
Numerical Modelling with Python and XML

Lutz Gross, Hans Mühlhaus, Elspeth Thorne and Ken Steube

Abstract. In this paper we continue the development of our python-based
package for the solution of partial differential equations using spatial dis-
cretization techniques such as the finite element method (FEM), but we take
it to a higher level using two approaches: First we define a Model class ob-
ject which makes it easy to break down a complex simulation into simpler
sub-models, which then can be linked together into a highly efficient whole.
Second, we implement an XML schema in which we can save an entire simu-
lation. This allows implementing check-pointing and also graphical user inter-
faces to enable non-programmers to use models developed for their research.
All this is built upon our escript module, which makes it easy to develop
numerical models in a very abstract way while using the computational com-
ponents implemented in C and C++ to achieve extreme high-performance for
time-intensive calculations.

Keywords. Partial Differential Equations, Mathematical Modelling, XML schema,
Drucker–Prager Flow.

1. Introduction

These days numerical simulation is a team effort combining a variety of skills. In
a very simple approach we can identify four groups of people being involved: re-
searchers using numerical simulation techniques to improve the understanding and
predict phenomenas in science and engineering, modelers developing and validating
mathematical models, computational scientists implementing the underlying nu-
merical methods, software engineers implementing and optimizing algorithms for a
particular architecture. Each of these skill levels uses their individual terminology:
researcher is using terms such stress, temperature and constitutive laws, while
the modeler is expressing his models through functions and partial differential
equations. The computational scientist is working with grids, matrices. Software
engineers is working with arrays and data structures. Finally, an object such as
stress used by a researcher is represented as a suitable, maybe platform dependent,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14984726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Gross, Mühlhaus, Thorne and Steube

data structure after the modeler has interpreted as a function of spatial coordi-
nates and the computational scientists as values at the center of elements in a
finite element mesh. When moving from the software engineer’s view towards the
view of the researcher the data structures undergo an abstraction process finally
only seeing the concept of stress but ignoring the fact that it is a function in the
L2 Sobolev space and represented by using a finite element mesh.

It is also important to point out that each of these layers has an appropriate
user environment. For the researcher, this is a set input files describing the prob-
lem to be solved, typically in XML [5]. Modelers, mostly not trained as software
engineers, prefer to work in script-based environments, such as python [7] while
computational scientists and software engineers are are working in C and C++ to
achieve best possible computational efficiency.

Various efforts have been made to provide tools for computational scientists
to develop numerical algorithms, for instance PETSc [13] which is widely used.
These tools provide linear algebra concepts such as vectors and matrices and hid-
ing data structures from the user. The need of researchers for an easy to use
environment has been addressed through various developments in problem solving
environments (PSEs) [8] which is some case can be a simple graphical user inter-
face. There were only a rather small number of activities towards environments
for modelers. Two examples for partial differential equation (PDE) based mod-
elling are ELLPACK [11] and FASTFLO [12]. Both products are using there own
programming language which is not powerful enough to deal with complex and
coupled problems in an easy and efficient way.

The escript module [1, 2] which embedded into python is an environment in
which modelers can develop PDE based models. It is designed to solve general,
coupled, time-dependent, non-linear systems of PDEs. It is a fundamental design
feature of escript that is not tight to a particular spatial discretization technique
or PDE solver library. It is seamlessly linked with other tools such as linear algebra
tools [14] and visualization tools [15].

In this paper we will give an overview into the basic concepts of escript

from a modellers point of view We will illustrate its usage for implementing the
Drucker–Prager flow model. In the second part we will present the modelframe

module within escript. It provides a framework to implement mathematical models
as python objects which then can be plugged together to build simulations. We
illustrate this approach for the Drucker–Prager flow and show how this model can
be linked with a temperature advection–diffusion model without modifying the
codes for any of the models. We will then discuss how XML can be used to set
simulation parameters but also to define an entire simulation from existing models.
The XML files provide an ideal method to build simulations out of PSEs or from
web services. The presented implementation of the Drucker-Prager flow has been
validated on some test problems but as it not the purpose of the paper to discuss
models no results are presented.

