
Implementing a Secure Annotation Service

Imran Khan, Ronald Schroeter, Jane Hunter

The School of ITEE
The University of Queensland,

St Lucia, Queensland, Australia
{imrank, jane}@itee.uq.edu.au

Abstract: Annotation systems enable “value-adding” to digital resources by the
attachment of additional data in the form of comments, explanations, references,
reviews, corrections and other types of external, subjective remarks. They
facilitate group discourse and capture collective intelligence by enabling
communities to attach and share their views on particular data and documents
accessible over the Web. Annotation systems vary greatly with regard to the
types of content they annotate, the extent of collaboration and sharing they
allow and the communities which they serve. However within many
applications, there is a need to restrict access to the annotations to a particular
group of trusted users - in order to protect intellectual property rights or personal
privacy. This paper describes a secure, open source annotation system that we
have developed that uses Shibboleth and XACML to identify and authenticate
users and restrict their access to annotations stored on an Annotea server.

1 Introduction

 Annotations have long been used as a a tool to facilitate collaborative scholarly discourse.
They enable users to attach additional material such as comments, notes, queries, assessments,
references to resources such as documents, images or datasets. When applied to digital resources
shared via the Web, they provide a very powerful collaborative tool - enabling the easy capture
and wide dissemination of individuals’ and group opinions of particular digital resources.

Currently available annotation systems vary widely with respect to the types of content they
annotate, the extent of collaboration and sharing they allow and the communities which they
serve [1]. Although they have been successfuly applied to domains including education [8-9],
research, medicine [10] and neuroscience [11] to enable the capture and exchange of metadata,
ideas, opinions and interpretations, evaluation of these applications indicates limitations in
existing commercial and prototype systems. Current systems are limited by: lack of
responsiveness, use of non-standard proprietary technologies; lack of authentication of the
annotations’ creator; limited search capabilities; lack of security mechanisms; inability to reply
to/stagger annotations; asynchronous sharing only ; limited media types supported; coarse
granularity of the annotations; unstructured annotations (single field, free text only).

The main focus of the work described within this paper is to provide annotation tools for
collaborators within eResearch environments – and particularly higher education environments.
A critical requirement for such a domain is the need to be able to restrict access to annotations

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14984644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

attached to a particular collection of digital resources, to a particular group of trusted colleagues
- for reasons of privacy, confidentiality or protection of intellectual property. Particularly in
eScience, the annotation or interpretation of the raw document or data, is often more valuable
than the resource it annotates. Also by providing researchers with a robust, reliable security
infrastructure, they may be more willing to engage in the exchange of views and ideas – a key to
successful inter-organizational collaboration.

The security requirements for annotations involve two levels of protection:
1. protecting the annotation server on which the annotations are stored, through some

form of authentication [3,4]
2. authenticating and protecting the individual annotations through the specification of

access policies defining permissable types of access by individual users or user types
(e.g, list, create, read, edit, delete) based on user attributes.

Within this paper we describe an open source implementation of a secure annotation service that
we have developed. Our implementation involves the combination and extension of a number of
existing open source technologies that are currently available and use open standards:

• Annotea – a Web-based annotation server developed by the W3C as part of the
Semantic Web initiative [16];

• Shibboleth – an Internet2 middleware initiative that enables identity management and
secure access to Web resources shared amongst multiple organizations [5];

• XACML (eXtensible Access Control Markup Language) – XML-based language for
defining and enforcing access control policies [25].

The remainder of this paper describes in more detail the secure annotation system that we have
built. The paper is structured as follows:

• Section 2 describes previous related activities in the development of annotation systems
and security mechanisms;

• Section 3 describes the overall architecture of our system and its main components:
• Section 4 illustrates the user interface and system’s functionality;
• Section 5 provides an evaluation of the system to date, our conclusions and describes

future plans for this research.

2 Background and Previous Work

 Significant prior work has been carried out on both web-based annotation systems and on
identity management and role-based access control. Rather than re-invent the wheel, we carried
out an analysis of existing systems to determine if any currently available solutions satisfied our
needs and hence could be integrated, refined or extended.

2.1 Existing Annotation systems and Annotea

A survey of current Web-based annotation systems [1] reveals that they vary in the way in which
annotations may be attached, the way in which they are presented and in the access control
mechanisms. Some systems are designed for private use only whilst others permit sharing
amongst groups and/or public access. None of the surveyed systems provide the kinds of fine-
grained access control mechanisms that is required by collaborative teams of scientists engaging
in eResearch.

