiate motion? In any real world situation there will always
be initial friction forces which must be overcome, and therefore if angular momentum is to be transferred at all
to the inner target portion, we must allow it to be transferred regardless of the presence of this initial friction.
If sufficient angular momentum is transferred, then friction will be overcome and motion will be initiated.

Now consider an arbitrary portion of a solid object, perhaps an atomic dipole. This portion is attached
to its neighbours by atomic bonds, but if these can be overcome it too will be free to rotate. These forces
may be considered analogous to the friction forces described above. In performing the redistribution of angular
momentum on interaction with a solid object, the edge of every single atomic dipole must be taken into account!
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But what happens if we do account for the edge of every single atomic dipole in this way? We find that we
have recovered the microscopic angular momentum density profile. Therefore, even if the angular momentum
density of the beam in free space is held to be given by the macroscopic approach (Eq. 10), we find that it
nevertheless interacts with matter in accordance with the microscopic angular momentum density (Eq. 11).
However, to make such a distinction is superfluous as in such a case the free space angular momentum density
profile may never be probed or interacted with and hence its nature is a question not of physics but ontology.

If the macroscopic angular momentum density profile is to be meaningful, we therefore find that it must
describe not only the carriage but also the transfer of momentum, and this is experimentally testable.

In practice, to perform such an experiment with half-wave plates floated on a microscope slide is impractical,
though it may in theory be possible to observe the transfer of angular momentum using the apparatus described
above, particularly if microwaves are employed so that the angular momentum to power ratio is increased
and heating problems are correspondingly reduced. Nevertheless it is interesting to discuss the theoretical
consequences of the different possible outcomes.

3.3. Discussion

Suppose that the interaction was shown to proceed in accordance with the microscopic profile. In that case, the
macroscopic integral (Eq. 8) would nevertheless continue to be a valid mathematical tool capable of calculating
the behaviour of a system provided all edge interactions are properly taken into account, as per Refs. 43, 45, 46.
However, if momentum were shown to be transferred according to the macroscopic density profile (Eq. 10) then
this would introduce a conflict between microscopic and macroscopic electrodynamics. No resolution to this
conflict is known to exist.

On these grounds alone it might be argued that the macroscopic expression is nothing more than a convenient
analytical tool for calculating the angular momentum transfer under particular circumstances, in the same
manner that when a bar magnet is modelled as a large number of circulating microscopic currents these may be
reduced to a single macroscopic current for convenience. Nevertheless, the ongoing popular tendency to treat the
macroscopic expression as yielding a real momentum density, and the resulting insidious errors that arise (such as
the claim that a circularly polarised plane wave carries no spin, discussed above) make it desireable to demonstrate
experimentally whether or not the macroscopic expression can tell us anything about the fundamental properties
of an electromagnetic wave.

4. CONCLUSION

In this paper we have discussed two controversies relating to the momentum of an electromagnetic wave. Now
that lasers are increasingly being used for micromanipulation, it is important to resolve these issues where they
may have bearing upon experimental results.

It has been shown that neither problem discussed here is intractable, and indeed that the Abraham–Minkowski
controversy has already been resolved. Of significant note is the existence of a material counterpart to the
Minkowski electromagnetic energy–momentum tensor. Awareness of the existence of this counterpart is low, and
its use is vital in the analysis of experiments involving angular momentum.

We also believe that Khrapko’s paradox should be dismissed on theoretical grounds, but on account of the
large amount of popular support for the macroscopic angular momentum density profile Eq. (10), an experimental
discrimination is desireable.

If optical micromanipulation is to become a major technology in the micro- and nanotechnological revolution
then it is vital that the theoretical framework underpinning its behaviour be well and widely understood.
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