Numerical Modelling with Python and XML 3

2. Drucker–Prager Flow Model

2.1. The General Framework

We will illustrate the concepts for the deformation of a three-dimensional body
loaded by the time-dependent volume force fi and by the surface load gi. If ui

and σij defines the displacement and stress state at a given time t and dt gives a
time increment the general framework for implementing a model in the updated
Lagrangian framework is given in the following form:

0. start time integration, set t = 0
1. start iteration at time t, set k = 0

1.0. calculate displacement increment dui from σ−

ij and current force fi.
1.1. update geometry
1.2. calculate stretching Dij and spin Wij from vi.

1.3. calculate new stress σij from σ−

ij using Dij and Wij .
1.4. update material properties from σij

1.5. if not converged, k ← k + 1 and goto 1.0.
2. set t← t + dt and goto 1.

The superscript ′−′ refers to values at the previous iteration or time step. To
terminate the iteration process at a time step one can use the relative changes in

the velocity vi = u−u−

dt
:

‖du‖∞ ≤ ζiter‖u‖∞ (2.1)

where ‖.‖∞ denotes the maximum norm and ζiter is a given positive relative tol-
erance. Alternatively, one can check the change stress.

The keep the relative time integration error below the given tolerance ζtime

the time step dt for the next time step should be kept below dtmax given by

dtmax =
dt ‖u‖∞
‖v − v−‖∞

ζtime . (2.2)

which controls an estimate of the local time discretization error for the total dis-
placement u.

The stretching Dij and spin Wij are given as the symmetric and non-symmetric
part of the the gradient of dui:

Dij =
1

2
(dui,j + duj,i) (2.3)

Wij =
1

2
(dui,j − duj,i) (2.4)

where where for any function Z Z,i denotes the derivative of Z with respect to xi.
To calculate the displacement increment dui one has to solve a partial dif-

ferential equation on the deformed domain Ω− which takes in tensor notation the
form

−(Sijkl duk,l),j = (σ−

ij −K εthδij),j + fi (2.5)

where K is the bulk modulus and Sijkl is the tangential tensor which depends
on the rheology that is used. The argument of divergence expression in the right

4 Gross, Mühlhaus, Thorne and Steube

hand side is the Cauchy stress at time t−dt with the mechanical stress σ−

ij at time

t − dt. The term K εthδij is the thermal stress where the thermal volume strain
εth is given as

εth = θ (T − Tref) (2.6)

with thermal expansion coefficient θ and current temperature T and the reference
temperature Tref . In geoscience applications, fi typically takes the form of the
gravitational force

fi = −ρ gδid (2.7)

which acts oppositely to the positive d direction. The constants g is the gravity
constant and ρ is the density which is often given in the form

ρ = ρ0(1− θ(T − T0)) (2.8)

where ρ0 is the density at reference temperature T0.
The displacement increment has to fulfill the conditions

nj(Sijkl duk,l + σ−

ij −K εthδij) = gi (2.9)

on the boundary of the domain where gi is a possibly time-dependent surface load.
Moreover, the displacement increment has to meet a constraint of the form

du = dt · Vi on Γi (2.10)

where Γi is a subset of the boundary of the domain. At the first iteration step Vi

gives the i-th velocity component acting at the subset Γi of the deformed domain
and is set to zero for the following steps.

2.2. The Drucker-Prager Model

For the Drucker-Prager Model the stress update is done in the following way: First
the stress state at time t + dt due to elastic deformation σe

i,j is calculated:

σe
ij = σ−

ij+K εthδij+dt

(

2G Dij + (K −
2

3
G)Dkkδij + Wikσ−

kj − σ−

ikWkj

)

(2.11)

where G is the shere modulus. Then Based on the elastic trial stress σe
i,j the yield

function F is obtained as The yield function is evaluated

F = τe − α pe − τY (2.12)

where

pe = −
1

3
σe

kk (2.13)

τe =

√

1

2
(σe

ij)
′(σe

ij)
′ (2.14)

with the deviatoric stress

(σe
ij)

′ = σe
ij + peδij . (2.15)

The value τY is current shear length and α is the friction parameter which both
are given function of the plastic shear stress γp.