Through earlier work [3] we identified Annotea [16] as an ideal approach for implementing an
annotation server. Annotea is a Web-based annotation system that uses Resource Description
Framework (RDF) [14] to model annotations as a set of statements or assertions made by the
author. These annotations are then stored in a HTTP enabled server, which enables clients such
as Annozilla [24] and Amaya [23] to query, update, post, delete and reply to annotations.
Currently there are two publicly available implementations of annotation servers which use
Annotea: Zope [3] and W3C Perllib [4].

Figure 1: Koivunen et al Basic Annotation Schema [16]

A key strength of the Annotea protocol is that it uses open W3C standards such as RDF,
XPointer, XLink and HTTP. Figure 1 illustrates the RDF annotation schema used to describe
various properties of an annotation including its author, title, date of creation, body and
context. XPointer technology is used to point to a specific location within a structured Web
document and thus describe the context of an annotation. By choosing to use RDF, Annotea
makes it possible to easily adapt or extend the existing scheme to incorporate additional
information (e.g. what type of annotation it is, what language it is in, the type of resource that
it can annotate, structured annotations). The use of machine-processable RDF descriptions
also enables easier search, retrieval and linking of the annotations to related resources and
services using semantic web technologies (e.g., OWL, SWRL). Annotea can also be easily
extended to allow for the annotation of media types other than text e.g., images through the
use of SVG [15]. Vannotea [2] uses a similar approach to extend Annotea to enable the
annotation of videos. These applications and in particular the application of Vannotea to
Indigenous Knowledge Management [12] clearly identified the need to extend the Annotea
server to enable fine-grained access control to the annotations.

2.2 Identity Management and Shibboleth
Harris et. al. generated a comprehensive report describing AM systems used in the UK Higher
Education sector [7]. The most prominent systems identified included: Microsoft’s Passport,
Liberty Alliance, PAPI, WS-Security, Shibboleth and Athens. Of the six prominent systems,
only three fall into the category of systems targeted at the HE domain, while the other three
(Passport, Liberty Alliance and WS-Security) are primarily focused on providing a business-
centric solution. At present in the UK, the major AM solution is Athens, a system developed by
the UK HE community. Its key distinction is that it uses a single centralized database which
maintains a list of Athens username/passwords for all users with accounts at participating
institutions. Although Athens uses distributed administration and physical database replication,
it does not exhibit true Single Sign-on capability. The users’ username/password must be re-
entered for each new resource accessed.

The shortcomings of Athens lead to the emergence of projects such as Shibboleth. Morgan et al
[17] describe Shibboleth as “an open-source system that extends Web-based applications and
identity management for secure access to resources among multiple organizations.” Shibboleth
is based upon a number of open standard protocols including HTTP, XML, XML Schema,
XML Signature, SOAP (Simple Object Access Protocol). In particular it is dependent on:

• SAML [19] Security Assertion Markup Language for the exchange of assertions
between the Identity Providers and Service Providers

• eduPerson [26] – an EDUCAUSE initiative to define a standard set of person
attributes in higher education environments

Figure 2 illustrates a simplified view of a Shibboleth transaction. The two key entities in this
model are the Service Provider (SP)and the Identity Provider (IDP). Shibboleth is concerned
with securely transferring attributes from the Identity Provider to the Service Provider so that an
authoritative decision can be made. When a user attempts to access a Web resource, a process
called the SHAR (Shibboleth Attribute Requestor) intercepts the request. The SHAR then
interacts with a process on the IDP called the AA (Attribute Authority) which returns attributes
about the user which made the request. The SHAR can then pass the attributes on to a Resource
Manager on the SP which is responsible for making access control decisions. All of this
communication uses SAML assertions over HTTPS as a secure way of transferring the
attributes.

