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The refractive index of single microparticles is derived from precise measurement and rigorous
modeling of the stiffness of a laser trap. We demonstrate the method for particles of four different
materials with diameters from 1.6 to 5.2 µm and achieve an accuracy of better than 1 %. The method
greatly contributes as a new characterization technique because it works best under conditions
(small particle size, polydispersion) where other methods, like absorption spectroscopy, start to fail.
Particles need not to be transferred to a particular fluid, which prevents particle degradation or
alteration common in index matching techniques. Our results also show that advanced modeling of
laser traps accurately reproduces experimental reality.

The refractive index of micrometer sized objects is a
highly sought-after property, but it is not easily mea-
sured. It is important because it dictates particle in-
teraction with light in systems spanning the range from
materials science (e.g particles in paint, new polymers for
drug delivery, phototherapy, electro-optics [1]) through
atmospheric physics (light scattering by aerosol particles)
to oceanography (importance of the refractive index of
plankton cells [2]). Recent advances in the field of bio-
physics, which allow the study of cell functions at a single
cell level, have spawned an increased interest in charac-
terizing and modeling the optical properties of single cells
and organelles within the cell [3].

Several techniques are used today for refractive index
measurements. Standard refractometry is used to deter-
mine the refractive index of bulk liquid samples. Laser
diffractometry is widely used to investigate light scatter-
ing by cells suspended in liquid to infer refractive index
and shape [4], but is limited to large samples of monodis-
perse particles. Index matching is most commonly used
to measure the refractive index of particles in suspen-
sion. It can not be applied to microparticles that must
be maintained in a particular environment to avoid de-
struction, degradation, or alteration of optical properties,
such as biological specimens or crystals in saturated so-
lution.

Here we describe an accurate method for the determi-
nation of the refractive index of an individual spherical
particle in an optical trap. The refractive index is deter-
mined by modeling the stiffness in the optical trap for
a range of refractive indices, measuring the actual trap
stiffness and comparing both results. Only a very ba-
sic single beam optical tweezers setup with a detection
of forward scattered light is necessary, which allows the
method to be integrated into standard research micro-

scope as well as lab-on-a-chip applications. The method
has several advantages: it measures the refractive index
of one individual particle, that can simultaneously be ma-
nipulated. Particles do not have to be suspended in a
special liquid. Particle sizes can be smaller than 5 µm. A
narrow size distribution of the particles in the sample is
not necessary, a broad distribution is even an advantage.

These properties allow the method to be applied to a
range of problems: characterization of particles in a poly-
disperse sample, time lapse experiments where the parti-
cle is held in the trap over longer times and the stiffness
continuously measured, or application to the character-
ization of living cells and organelles. Immobilization of
the particle of interest in the laser trap also enables the
use of microfluidic devices to change the surrounding liq-
uid or add elements like salts or biological factors to the
liquid, while continually quantifying the particle’s opti-
cal properties. On the other hand, the method could
also be used for characterizing the optical properties of
the liquid, when the particle refractive index is known.

An optical trap is created by strongly focussing a laser
beam with a high numerical aperture (NA) objective lens.
To model the optical forces acting on a particle of a size
comparable to the laser wavelength (here 1070 nm), elec-
tromagnetic scattering theory has to be employed. The
electric fields must satisfy the vector Helmholtz equation

∇2E + k2E = 0 (1)

where k is the wave number. The equations for the mag-
netic fields are similar and will not be mentioned explic-
itly here. For a source free region, one can find a general
solution for the electric field E in spherical coordinates
as a superposition of the divergence free vector spherical
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FIG. 1: Upper: The trapping efficiency Q of a 2.09 µm parti-
cle increases monotonically to nrel = 1.36 meaning that this is
a useful range for refractive index determination. If the scat-
tering force, which strongly depends on the refractive index,
outweighs the gradient force, stable 3D trapping is not pos-
sible. This situation is marked with values of zero efficiency.
Lower: The monotonic region shifts with particle size. Parti-
cle radii are given in terms of the wavelength λ (3.5 to 4 µm
diameter at 1070 nm).
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vector spherical harmonics and the Hankel functions of
the first (1) and second (2) kind and are given elsewhere
[5]. The incident strongly focussed laser beam can be
described as a multipole expansion with the VSWFs as a
basis and the expansion coefficients anm and bnm. Exper-
imentally, we use a collimated Gaussian beam overfilling
an NA=1.3 oil immersion objective (Olympus, 100×, cut-
off at 1/e of maximal intensity). For modeling, we project

the Gaussian intensity distribution onto a spherical sur-
face with a truncation at 1/e of the intensity at a trun-
cation angle ϕ given by NA = nmed sin ϕ (nmed denotes
the medium refractive index). The multipole expansion
coefficients are then obtained by a point matching algo-
rithm in the far field. This method is independent of the
scatterer, fast and reliable [5]. Incoming and outgoing
modes are related to each other by the scattering matrix
or T-matrix [6], which is obtained from the boundary
conditions on the particle’s surface
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·
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. (3)

In the case of a a homogeneous isotropic spherical par-
ticle, the T-matrix is diagonal. Its elements are given
by the analytical Lorenz–Mie solution [7] and depend on
the particle diameter d and the relative refractive index
nrel = npart/nmed as well as Hankel and Bessel functions
that require numerical evaluation.