Numerical Modelling with Python and XML 5

We want to have the yield function to be non-negative. The factor χ marks
when the yield condition is violated:

χ =

{

0 for F < 0
1 else

(2.16)

With current hardening modulus h = dτY

dγp and dilatency parameter β, which is

again a given function of the plastic shear stress γp, we set the plastic shear stress
increment to

λ = χ
F

h + G + βK
(2.17)

We then can calculate a new stress as

τ = τe − λG (2.18)

σij =
τ

τe
(σe

ij)
′ − (pe + λβK)δij (2.19)

Finally we can update the plastic shear stress

γp = γp− + λ (2.20)

and the harding parameter

h =
τY − τ−

Y

γp − γp−
(2.21)

For the Drucker-Prager model the tangential tensor is given as

Sijkl = G(δikδjl + δjkδil) + (K − 2

3
G)δijδkl

+(σ−

ijδkl − σ−

il δjk) +
1

2
(δikσ−

lj − δjlσ
−

ik + δjkσ−

il − δilσ
−

kj)

−
χ

h + G + αβK

(

G(σij)
′

τ
+ βKδij

) (

G(σkl)
′

τ
+ αKδkl

)

(2.22)

When implementing the model we have to keep track of the total stress σ, plastic
stress γp, the shear length τY as well as displacement u and velocity v.

It is also important to keep in mind that the model is temperature-dependent
through the thermal strain and through the temperature-dependent density as well
as the standard advection-diffusion equation, the so called heat equation [4].

3. Implementation

The key problem in the Drucker-Prager model is to solve a linear, steady partial
differential equation. The coefficients of the PDE are given by arithmetic expres-
sions of the PDE solutions. In this chapter we outline the concept of the python

module escript [1, 2] and demonstrate its usage in the Drucker-Prager model.

6 Gross, Mühlhaus, Thorne and Steube

3.1. Spatial Functions

The solution of a PDE as well as the PDE coefficients are functions of the spatial
coordinates varying within a domain. In escript a domain is represented in a
Domain class object. The Domain class object does not only hold information about
the geometry of the domain but also about a PDE solver library that is used to
solve PDEs on this Domain. In particular, the Domain class object defines the
discretization technique, such as finite difference method (FDM) or finite element
method [3], which is used to represent spatial functions on the domain. In the
current implementation escript is linked to FEM solver library finley [2] but the
design is open and other libraries could be implemented.

A spatial function is represented through its values on sample points. For
instance, in the context of the FEM the solution of a PDE is represented by it
values on the nodes while PDE coefficients are typically represented by their values
at the element centres. The appropriate representation of a function is chosen by
escript but, if required, can be controlled by the user.

Spatial functions can be manipulated by applying unary operations, for in-
stance cos, sin, log) and be combined through binary operations, for instance +, -
,* , /. When combining spatial functions with different representations escript uses
interpolation to make the representations of the arguments compatible for combi-
nation. If in the FEM context a function represented by it values on the element
centers and a function represented by it values on the nodes is added together,
interpolation from nodes to element centers will be performed before the addition
takes place.

In the current version of escript, three internal storage schemes for spatial
function representation are used. In the most general case individual values are
stored for each sample point. Typically this expanded storage scheme is used for
the solution of a PDE. In many cases PDE coefficients are constant. In this case, it
would be a waste of memory and compute time to use the expanded storage scheme.
For this case escript stores a single value only and refers to this value whenever the
value for a sample point is requested. The third form represents piecewise constant
functions which are stored as a dictionary. The keys of the dictionary refer to tags
assigned to the sample points at the time of mesh generation. The value at a
sample point is accessed via the tag assigned to sample point and the associated
value of the tag in the dictionary. Typically, this technique is used when a spatial
function is defined according to its location in certain subregions of the domain,
for instance in the region of a certain rock type. When data objects using different
storage schemes are combined, escript chooses an appropriate storage scheme in
which to store the result.

