
Algebraic Reasoning for
Probabilistic Action Systems and

While-Loops

Larissa Meinicke
Ian J. Hayes

September 2006

Technical Report SSE-2006-05

Division of Systems and Software Engineering Research
School of Information Technology and Electrical Engineering

The University of Queensland
QLD, 4072, Australia

http://www.itee.uq.edu.au/∼sse

Algebraic Reasoning for

Probabilistic Action Systems and While-Loops

Larissa Meinicke and Ian J. Hayes

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

September 4, 2006

Abstract. Back and von Wright have developed algebraic laws for rea-
soning about loops in the refinement calculus. We extend their work to
reasoning about probabilistic loops in the probabilistic refinement calcu-
lus. We apply our algebraic reasoning to derive transformation rules for
probabilistic action systems and probabilistic while-loops. In particular
we focus on developing data refinement rules for these two constructs.
Our extension is interesting since some well known transformation rules
that are applicable to standard programs are not applicable to prob-
abilistic ones: we identify some of these important differences and we
develop alternative rules where possible. In particular, our probabilistic
action system and while-loop data refinement rules are new: they differ
from the non-probabilistic rules.

1 Introduction

Back and von Wright [5] have used algebraic rules from fixpoint theory to de-
rive transformation rules for loop constructs in the refinement calculus [2, 17].
These transformation rules have been used to reason about practical program
derivations, such as data refinement and atomicity refinement of action systems.
Such derivations were traditionally verified using either informal or semantic ar-
guments [5]. The algebraic approach has advantages over these methods because
it can be used to construct simpler proofs that are easier to check.

The basic algebraic properties of probabilistic programs in the probabilistic
refinement calculus [14] differ from those of standard1 programs. Hence not all
the rules for reasoning algebraically about loops developed by Back and von
Wright [5] apply in the probabilistic case. The goal of this paper is to develop an
equivalent set of rules that are applicable to probabilistic programs. We demon-
strate how these rules may be used to generate transformation rules for proba-
bilistic action systems and while-loops. Primarily, we focus on the construction
of data refinement rules for probabilistic action systems and while-loops, and we
analyse how our data refinement rules may be decomposed into rules that are
simpler to use in practice. Our forward simulation rule for probabilistic action

1 We use the term standard to mean nonprobabilistic.

2 Larissa Meinicke and Ian J. Hayes

systems is of particular interest, since the forward simulation rule for standard
action systems is not applicable in the probabilistic case.

Others (for example McIver and Morgan [18, 14] and Hurd [11]) have demon-
strated how to reason formally about probabilistic loops, using invariant based
techniques, directly in probabilistic program semantics. Our work on reasoning
algebraically about loop transformations may be seen as a complement to theirs,
and vice versa.

In the standard refinement calculus [2], the semantics of sequential imperative
programs that may include angelic and demonic nondeterminism can be repre-
sented using predicate transformers. The probabilistic refinement calculus [14]
is a generalisation of the refinement calculus, in which programs may also in-
clude discrete probabilistic choice. The semantics of probabilistic programs can
be modeled using expectation transformers [20, 13]. In this paper we use expecta-
tion transformers to describe the semantics of probabilistic programs. Our model
of expectation transformers differs slightly from that of Morgan and McIver [20,
13], since we have extended their model in order to facilitate the expression of
miraculous programs, which is required for modeling guards. Standard programs
that may include demonic, but not angelic nondeterminism, are characterised by
the conjunctive predicate transformers. Likewise the property that characterises
probabilistic programs that may include discrete probabilistic choice and de-
monic, but not angelic nondeterminism, is sublinearity+. In their paper, Back
and von Wright [5] primarily focused on developing algebraic rules for the con-
junctive predicate transformers. In this paper, we mainly focus on developing
algebraic transformation rules for sublinear+ expectation transformers. We find
that some well known algebraic laws that apply to conjunctive predicate trans-
formers, do not in general apply to sublinear+ expectation transformers. This is
mainly because, unlike conjunctive predicate transformers, sublinear+ expecta-
tion transformers do not necessarily satisfy right distributivity (R; (S uT) is in
general not equal to R; S u R; T). We identify some of these important rules
and supply alternative ones where possible.