Knowledge of the total fields (Eq. 2) allows calculation
of the forces acting on the scatterer. We base our calcu-
lations on the conservation of momentum: The momen-
tum transferred to the particle must equal the change of
momentum in the beam. By integrating the momentum
flux over a spherical surface in the far field, we obtain the
change of momentum in the beam and thus the applied
force F. The integration can be performed analytically
and reduces the calculation of the force to the summation
over the expansion coefficients of the fields (anm, bnm and
pnm, qnm) [8, 9].

The following procedure is used to calculate the trap
stiffness. The equilibrium position of the particle in the
trap is found by minimizing the axial force Fz on the par-
ticle with a bisection search that terminates at 10−7 pN.
The transverse trap stiffness at that position is obtained
by calculating the force on the particle for a small trans-
verse displacement. This procedure is repeated for each
refractive index value to model the refractive index de-
pendence of the trap stiffness (Fig. 1). The non-linear
dependence originates from the interference structure of
Mie scattering, which is described in detail elsewhere [10].
In both theory and experiment, transverse displacements
along the direction of polarization (x) were considered.
The trap stiffness αx is given as the trapping efficiency Q;
multiplication with nmedP/c, where P is the laser power
and c the speed of light, gives αx in newtons/m.

The experimental setup to measure the transverse trap
stiffness αx is composed of a 1070 nm fiber laser for trap-
ping of the particle and a 633 nm HeNe laser used in
combination with a quadrant photo detector for particle
position detection [11]. The particle undergoes thermal
motion in the trap. The power spectral density of its
position fluctuations |x(f)|2 ∼ (f2

0 + f2)−1 has a typical
roll-off frequency f0 = αx/2πβ, which is obtained from a
curve fit and used to calculate αx (Fig. 2). β is the drag
coefficient. For the experiments, silica (SI) particles with
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FIG. 2: Upper: Setup used for trap stiffness measurements.
Lower: Measured power spectral density of the thermal posi-
tion fluctuations of particles in the optical trap. The roll-off
frequencies are proportional to the trap stiffness.

a diameter of d = 2.32 µm, poly(methyl methacrylate)
(PMMA) particles with d = 1.68 µm (both Bangs Labo-
ratories Inc., Fishers, IN) and polystyrene (PS) particles
with d = 2.09 µm (Polysciences Inc. Warrington, PA)
were obtained, washed and suspended in deionized water.
Synthesized sulfurated silica particles (synSI) with a size
range of d = 4 to 6 µm were kindly provided by the De-
partment of Chemistry (The University of Queensland,
Australia). Particle suspensions were sealed in a sam-
ple chamber of 50 µm thickness. Stiffness measurements
were performed in the center of the chamber, far away
from interfering walls.

To reduce the experimental error, the trap stiffness was
measured several times for each individual particle and
for 2–3 particles for each type of particle. For PS, PMMA
and SI, bead diameters were given by the manufacturer.
For the synthesized polydisperse silica particles, parti-
cle diameters were determined by video microscopy. The
optical image of microscopic particles is broadened due
to diffraction, but the center to center distance of two
touching particles is not affected. A more precise deter-
mination of the radius r1 is achieved by using the optical
trap to bring two particles of similar size into contact and
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FIG. 3: The refractive index of particles of the given size is de-
termined from the intersection of the measured trap stiffness
(horizontal lines) with the modeled trap stiffness (curves).
The stiffness measured for SI (2.32 µm) was used for calibra-
tion (*).

measuring the center to center distance dc and their rel-
ative apparent diameter da2/da1: r1 = dc/(1 + da2/da1).

For each particle size, the trap stiffness was calcu-
lated as a function of the particle refractive index using
nmed = 1.33 [12] (Fig. 3). These curves do not have any
free parameters; all parameters can in principle be ex-
perimentally accessed. Yet it is very difficult to measure
the laser power at the focal spot. We precisely determine
that parameter by a one-time calibration measurement
with a well characterized particle (SI microsphere).