The following python function implements stress update for the Drucker-
Prager model as presented in section 2.2. It takes the last stress σ−

ij (=s_old),

the last plastic stress γp− (=gamma_p_old), displacement increment dui (=du),
the thermal volume strain increment εth (=deps_th) and the relevant material
parameters to return the new stress and plastic stress:

Numerical Modelling with Python and XML 7

from escript import *

def getStress(du,s,gamma_p_old,deps_th,tau_Y,G,K,alpha,beta,h):

g=grad(du)

D=symmetric(g)

W=nonsymmetric(g)

s_e=s+K*deps_th*kronecker(3)+ \

2*G*D+(K-2./3*G)*trace(D)*kronecker(3) \

+2*symmetric(matrix_mult(W,s)

p_e=-1./3*trace(s_e)

s_e_dev=s_e+p_e*kronecker(3)

tau_e=sqrt(1./2*inner(s_e_dev,s_e_dev))

F=tau_e-alpha*p_e-tau_Y

chi=whereNonNegative(F)

l=chi*F/(h+G+alpha*beta*K)

tau=tau_e-l*G

s=tau/tau_e*s_e_dev+(p_e+l*beta*K)*kronecker(3)

gamma_p=gamma_p+l

return s, gamma_p

Each of the arguments, with the exception of v, can be a python floating point
number or an escript spatial function. The argument v must be an escript spatial
function. The Domain attached to it is the Domain of the returned values. Their
representations are determined by the grad call, which returns the gradient of
its argument. In the FEM context, the argument of grad must be represented by
its values on the nodes while the result of grad is represented by its values at the
element centers. This representation is carried through to the return values. Notice
that this function does not depend on whether values are stored on the nodes or
at the centers of the elements, and so it may be re-used without change in any
other model, even a finite difference model.

3.2. Linear PDEs

The LinearPDE class object provides an interface to define a a general, second
order, linear PDE. The Domain class object attached to a LinearPDE class object
defines the domain of the PDE but also defines the PDE solver library to be used
to solve the PDE.

The general form of the PDE for an unknown vector-valued function ui rep-
resented by the LinearPDE class is

−(Aijkluk,l + Bijkuk),j + Cikluk,l + Dikuk = −Xij,j + Yi (3.1)

The coefficients A, B, C, D, X and Y are functions of their location in the domain.
Moreover, natural boundary conditions of the form

nj (Aijkluk,l + Bijkuk −Xij,j) = yi (3.2)

can be defined. In this condition, (nj) defines the outer normal field of boundary of
the domain and y is a given function. To set values of ui to ri on certain locations

8 Gross, Mühlhaus, Thorne and Steube

of the domains one can define constraints of the form

ui = ri where qi > 0 (3.3)

where qi is a characteristic function of the locations where the constraint is applied.
From inspecting equation 2.5 and equation 2.9 we can easily identify the

value for the PDE coefficient to calculate the displacement increment dui:

Aijkl = Sijkl, Yi = fi, X = σ−

ij −Kεthδij and yi = gi . (3.4)

The constraints for dui, see equation 2.10 is defined by

ri = dt · Vi and qi(x) =

{

1 for x ∈ Γi

0 otherwise
(3.5)

If the function getTangentialTensor returns the tangential operator, the follow-
ing function returns a new displacement increment du by solving a linear PDE for
the Domain class object dom:

from escript import LinearPDE

def getDu(dom,dt,s,dt,deps_th,tau_Y,G,K,alpha,beta,h,f,g,Gamma,V):

pde=LinearPDE(dom)

S=getTangentialTensor(s,tau_Y,G,K,alpha,beta,h)

pde.setValue(A=S, X=s-K*deps_th*kronecker(3), \

Y=f, y=g)

pde.setValue(q=Gamma, r=dt*V)

du=pde.getSolution()

return du

It would be more efficient to create one instance of the LinearPDE class object
and to reuse it for each new displacement increment with updated coefficients.
This way information that are expensive to obtain, for instance the pattern of the
stiffness matrix, can be preserved. The following function returns the tangential
tensor S:

from escript import *

def getTangentialTensor(s,,tau_Y,G,K,alpha,beta,h):

k3=kronecker(3)

p=-1./3*trace(s)

s_dev=s+p*k3

tau=sqrt(1./2*inner(s_dev,s_dev))

chi=whereNonNegative(tau-alpha*p-tau_Y)

tmp=G*s_dev/tau

sXk3=outer(s,k3)

k3Xk3=outer(k3,k3)