The original loop algebra presented by Back and von Wright [5] was a concrete
algebra, that is it was verified with respect to an underlying semantic model.
In later work, von Wright constructed an abstract refinement algebra that is
independent of a particular program model [24]. Solin and von Wright [22] have
further extended this abstract refinement algebra with enabledness and termina-
tion axioms and used these to reason about action systems on an abstract level.
Their algebra is similar to the Kozen’s Kleene algebra with tests [12], and Co-
hen’s Omega algebra [7], however it differs because it deals with total correctness
as well as partial correctness. None of these abstract algebras are sufficient for
reasoning about probabilistic programs because they include right distributivity
as an axiom. The lazy Kleene algebra of Möller [16] is a relaxation of Kleene al-
gebra in which strictness and right-distributivity are omitted. Although Möller’s
lazy Kleene algebra supports the lack of strictness (R; magic is not in general
equal to magic) and right distributivity required for the probabilistic programs
presented here, our probabilistic programs do not satisfy Möller’s iteration ax-

Algebraic Reasoning for Probabilistic Systems 3

ioms. In further work on the refinement algebra, von Wright [25] presents axioms
of a general refinement algebra, which may be verified to be correct with respect
to the more general class of monotonic predicate transformers, which do not
in general satisfy right distributivity. We find that these axioms are valid here
for the sublinear+, and more generally the monotonic, expectation transformers.
However, few propositions had been derived and verified from these axioms, and
we present further interesting properties that could also be included as axioms
in the general refinement algebra.

This paper elaborates on our earlier work [15]. It includes a more thorough
treatment of how expectation transformers may be extended to include mirac-
ulous program behaviour. There are some new transformation rules and there
are extended explanations of others. We have extended the action system data
refinement rules from [15] to include the treatment of stuttering actions, and we
have analysed how the data refinement rules may be decomposed into simpler
forms. The probabilistic while-loop transformation rules are also new.

Throughout the paper we refer to results that are new to our approach (or dif-
fer from those that apply to conjunctive predicate transformers) as theorems; re-
sults which have been proved elsewhere, or whose existing proof applies straight-
forwardly in our case are referred to as lemmas. Functions are expressed using
lambda notation (e.g. (λ x • 2 × x)), and function application is denoted using
an infix dot (e.g. f .x). Existential quantifiers are assigned the lowest precedence
and we use parentheses to delimit their scope.

In the following section we briefly describe the expectation transformer model
of Morgan and McIver [14] for probabilistic programs. We extend this model so
that miraculous programs can be expressed, and we verify that sublinear ex-
pectation transformers are cocontinuous. In Sect. 3 the iteration constructs are
introduced, and algebraic properties of these constructs are presented and veri-
fied. Probabilistic action systems are introduced in Sect. 4, and algebraic rules
are constructed to reason about them: in particular we focus on data refinement
rules. Our data refinement rules allow for stuttering actions. We demonstrate
how our general data refinement rules may be decomposed into simpler forms.
In Sect. 5 we then explore the algebraic properties of probabilistic while-loops.

2 Expectation Transformers

Standard (non-probabilistic) imperative programs may be described using a
weakest precondition semantics [9]. Similarly, imperative probabilistic programs
in which discrete probabilistic choices as well as angelic and demonic nonde-
terministic choices may be made, may be described using the weakest expec-
tation semantics of McIver and Morgan [20, 13, 14]. We assume that the reader
is familiar with such semantics and the basic notions of probabilistic program
refinement, as well as the predicate transformer semantics of standard (non-
probabilistic programs). We briefly describe the notion of states, expectations
and expectation transformers that are used in this paper. We have extended the

4 Larissa Meinicke and Ian J. Hayes

Let φ and ψ be of type EΣ, p and q be of type PΣ, c be a constant of type R
∞
≥0, and

c′ be of type R≥0. When applied to real numbers, u is the minimum operator (meet),
t is the maximum operator (join), and × denotes multiplication. We define 0×∞ = 0.

EΣ Σ → R
∞
≥0 PΣ Σ → {0, 1}

φ ≤ ψ (∀σ : Σ • φ.σ ≤ ψ.σ) p ⇒ q p ≤ q

φ u ψ (λσ : Σ • φ.σ u ψ.σ) p ∧ p p u q

φ t ψ (λσ : Σ • φ.σ t ψ.σ) p ∨ q p t q

φ× ψ (λσ : Σ • φ.σ × ψ.σ) True (λσ : Σ • 1)
φ ∗ c (λσ : Σ • φ.σ × c) False (λσ : Σ • 0)
φ	 c′ (λσ : Σ • (φ.σ − c′) t 0)
¬φ (λσ : Σ • 1 − φ.σ)

Fig. 1. Expectation notation.

work of McIver and Morgan to deal with miraculous programs so that we may
express guards. This extension only results in minor differences in the model.

2.1 Expectation Transformers

In order to simplify our reasoning we assume that we are only dealing with
programs over finite state spaces2.