Figure 2: Shibboleth-Enabled Transaction [5]

2.3 XACML

As Lorch et al [18] explains, Shibboleth does not provide a dynamic and distributed approach to
access control. XACML enables us to address these issues. XACML (eXtensible Access
Control Markup language) is an XML-based language used to describe general purpose access
control policies as well as access control decision request/response language [25]. XACML is
composed primarily of 2 main language constructs: a) the syntax for defining the language and
b) the semantics for processing these policies. XACML policies are expressed in XML and must

conform to an XML schema that defines the language semantics. Policies are defined in a tree-
like structure as a set of rules pertaining to a particular resource and subject. The second
language construct of XACML are the requests and the responses to these requests, both of
which are also expressed as XML. Each request is composed of attributes associated with the
requesting user, the resource being acted upon, the action being performed on the resource and
environmental information. The response can be one of four specific types: Permit, Deny, Not
Applicable, and Intermediate. We have chosen to use XACML within this project to define
policies for access control of the annotation server. Specifically we will be using Sun’s XACML
implementation [29] which includes an XACML engine and necessary tools for its integration
into our annotation server.

3 System Architecture and Implementation

Figure 3 illustrates the overall architecture of the system. The diagram highlights the two key
components of the Shibboleth architecture: Identity Provider (IDP) and Service Provider (SP).

Figure 3: System Architecture

The annotation server within Figure 3 is part of the Shibboleth SP, and may be located on any of
the organizations/universities that are part of the federation. The organization which hosts the
annotation server is responsible for configuring the Shibboleth access control for the annotation
server so that it is shared with the other members of the federation. It is the responsibility of the
other universities to configure their IDP so that its users can gain access to the annotation server
and also provide the relevant authentication measures as agreed by the different universities
(circle of trust) as well as the process defined by the Shibboleth identity management system.

3.1 Client-side

The user’s client side application is responsible for the user interface that enables:
• the retrieval and display of annotated web resources;
• display, search and browsing of annotations (e.g. through a browser plugin or side-bar);
• creation, editing, deletion and attachment of annotations to Web resources;
• creation, editing, deletion and attachment of access policies to annotations.

It also has to process and exchange information in compliance with the Annotea protocol. It is
important to note that annotated objects may be outside the federation i.e., our system is not
responsible for managing access control of the resources that are being annotated.

A number of annotation tools already exist for annotating Web resources. In particular we
evaluated three potential client side annotation tools: Amaya [23], Annozilla [24], and Vannotea
[2]. Although suitable for attaching textual or hyperlink annotations to digital objects or
segments of those objects, and for viewing and browsing the annotations – none of these
applications provided an interface suitable for also specifying XACML access policies and
attaching them to the annotations.

Consequently we developed our own client-side application as an extension to Annozilla. The
initial version of the client was developed using Ajax (Asynchronous JavaScript and XML). Our
initial application runs on a Mozilla browser and uses the DOM API to download, display and
edit both annotations and policies – and to map between the user interface and XACML policy
definitions. More recently an additional client side application has been developed using C#
and .Net which appears as a side-bar to the Internet Explorer browser (see Figure 6).

3.2 Server-side

 The Server side consists of four main architectural components: the Annotation server,
XACML module; Shibboleth attributes and the Jena database.

3.2.1 The Annotation Server

This has been implemented using Java Servlets, hosted on a Tomcat server. In addition to the
operations defined by Annotea (posting, querying, downloading, updating, replying and deletion
of annotations) the server has been extended to support the fine-grained access policies required
by this project. Figure 4 illustrates the extensions which we have made to support the inclusion
of policies (in red). The first extension is the unique creatorID property of the annotation as
well as to the body and policy objects. It provides a unique user id (eduPersonPrincipalName)
to describe the creator of an annotation, body or policy. This user id must be unique both across,
as well as within organizations. The creatorID property is used to make decisions on delete and
update operations - only the creator of a resource is permitted to modify or delete that resource.

The other key extension is the policy object. This is an XACML policy referenced using a
unique URL. Policies are stored within the RDF repository, along with annotation bodies. They
can be created either during the posting of a new annotation or independently of an annotation.
Annotations are linked to particular policies through their policy property – which specified by a
URL. This approach has the benefit of enabling multiple annotations to use the same policy. If a
policy is modified, the changes will effect all those annotations associated with the policy.

Figure 4: Extended Annotea Model

Additional methods required to support the policy-related operations included:
1. addAnnotationPolicy: given an annotation URL, a creatorID and an XML representation

of the policy, this method adds the policy to the RDF repository.
2. addPolicy: given a creatorID and RDF representation of a policy, this method adds the

policy into the repository. This method is called when a policy is being added
independently of any annotation.