S= G*(swap_axes(k3Xk3,0,3)+swap_axes(k3Xk3,1,3)) \

+ (K-2./3*G)*k3Xk3 \

+ (sXk3-swap_axes(swap_axes(sXk3,1,2),2,3)) \

+ 1./2*(swap_axes(swap_axes(sXk3,0,2),2,3) \

-swap_axes(swap_axes(sXk3,0,3),2,3) \

Numerical Modelling with Python and XML 9

-swap_axes(sXk3,1,2) \

+swap_axes(sXk3,1,3)) \

- outer(chi/(h+G+alpha*beta*K)*(tmp+beta*K*k3),tmp+alpha*K*k3)

return S

The values chi, s_dev and tau calculated in a call of getStress could used in
this calculation of the new stress could be reduced in getTangentialTensor.

4. Modelling Framework

From the functions presented in the previous section 3 one can easily build a
time integrations scheme to implement a Drucker-Prager flow model through two
nested loops. The outer loop progresses in time while the inner loop iterates at
time step until the stopping criterion (2.1) is fulfilled. The time step size is con-
trolled by criterion 2.2. This straight-forward approach has the drawback that the
code has to modified when the temperature dependence becomes time-dependent.
Then a advection-diffusion model for the temperature has to be worked into the
code which may use a different time step size. In addition, the thermal strain εth

is changing over time but also material parameters, for instance density, see equa-
tion (2.8), may become temperature-dependent. The coding effort to implement
these components is not large but has the big drawback that the submodel, such
as the Drucker-Prager model, the temperature advection-diffusion model and the
material property tables, loose their independence. However, from a software de-
velopment point of view it is highly desirable to keep the models independent in
order to test and maintain them separately and reuse models in another context.

4.1. Linkable Objects

To resolve this problem, a model, such as Drucker-Prager flow model, is imple-
mented in a python class. Model parameters, such as external force Fi or state
variables, such as stress σij , are defined as object attributes. For instance if the
class DruckerPrager implements the Drucker–Prager flow and Gravity the grav-
ity force (2.7) one uses

g=Gravity()

g.density=1000

flow=DruckerPrager()

flow.force=g.force

to assign a value to the density of the gravity force and then defines the gravity
force as the external force of the Drucker–Prager flow model. In the case of con-
vection model, the density is not constant but calculated from a temperature field
updated through the temperature model over time. However, the Gravity object
g has to use the most recent value of the density at any time of the simulation.
To accomplish this the escript module provides two classes LinkableObjects and
Link. A Link class object is a callable object that points to an attribute of the
target object. If Link class object is called the current value of the attribute of the

10 Gross, Mühlhaus, Thorne and Steube

target object is returned. If the value is callable, the value is called and the result
is returned. So, similar to a pointer in C, a Link class object defines another name
for a target value, and is updated along with the target object.

A LinkableObjects class object is a standard python object with a modified
__getattr__ method: when accessing its attributes it behaves like a usual python

object except if the value is a Link class object. In this case, the link is followed,
that means the value is called and the result returned. The mechanism allows to
link an attribute of LinkableObjects class object with the attribute of another
target object such that at any time the object uses the value of the target object.

The following script shows how a gravity force in flow model can be defined
where the density of the gravity model is temperature-dependent:

mat=MaterialTable()

mat.T_0=20

temp=Temperature()

g=Gravity()

flow=DruckerPrager()

mat.T=Link(temp,"temperature")

g.density=Link(mat,"rho")

flow.force=Link(g,"force")

The four classes MaterialPropertiesTemperature, Gravity and DruckerPrager

implementing a material property table, a temperature advection-diffusion model,
a gravity force model and a Drucker-Prager flow model. The temperature parame-
ter T of the material property table is provided by the temperature model attribute
temperature. The density rho provided by the material property table is fed into
the gravity model which then provides the external force for the flow model.