An expectation on a state space Σ, is a function from Σ to R
∞
≥0, where R≥0

is the set of positive real numbers and R
∞
≥0 is defined as R≥0 ∪ {∞}. McIver

and Morgan define expectations to be functions from states to the positive real
numbers (excluding infinity) [20]. We extend this to include infinity so that we
may model guards. (In order to model guards we need to be able to express
magical behaviour.) We say that an expectation φ of type EΣ is bounded if
there exists a constant c of type R such that, for all σ of type Σ, φ.σ ≤ c.

Fig. 1 formally defines the set of expectations on a given state space Σ, EΣ,
and operators that are defined on them. Expectations are ordered with respect
to the ≤ operator. The set of predicates on a state space Σ, PΣ, are a subset of
expectations: we equate the boolean value true with 1 and false with 0. Given a
state space Σ, predicate True is defined as (λσ : Σ • 1), and False is defined as
(λ σ : Σ • 0). For predicates we use the operator ∧ to mean u, ∨ to mean t, and
⇒ to mean ≤. Since the set R

∞
≥0 forms a complete lattice, by extension, the set

of all expectations on any given state space Σ forms a complete lattice, where
the top expectation is (λ σ : Σ • ∞), and the least expectation is False.

2 McIver and Morgan have extended their work on expectation transformer seman-
tics to deal with infinite state spaces [13]. Our finite state space assumption mainly
influences our treatment of the healthiness properties. For example, our proof of
cocontinuity of sublinear expectation transformers depends on the finite state as-
sumption. Extending our results would require more complex arguments that are
outside the scope of this paper.

Algebraic Reasoning for Probabilistic Systems 5

Expectation transformers are used to model probabilistic programs [14]. An
expectation transformer is a function from expectations on the output state
space, Γ , to expectations on the input state space, Σ. Expectation transform-
ers are the probabilistic equivalent of predicate transformers in the refinement
calculus [2]: given a predicate transformer S , a predicate p, and an initial state
σ, S .p.σ is true if S is guaranteed to terminate in a state satisfying p from σ,
and false otherwise. Given an expectation transformer S , a predicate p, and an
initial state σ, S .p.σ specifies the least probability that S will terminate in a
state satisfying p from σ. More generally, for any expectation φ, S .φ.σ returns
the least expectation of φ in program S from σ. For example, S .(λσ • σ.x).σ
returns the least average value of variable x produced by S from σ. Refinement
between two expectation transformers S ,T : EΓ → EΣ is defined as

S v T , (∀φ : EΓ • S .φ ≤ T .φ).

By extension, the set of all expectation transformers forms a complete lattice,
where the top element is magic, and the least element is abort (see Fig. 2). We
say that an expectation transformer S of type EΓ → EΣ is miraculous from a
state σ of type Σ if

(∀φ : EΓ • S .φ.σ = ∞).

Basic Operators and Commands. The basic operators and commands are
shown in Fig. 2. For predicate g, the assertion command {g} aborts from states
in which g does not hold and performs no action from states satisfying g, while
the guard [g] is miraculous from states which do not satisfy g, and performs no
action from other states. The assertion command is also defined more generally
when g is an expectation: this extended definition of an assertion is novel.

The four basic composition operators are probabilistic, demonic choice, an-
gelic choice, and sequential composition. The iteration operators, which are dis-
cussed in Sect. 3, have the highest precedence, followed by sequential composi-
tion, and then with equal precedence demonic, angelic, and probabilistic choice.
From initial state σ, the probabilistic choice statement Sp⊕S ′, performs S with
probability p.σ, and S ′ with probability 1 − p.σ. The demonic choice opera-
tor on expectation transformers is defined using the meet (pointwise minimum)
operator, while the angelic choice operator is defined using the join (pointwise
maximum) operator. Given the definition of refinement between expectation
transformers, a demonic choice, S uS ′, is able to be refined by any probabilistic
choice between S and S ′. The unit of demonic choice is magic, the unit of angelic
choice is abort, and the unit of sequential composition is skip, the program that
does not modify the state.