3. updatePolicy: given the URL of a policy and an XML representation of the policy itself
this method removes the existing policy with the given URL and adds a new policy with
the same URL.

4. getPolicyByCreatorID: given a unique creatorID, this method retrieves all policies that
have been created by the given creatorID.

3.2.2 XACML Module

This module is responsible for implementing the Role Based Access Control functionality. It
makes decisions on whether a particular request is permitted based upon the role/attributes of the
person making the request. The creation and reply of annotations is open to all users that are
permitted to access the annotation server. Updating and deleting of annotations and policies are
operations which are only available to the creator of the annotation or policy. There are three
types of actions permissible on annotations by users other than the creator:

• LIST – viewing of annotation metadata (e.g., author, creation date, language, etc.)
• READ – viewing of the annotation body.
• READ_POLICY – viewing of the annotation policy.

Figure 5 illustrates an example policy and example request. Each Policy consists of a set of
Rules related to whether a specific operation is permitted by a particular Subject. The Subject is

described by a set of attributes which identify the credentials of a particular user e.g. affiliation,
role, etc. In Figure 5a, the Staff policy is characterized by having an attribute
eduPersonAffiliation equal to “staff” . This is a relatively simple example. It is possible to define
groups using multiple attributes. In the example, staff are permitted to perform all three
operations on annotations whilst students are denied access to all three. The Request is for a
student to be permitted to read policy 123. Given the example policy, this request will be
denied.

Figure 5: (a) Example Policy and (b) Example Request

The XACML module’s Policy Decision Point (PDP) and Policy Enforcement Point (PEP) have
been integrated into the annotation server through three basic operations. The first operation
involves gathering attributes about the requester provided by the requestor’s origin site through
SAML assertions. Using these attributes it is possible to generate a XACML request based upon
the action to be performed (e.g. LIST, READ, READ_POLICY), the resource requested and the
attributes associated with the respective requestor or subject. The second part of the XACML
module involves locating the policy associated with the resource being requested. This is simply
a matter of querying the RDF repository to retrieve the policy of a particular annotation, given
its URL. Once the policy is retrieved, it can be compared with the request in order to make a
decision. Sun’s XACML implementation [29] generates an appropriate XACML response
specifying whether a request is permitted or not. If a request is not permitted (as in the above
example), then a request denied message is presented to the user.

3.2.3 Shibboleth (SAML) Attribute Assertions
The annotation server depends on Shibboleth to provide the necessary eduPerson attributes
about a requestor, as provided by its origin site (Identity Provider). These attributes are used by
the XACML module to make an access control decision. Shibboleth itself is a complex
architecture and further details are available from [27]. Each site which takes part in a
Shibboleth federation may consist of either/both an origin (identity provider) and target (service
provider). In terms of our annotation system, an annotators’ attributes are provided by their
origin (Identity Provider), which stores them in a directory service such as an LDAP server. The
annotation server is hosted on the target site. This makes the server available to members of
organizations that are part of the federation and have sufficient access privileges to the
annotation server as defined by the host organization.

3.2.4 Jena Database
Jena [28] provides an API to an RDF repository and in the context of this system is responsible
for enabling the storage and interfacing of data – this includes annotations, policies and
annotation bodies, which are all stored in the repository as RDF instances. Jena itself sits on top
of MySQL database which stores the RDF data as a relational database with a schema defined
by Jena. The annotation server uses the Jena API to interact with data stored in the MySQL
database. The Jena API also enables us to provide a search function over the annotations – on
the creator, date, language, in_reply_to fields.

4 The User Interface

For testing and illustrative purposes, we used the ePrints archive at the University of
Queensland. Figure 6 shows the user interface after a user with authenticated access to the
annotation server logs onto the system and retrieves a particular annotated publication. The
annotations are displayed in the top left-hand frame, the details of a selected annotation are in
the bottom left-hand frame and the publication is displayed in the right hand frame.

Figure 6: User Interface showing threaded annotations and annotation metadata

Figure 7 illustrates the side-bar interface which was developed to define policies. It consists of
two main parts; the definition of access control rights to a particular user group and the
definition of user groups (based on particular eduPerson attributes).

Figure 7: User Interface for defining access policies

Figure 8 illustrates the browser side-bar that provides the user interface for creating and
attaching an annotation. We have extended Annotea to support structured annotations that
contain a number of fields including hyperlinks, files, free text or controlled vocabularies.