The model (2.8) of a temperature-dependent density can be implemented in
the following way:

class MaterialProperties(LinkableObject):

def rho(self):

return self.rho_0*(1.-self.theta*(self.T-self.T_0))

If the temperature T is linked to a time-dependent temperature model via a Link

object the method rho will always use the most recent value of the temperature
even if it is updated by the target temperature model. On the other hand, if an
attribute of another model, for instance the attribute density of a Gravity class
object, is linked against the method rho of an instance of the MaterialProperties
class, accessing the attribute will call the the method rho and use its return value
calculated for the current temperature. Through the chain of links the Drucker-
Prager flow model is coupled with the temperature modules. It is pointed out that
if the temperature model considers advection, the velocity updated by Drucker-
Prager flow model is referenced by the temperature model which produces a loop
of references requiring an iteration on a time step.

Numerical Modelling with Python and XML 11

4.2. Models

Implementing models as LinkableObject class objects solves the problem of defin-
ing the data flow of coupled models but we also need an execution scheme for
individual models in order to be able to execute a set of coupled models with-
out changing any of involved models. An appropriate execution scheme is defined
through the Model class of the modelframe module. The Model class which is a
subclass of the LinkableObject class provides a template for a set of methods
that have to be implemented for a particular model. The Model class methods are
as follows:

• doInitialization: This method is used to initialize the time integration
process. For the flow model this method initializes displacements and stress
for time t = 0 and to create an instance of the LinearPDE object used to
update the displacement through equation (2.5).

• getSafeTimeStepSize: This method returns the maximum time step size
that can be used to safely execute the next time step of the model. For the
flow model the time step size defined by condition (2.2)) is returned.

• doStepPreprocessing: This method prepares the iterative process to be ex-
ecuted on a time step. Typically, this function will set an initial guess for the
iterative process to run on a time step.

• doStep: This method performs a single iteration step to update state variables
controlled by the model due to changes in input parameters controlled by
other models. For the Drucker–Prager flow model the doStep perform a single
iteration step by solving the PDE (2.5) and updating the stress via (2.19).

• terminateIteration: The method returns True if the iterative process on a
time step can be terminated. Typically, a stopping criterion of the form (2.1)
is checked.

• doStepPostprocessing: This method finalizes a time step, typically by shift-
ing the current values of state variables into the buffer of the previous time
step.

• finalize: The method returns True is the time integration is finalized. Typ-
ically this method checks the current time against a given end time.

• doFinalization: This method finalizes the whole modeling run, typically by
closing files and cleaning up.

Any Model class object is run in the following way:

m=Model()

m.doInitialization()

while not finalize():

dt=m.getSafeTimeStepSize(dt)

m.doStepPreprocessing(dt)

while not m.terminateIteration(): m.doStep(dt)

m.doStepPostprocessing(dt)

m.doFinalization()

12 Gross, Mühlhaus, Thorne and Steube

This scheme is executed by the Simulation class, which will be discussed in the
next section 4.3.

The following sub-class of the Model class implements the Drucker–Prager
flow model:

class DruckerPrager(Model):

def doInitialization(self):

self.pde=LinearPDE(self.domain)

self.stress=Tensor(0.,Function(self.doamin))

self.displacement=Vector(0.,Solution(self.doamin))

self.velocity=Vector(0.,Solution(self.doamin))

self.t=0

def getSafeTimeStepSize(self):

return dt*Lsup(u)/Lsup(self.velocity-self.velocity_old)*self.zeta

def doStep(self,dt):

S=self.getTangentialTensor()

pde.setValue(A=S, X=self.stress,Y=self.force)

self.du=self.pde.getSolution()

self.displacement=self.displacement+self.du

self.velocity=(self.displacement-self.displacement_old)/dt

self.stress=self.getStress()

def terminateIteration(self,dt):

return Lsup(self.du)<=self.zeta*Lsup(self.displacement)

def doStepPostprocessing(self,dt):

self.velocity_old=self.velocity

self.t+=dt

def finalize(self):

return self.t<self.t_end

Omitted Model class methods are empty. The functions getStress and getTangentialTensor

introduced in section 3.2 are turned into class methods. Function parameters are
now accessed as class attributes.

4.3. Simulations

The Simulation class controls the execution of a list of submodels. It is an imple-
mentation of the Model class, where each Modelmethod executes the corresponding
method of all the submodels: The getSafeTimeStepSize returns the minimum of
all step sizes required by the submodels. If all submodels terminate their iterative
process terminateIteration returns True. The simulation is terminated by the
finalize method if any of the submodels is to be finalized. The doStep method
iterates over all submodels until all submodel indicate convergence.