Note that in our model, for any expectation transformer S , we have specified
that program Sp⊕magic is miraculous for states σ from which p.σ does not equal
one. It is not our intention to be able to express programs that are miraculous
with some probability between 0 and 1. This may seem to be restrictive, and
there are other ways to model miraculous behaviour in probabilistic programs
in which we are able to distinguish between programs that are miraculous with
certain probabilities [19]. However, for the purpose of reasoning about action

6 Larissa Meinicke and Ian J. Hayes

Let g be a predicate on state space Σ; θ and φ be expectations of type EΣ; ψ be an
expectation of type EΓ ; S and S ′ be expectation transformers of type EΓ → EΣ;
R : EΘ → EΣ; R′ : EΓ → EΘ; T : EΣ → EΣ; and p a probability function of type
Σ → [0..1], where [0..1] is the closed interval from 0 to 1.

assertion {θ}.φ (λσ : Σ • θ.σ × φ.σ)
guard [g].φ (λσ : Σ • if g .σ then φ.σ else ∞)
bottom abort.φ False

top magic.φ (λσ : Σ • ∞)
unit of composition skip.φ φ

probabilistic choice (Sp⊕ S ′).ψ ({p}; S).ψ + ({¬p}; S ′).ψ
demonic choice (S u S ′).ψ S .ψ u S ′.ψ

angelic choice (S t S ′).ψ S .ψ t S ′.ψ

sequential composition (R; R′).ψ R.(R′.ψ)
strong iteration (Tω).φ (µX • T ; X u skip).φ
weak iteration (T ∗).φ (νX • T ; X u skip).φ
infinite iteration (T∞).φ (µX • T ; X).φ

Fig. 2. Weakest expectation semantics for probabilistic operators.

systems and while-loops, we find that we do not need such a richer semantics.
Care must be taken when using alternative models, since they are unlikely to
share all of the same properties as our current model.

When predicates are used, guards and assertions satisfy many of the same
basic properties as they satisfy in the standard refinement calculus [5]. For pred-
icates p and q,

[p] v [q] ⇔ q ≤ p, {p} v {q} ⇔ p ≤ q ,

[p]; [q] = [p ∧ q], {p}; {q} = {p ∧ q},
[p] u [q] = [p ∨ q], {p} u {q} = {p ∧ q},
[p] t [q] = [p ∧ q], {p} t {q} = {p ∨ q},
[p] = [p]; {p}, {p} = {p}; [p],
skip v [p], {p} v skip,

{p} = [¬p]; abort u [p], and [p] = {¬p}; magic t {p}.

Healthiness Properties. As for predicate transformers, expectation trans-
formers can be classified by a number of healthiness properties [14] (Fig. 3). Pri-
marily we consider sublinear, infinitely scalable expectation transformers, which
we refer to as the sublinear+ expectation transformers.

Standard (non-probabilistic) programs with demonic choice, but no angelic
choice, are characterised by the set of conjunctive predicate transformers. Sim-
ilarly, in Morgan and McIver’s model of expectation transformers [20], the sub-
linear3 expectation transformers characterise the set of probabilistic programs
that may be expressed using the relational probabilistic model of He et al. [10]:

3 Our definition of sublinearity differs from that of Morgan and McIver [20] because
we allow the scaling constants c1 and c2 to be infinite.

Algebraic Reasoning for Probabilistic Systems 7

Let S be an expectation transformer of type EΓ → EΣ, c1 and c2 be constants of type
R

∞
≥0, c be a constant of type R≥0, β1 and β2 be expectations of type EΓ , B and B′ be

directed and codirected sets respectively, of expectations of type EΓ .

(c1 ∗ S .(β1) + c2 ∗ S .(β2)) 	 c ≤ S .((c1 ∗ β1 + c2 ∗ β2) 	 c) (sublinearity)

S .β1 u S .β2 = S .(β1 u β2) (conjunctivity)

β1 ≤ β2 ⇒ S .β1 ≤ S .β2 (monotonicity)

(∀σ : Σ,φ : EΓ • S .φ.σ ≤ (uγ • φ.γ)) (feasibility)

(∀ σ : Σ • (∀φ : EΓ • S .φ.σ ≤ (uγ • φ.γ)) ∨

(∀φ : EΓ • S .φ.σ = ∞)) (01-feasibility)

S .(c ∗ β) = c ∗ S .β (finite scaling)

S .(∞∗ β) = ∞∗ S .β (infinite scaling)

S .(tβ : B • β) = (tβ : B • S .β) (continuity)

S .(uβ : B′
• β) = (uβ : B′

• S .β) (cocontinuity)

Fig. 3. Healthiness properties for expectation transformers.

a model that captures discrete probabilistic and demonic nondeterministic be-
haviour, but not angelic nondeterministic behaviour. In our model the sublinear+

expectation transformers are interesting because they characterise a slight vari-
ation in the model of He et al.: a variation in which magical behaviour may also
be expressed4. The operators given in Fig. 2, apart from angelic choice, preserve
sublinearity+ of their arguments.