Figure 8: User Interface for creating/editing an annotation

5 System Evaluation, Future Work and Conclusions

5.1 System Evaluation

To date, system evaluation has consisted of unit and system testing and limited usability tests.
A number of scenarios (involving the creation and updating of policies and annotations) were
used to thoroughly test the system. We also tested the various policies by logging in as users
with different attributes and by modifying the attributes directly in the LDAP directory. In all
cases the annotation server behaved as expected – restricting access to policies by users in
compliance with the rules.
Issues which did arise during the testing phase included:
• Current implementations of Annotea do not support queries on the content of the

annotation – only on a number of annotation attributes (e.g. author, date, language)
• Allowing the deletion and update of annotations, leads to the problem of having ‘hanging

references’ where replies refer to annotations which have either been updated or deleted.
• The use of URLs to identify policies enables them to be re-used and applied to multiple

annotations. However this causes complications when deleting policies – due to the
possible run-on effects when multiple annotations reference a single policy

• Obligations – this XACML feature could be useful e.g, to define a condition that when
an annotation has been replied to by someone, an email must be sent to the creator of the
annotation to inform them of this event.

• Shibboleth allows users to define attribute release policies – that restrict the release of
certain attributes for user privacy. This may be problematic if these attributes are included
in the policy rules. Users may be denied access to annotations that they have a right to
access.

5.2 Future Work

Aspects of this work that would benefit from further investigation include:

- User evaluation: detailed usability studies are required to acquire user feedback and
determine functional requirements of different user groups; how intuitive, friendly and
efficient the user interface is; and improvements, refinements and extensions to the system.
- Reduced reliance on Shibboleth: approaches other than Shibboleth and the eduPerson
profile will enable the annotation server to be used outside of the Higher Ed sector.
- Annotation of PDF files: the popularity of publishing scholarly information in PDF format
indicates increasing demand for the annotation of PDF documents. Extending Annotea in such
a way would lead to the use of proprietary technology but has huge potential.
- Annotation of databases and spreadsheets: scientists in particular are under increasing
pressure to publish their raw data sets with their journal publications. In parallel with this
trend will be a growing requirement for the ability to annotate databases and spreadsheets.
- Access policies based on document attributes: the current system is based on policies
associated with user attributes. It would be interesting to investigate policies that are based on
attributes or characteristics of the digital resources.
- Complex querying: the integration of Algae or some other advanced querying method
would allow more complex queries over the annotation server.
- Web browser extension: although Annotea compliant extensions exist for Web browsers,
they do not provide support for policy definitions. It is necessary to either extend an existing
Annotea plugin or develop a new extension.
- Non Web-based evaluation: to date the annotation server has only been tested on the
annotation of HTML documents. However it will become necessary to evaluate the annotation
of arbitrary document and media types (e.g., audio, video, image).
- Scalability: further investigation is required to determine how the system performs as the
number of annotations, the number of access policies and the number of users grows? Faster
alternatives to Jena may be required.
- Integration within Vannotea: Vannotea allows real-time collaboration of digital objects by
distributed groups of users through video-conferencing and application sharing. The aim is to
incorporate the work developed within this thesis for stand-alone asynchronous annotations,
within the Vannotea system.

5.3 Conclusions

This paper describes a secure annotation service that we have developed based on a combination
of existing open source technologies. Secure annotation servers are required in many domains
including telemedicine, peer reviews and eResearch. By providing clinicians and researchers
with the necessary support for maintaining confidentiality and protecting both intellectual
property and personal privacy associated with their annotations, they will be more willing to
share their views and engage in inter-organizational and inter-disciplinary collaborations. The
modular design and use of interoperable technologies makes it possible to easily extend the
server to support the annotation of additional resource types or to use it as a standard public
annotation server.

References
[1] R. M. Heck, S. M. Luebke, and C. H. Obermark, "A Survey of Web Annotation Systems",

2005, http://www.math.grin.edu/~luebke/Research/Summer1999/survey_paper.htm%.
 [2] R. Schroeter, J. Hunter, and D. Kosovic, "Vannotea - A Collaborative Video Indexing ,

Annotation and Discussion System For Broadband Networks," in Knowledge Markup and
Semantic Annotation Workshop, K-CAP 2003, Sanibel, Florida, 2003.