The following script outlines the usage of the Simulation class for construct-
ing and running a coupled temperature diffusion and Drucker-Prager flow model:

mat=MaterialTable()

temp=Temperature()

Numerical Modelling with Python and XML 13

g=Gravity()

flow=DruckerPrager()

s=Simulation([temp,mat,g,flow])

s.run()

The couplings between the models as shown in section 4.1 have been omitted. The
run method of the Simulation class executes its Model methods as shown in the
previous section 4.2. At a time step, the simulation iterates over the submodels
until all submodels have converged. The execution order is defined by the order of
the models in Simulation class argument. Alternatively, one can iterate over the
flow model only and use the temperature from the previous time step. This can
be achieved through

Simulation([temp,mat,g,Simulation([flow])).run()

where the convergence tolerance in the temperature model has to be chosen appro-
priately. Note that visualization functionality, for instance to create a movie of the
velocity field, can be implemented as a Model class where in the doStepPostprocessing
method the velocity field is rendered after for each time step, while the doFinalization
method creates the movie from the frames.

It is pointed that the coupling of the models does not require any knowledge
of the algorithms being used to implement the model. Furthermore, the codes
implementing a model are not altered to perform the coupling. The coupling is
based purely on the submodel parameters. This high-level approach is possible
because of the abstraction level that is provided by the escript environment.

5. Simulation and XML

Concurrent to the modeling framework, an XML dialect called EsysXML has been
developed with the objective to store simulations in a transportable form, to define
the coupling of models and to allow the creation of dynamic templates of model
interfaces.

5.1. XML Model Interface

The parameters used to link models are called external parameters, and are stored
in a Model class object. These parameters may be set by the programmer or
by another model. The Model also stores internal parameters used in the various
methods implementing the model. For instance for the Model class DruckerPrager
introduced in section 4.2 domain, force, stress , displacement and velocity

are external parameters while pde and t are internal parameters that are unavail-
able to other models. External parameters are exposed via the declareParameter
method called at Model class object initialization. For example, the Model class
DruckerPrager is written in the following way:

class DruckerPrager(Model):

def __init__(self):

Model.__init__(self)

14 Gross, Mühlhaus, Thorne and Steube

self.declareParameters(domain=None, force=0., \

stress=0., displacement=0., \

velocity=0.)

This explicit declaration restricts the necessary input and output parameters that
are exposed on a user-interface level. The XML representation of a Model class
object includes all parameters and their current values, which could be Link class
objects. The python implementation of a model itself is not stored in XML, only
the data and the links between models.

A Simulation class object can be written into a XML file using the EsysXML.
This includes all submodels, their external parameter and values and possibly links
between the submodels. This file can be edited using any text editor to change
value of external parameters, introduce new models and set or remove couplings
between models. A Simulation class object can be build from the XML file. The
parser uses the standard python XML tools, packaged in PyXML [9]. Primarily,
minidom is used to parse and generate XML content. It is a lightweight, simple
implementation of the standard Document Object Model (DOM) interface, and
is fast. An important application of writing Simulation class objects to XML is
automated check-pointing.

5.2. Technical specifications of EsysXML

A diagram of the XML schema [6] used by EsysXML is included in Figure 1 at
the end of this paper.

The XML begins with an Esys tag, which includes a single Simulation.
That Simulation contains one or more components, each of which may be either
a Model or another Simulation. The ranks of the Component objects tell the order
in which they are to be executed. Each Model includes one or more Parameter

objects defined by a type (float, string or Link) and the name and value of
the parameter. Whether or not a parameter is internal or external (available to
other models) is determined by the use of declareParameters in the python script
which implements the model.

The Link items, require that a persistent, deterministic way of preserving
associations between linked Model class objects. This is achieved by generating a
unique reference identification number for each Model class object which defines
the id attribute. For a Link item the Target XML attribute specifies the reference
identification number of the target Model item while the XML attribute Attribute
specifies the name of Parameter item of the target Model.