The refractive indices of the PS and PMMA particles
were determined from the measured αx (table I) and the
theoretical curves (intersections in Fig. 3). The error was
calculated from the variance of the different trap stiffness
measurements and the resulting uncertainty in determin-
ing the refractive index. A 5% error in the trap stiffness
results only in a 0.2-0.5% error in the refractive index
because of the steep slope of the curves in Fig. 3 (note
the x-axis range). The error in the theoretical curves
due to error in size and in calibration was also taken into
account. The total error in the refractive index determi-
nation for these particles was less than 1 %.

For comparison, refractive index values for the different
materials were obtained from the manufacturers and ex-
trapolated to the wavelength of 1070 nm by using Cauchy
and Sellmeier dispersion relations [13–16]. The measured

material stiffness [pN/nm] npart measured deviation [%]

SI 0.181 ± 0.008 1.450 0 (reference)

PS 0.361 ± 0.019 1.582 ± 0.011 0.56

PMMA 0.507 ± 0.024 1.476 ± 0.012 0.35

TABLE I: Results of the refractive index determination and
deviation from manufacturer/literature values.
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FIG. 4: Experimental results of trap stiffness measurements
for different sized synSI particles (horizontal lines) and corre-
sponding theoretical curves. Intersections used for the refrac-
tive index evaluation are marked (x). SI was again used for
calibration (*).

values agree very well with the nominal values, the de-
viation being less than 0.6 % (table I). The results show
that high accuracy refractive index measurements can
be made when probing single particles. The precision
of the measurement could be even further enhanced by
combining calibration particle and particle of interest in
the same sample chamber and by averaging over a larger
number of particles.

The refractive index of three synthesized silica par-
ticles was measured in a similar way. The larger par-
ticle sizes (d1 = 4.93 ± 0.05 µm, d2 = 5.16 ± 0.05 µm,
d3 = 5.65 ± 0.05 µm) cause the dependence of αx on the
refractive index to be non-unique for d1 and d3 (Fig. 4).
The shift of the steep linear region with size (Fig. 1)
allows selection of a particle size for which the curve
does increase monotonically in the region of interest (here
d2 = 5.16µm) and derivation of the particle index.

Multiple solutions for the measured αx do not pose a
problem. First, they occur only for large particle sizes.
Second, a particle with a unique solution can usually be
found. If that is not the case, then, third, one can com-
bine the results for a number of particles with multiple
solutions. The one common solution they all have will be
the valid one. That is similar to a system of equations
with multiple solutions, where the correct solution has to
fulfill all the equations. Still, particles with one unique
solution are always favorable because their curves have a
steeper slope resulting in a smaller error.

A mean refractive index of n = 1.51 ± 0.02 is deter-
mined from the marked (x) solutions (Fig. 4). Extrap-
olation along the SI dispersion curve gives a value of
n = 1.519 ± 0.02 at 589 nm. That compares very well
with the value of n = 1.523 at 589 nm for the same par-
ticles obtained from transmission spectroscopy using the
method in ref. [17]. The good agreement shows that the

method described here is also suitable for determining
the refractive index of larger polydisperse particle sus-
pensions, and that polydispersity is even an advantage
since it allows selection of a particles size with a favor-
able refractive index–stiffness relationship.

Other methods for single particle refractive index de-
termination are largely based on the angular scatter pat-
tern. Measurement of that pattern by photographic
recording [18], semicircular rotating stages [19] or an ar-
ray of optical fibres [20] prevent the method from being
easily integrated into a standard microscope and to be
compatible with microfluidic devices or lab-on-a-chip ap-
plications. The method described here does not suffer
from any of these shortcomings as it requires only two
dichroic mirrors to be added to a standard microscope.
The technique is also compatible with microfluidic de-
vices and lab-on-a-chip applications and thus allows in

situ or in statu nascendi index measurements.

Other system parameters will be accessed in future ap-
plications of the method. With a well characterized probe
particle, the refractive index of a fluid can be measured.
For a system with known refractive indices, the stiffness
dependence on size can be calculated and accurate size
measurements obtained. Our recent advances in model-
ing of optical trapping of non-isotropic and non-spherical
particles will allow us to extend the technique to more
complex systems in the future.

In conclusion, we have developed and demonstrated
a novel technique for the measurement of the refractive
index of single microscopic particles. The technique has
potential for application to a range of problems and is
compatible with standard microscopy and microfluidic
devices. The applicability of rigorous modeling of optical
tweezers in the strong interference regime (1-5 µm) for a
wide parameter range is demonstrated.

The contributions of Katrina Seet and Dr. Robert
Vogel, in particular particle synthesis and transmission
spectroscopy, are greatly acknowledged.
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