[3] "Zope Annotation Server", 2005, http://www.zope.org.
[4] "W3C - Perllib Annotations Server", 2005, http://www.w3.org/1999/02/26-

modules/User/Annotations-HOWTO.
[5] "Shibboleth Project - Internet2 Middleware", 2005, http://shibboleth.internet2.edu/.
[6] "EduServ Athens for education", 2005, http://www.athens.ac.uk/.
[7] N. Harris, S. McLeish, and J. Paschoud, "Access Management Report," London School of

Economics, Technical Report 2002.
[8] E. Desmontils, C. Jacquin, and L. Simon, "Dinosys: An Annotation Tool for Web-Based

Learning," Third International Conference ICWL, Beijing, China, 2004, pp. 59 - 66.
[9] M. Kirsch-Pinheiro, M. R. S. Borges, and J. V. d. Lima, "A framework for awareness support

in groupware systems," Comput. Ind., vol. 52, pp. 47-57.
[10] M. Lewkowicz, G. Lortal, A. Todirascu, M. Zacklad, and M.-F. Sriti, "A Web-based

Annotation System for Improving Cooperation in a Care Network," in ICWE Workshops,
2004, pp. 227-239.

[11] M. Gertz, K.-U. Sattler, F. Gorin, M. Hogarth, and J. Stone, "Annotating Scientific Images: A
Concept-Based Approach," in 14th International Conference on Scientific and Statistical
Database Management, 2002.

[12] J. Hunter, R. Schroeter, B. Koopman, and M. Henderson, "Using the Semantic Grid to Build
Bridges between Museums and Indigenous Communities," in GGF11 Semantic Grid
Applications Workshop, Homolulu, 2004.

[13] R. Schroeter, J. Hunter, and D. Kosovic, "FilmEd - Collaborative Video Indexing, Annotation
and Discussion Over Broadband Networks," in 10th International Multimedia Modelling
Conference, Brisbane, Australia, 2004.

[14] "Resource Description Framework (RDF) / W3C Semantic Web Activity", 2005,
http://www.w3.org/RDF.

[15] M.-R. Koivunen, "Extending the Annotea addressing schema", 2003,
http://www.w3.org/2001/Annotea/Plan/context/newcontext.html.

[16] M.-R. Koivunen, R. Swick, E. Prud'hommeaux, and J. Kahan, "Annotea Protocols", 2002,
http://www.w3.org/2001/Annotea/User/Protocol.html.

[17] R. L. Morgan, S. Cantor, W. Hoehn, and K. Klingenstein, "Federated Security: The Shibboleth
Approach," EDUCAUSE Quarterly, vol. 27, pp. 12-17, 2004.

[18] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah, "First experiences using XACML for
access control in distributed systems," in Proceedings of the 2003 ACM workshop on XML
security Fairfax, Virginia 2003.

[19] R. Cover, "Cover Pages: Security Assertion Markup Language (SAML)," OASIS, Technology
Reports 2005.

[20] Internet2, "Internet2 - Home," 2005. http://www.internet2.edu
[21] M.-R. Koivunen, "Annotea Project", 2005, http://www.w3.org/2001/Annotea.
[22] M.-R. Koivunen and J. Kahan, "Annotea: an open RDF infrastructure for shared Web

annotations," in Proceedings of the 10th international conference on World Wide Web, Hong
Kong, 2001

[23] W3C, "Amaya Home Page," 2005. http://www.w3.org/Amaya
[24] M. Wilson, "Annozilla (Annotea on Mozilla)," 2005. http://annozilla.mozdev.org
[25] T. Moses, "eXtensible Access Control Markup Language (XACML) Version 2.0," OASIS,

Specification Document Feb, 2005.
[26] EDUCAUSE, "EDUCAUSE | Net@EDU | eduPerson Object Class ", 2005.

http://www.educause.edu/eduperson
[27] T. Scavo and S. Cantor, "Shibboleth Architecture," Internet2, Technical Overview June, 2005.
[28] B. McBride, "Jena: A Semantic Web Toolkit," IEEE Internet Computing, vol. 6, pp. 55-59,

2002.
[29] Sun Microsystems, "Sun's XACML Implementation," 2005. http://sunxacml.sourcefore.net