6. Conclusion

The design we have chosen for escript simplifies the development of complex yet
efficient models by breaking them down into a series of simpler steps. In the ex-
ample above, we developed a Drucker-Prager flow model and a gravity model, and

Numerical Modelling with Python and XML 15

then later on we linked them together with a temperature adevection-diffusion
model to create a more complex simulation.

By modifying the standard python mechanism for accessing object attributes,
we allow sharing values between models without creating any burden on the mod-
eller. The sharing of parameters between models is very efficient due to our use of
links.

By adding the ability to store an entire simulation in XML format we have
created a new level of control over a model. Using this technique we will be able
to check-point simulations, share simulations with collaborators, and also provide
a Graphical User Interface, such as in a web page, to define the parameters of a
simulation and adjust models in a simulation. Once a modeller has developed a
simulation in python it may then be used and adjusted by a researcher who is not
burdened to do further programming.

Acknowledgment

Project work is supported by Australian Commonwealth Government through
the Australian Computational Earth Systems Simulator Major National Research
Facility and the Australian Partnership for Advanced Computing, Queensland
State Government through the Smart State Research Facility Fund, The University
of Queensland, the Queensland Cyberinfrastructure Foundation and SGI Ltd.

References

[1] Gross, L. and Cochrane, P. and Davies, M. and Mühlhaus, H. and Smillie J.: Es-

cript: numerical modelling in python. Proceedings of the Third APAC Conference on
Advanced Computing, Grid Applications and e-Research (APAC05),(2005).

[2] Davies, M. and Gross, L. and Mühlhaus, H. -B.: Scripting high-performance Earth
systems simulations on the SGI Altix 3700. Proceedings of the 7th international con-

ference on high-performance computing and grid in the Asia Pacific region, (2004).

[3] Zienkiewicz, O. C. and Taylor, R. L.: The Finite Element Method. 5th Edition, But-
terworth Heinemann, (2000).

[4] R. E. Williamson: Differential Equations and Dynamical Systems, McGrawHall
(2001).

[5] http://www.w3.org/XML/ (2006), [on-line].

[6] C. M. Sperberg-McQueen and H. Thompson: XML Schema,
www.w3.org/XML/Schema (2006), [on-line].

[7] M. Lutz, Programming Python, 2nd Edition O’Reilly (2001).

[8] E. N. Houstis, E. Gallopoulos, J.R. Rice, R. Bramley: Enabling Technologies for Com-

putational Science Kluwer Academic Publishers (2000).

[9] http://pyxml.sourceforge.net/ (2006), [on-line].

[10] D. J. Higham, N. J. Higham, MATLAB Guide., SIAM (2000).

[11] J. R. Rice, R .F. Boisvert, Solving Elliptic Problems Using ELLPACK. Springer
Series in Computational Software 2 (1985).

16 Gross, Mühlhaus, Thorne and Steube

[12] X.–L. Luo, A. N. Stokes, N. G. Barton, Turbulent flow around a car body - report of

Fastflo solutions Proc. WUA-CFD Conference, Freiburg (1996).

[13] P. Pacheco, Parallel Programming with MPI., Morgan-Kaufmann (1997).

[14] P. Greenfield, J. T. Miller, J. Hsu, R. L. White. An Array Module for Python. in
Astronomical Data Analysis Software and Systems XI (2001).

[15] The Kitware, Inc.: Visualization Toolkit User’s Guide. Kitware, Inc publishers.

Lutz Gross
Earth Systems Science Computational Center
The University of Queensland
St. Lucia., QLD 4072
Australia
e-mail: l.gross@uq.edu.au

Hans Mühlhaus
Earth Systems Science Computational Center
The University of Queensland
St. Lucia., QLD 4072
Australia
e-mail: h.muhlhaus@uq.edu.au

Elspeth Thorne
Earth Systems Science Computational Center
The University of Queensland
St. Lucia., QLD 4072
Australia
e-mail: e.thorne@uq.edu.au

Ken Steube
Earth Systems Science Computational Center
The University of Queensland
St. Lucia., QLD 4072
Australia
e-mail: k.steube@uq.edu.au

Numerical Modelling with Python and XML 17

Figure 1. EsysXML Schema Tree