Not all sublinear+ expectation transformers are conjunctive. However, expec-
tation transformers that may be written in terms of the operators and commands
other than probabilistic choice, angelic choice, and assertions expressed using ex-
pectations other than predicates, are. Morgan and McIver verified that, given
their definitions of sublinearity and expectation transformers, sublinear expec-
tation transformers are monotonic [20]. This is true for our extended model as
well. An expectation transformer S of type EΓ → EΣ is feasible from a given
initial state σ of type Σ, if

(∀φ : EΓ • S .φ.σ ≤ (uγ : Γ • φ.γ)).

An expectation transformer that is feasible from every initial state is called fea-
sible [20]. For their expectation model, McIver and Morgan [20] showed that the

4 The original semantics of He et. al. did not facilitate the expression of magical be-
haviour: programs were expressed as a function from input states to non-empty sets
of discrete distributions over the output states that satisfy certain closure proper-
ties (see [20, 14] for more details). In order to express magical behaviour, we simply
remove the assumption that the sets of distributions must be non-empty. For our
minor extension, the correspondence proof used by McIver and Morgan applies with
only slight modifications

8 Larissa Meinicke and Ian J. Hayes

sublinear expectation are feasible: here, since we are able to express miraculous
programs, this is not the case. However, our sublinear expectation transformers
do satisfy the 01-feasibility property. This property states that, from any initial
state σ, an expectation transformer S is either feasible, or it is miraculous.

Lemma 1. For any sublinear expectation transformer S, S satisfies the 01-
feasibility property.

Proof. Let S be of type EΓ → EΣ. First we verify that, for all σ of type Σ,
S .False.σ ∈ {0,∞}.

S .False.σ

= {definition of False and scalar multiplication }
S .(2 ∗ False).σ

≥ {sublinearity}
(2 ∗ S .False).σ

= {definition of scalar multiplication}
2 × S .False.σ

This inequality only holds for values of S .False.σ that are either 0 or ∞. We now
consider both of these cases in turn. If, for a given σ, we have that S .False.σ = 0,
then we are required to show that S is feasible from σ. That is, we are required
to show that for all φ of type EΓ , S .φ.σ ≤ (uγ : Γ • φ.γ). If φ is bounded above
then we have that

0
= {assumption}

S .False.σ

= {φ is bounded}
S .(φ	 (uγ : Γ • φ.γ)).σ

≥ {sublinearity}
S .φ.σ 	 (uγ : Γ • φ.γ),

and so S .φ.σ ≤ (uγ : Γ • φ.γ). If φ is not bounded above, then (uγ : Γ • φ.γ) =
∞, and our inequality trivially holds. For the case where S .False.σ = ∞, from
monotonicity we have that for all φ of type EΓ , S .φ.σ = ∞, and so S is magical
from σ. 2

With respect to their definitions, McIver and Morgan [20] also proved that
the sublinear expectation transformers are finitely scalable. In our model, for
non-zero constant c, this may be verified to be true in the same way. How-
ever, for scaling constant c = 0, this does not hold for infeasible expectation
transformers. Given a sublinear, infeasible expectation transformer S of type
EΓ → EΣ, from the 01-feasibility property we have that there exists a σ of type
Σ such that S is miraculous from σ. Given such a state σ we have that,

Algebraic Reasoning for Probabilistic Systems 9

S .(0 ∗ φ).σ
= {definition of scalar multiplication}

S .False.σ

= {assumption S is miraculous from σ}
∞

6= {0 ×∞ = 0}
0 × S .φ.σ

= {definition of scalar multiplication}
(0 ∗ S .φ).σ.

Hence, S .(0 ∗ φ) 6= 0 ∗ S .φ. However, scaling by 0 trivially hold for feasible
programs: for feasible expectation transformer S ,

S .(0 ∗ φ)
= {definition of scalar multiplication}

S .False

= {assumption S is feasible}
False

= {definition of scalar multiplication}
0 ∗ False.

Continuity and cocontinuity are important properties because they simplify
the treatment of least and greatest fixpoints over a complete lattice. Their def-
inition involves the use of directed, and codirected sets, which are defined as
follows [8]5. For any subset B of a partially ordered set A,

directed .B , B 6= {} ∧ (∀α, β : B • (∃ γ : B • α v γ ∧ β v γ)) and

codirected .B , B 6= {} ∧ (∀α, β : B • (∃ γ : B • γ v α ∧ γ v β)).

A codirected set is the dual of a directed set, and cocontinuity is the dual of
continuity. Continuity and cocontinuity may be more generally defined for any
monotonic function over complete partial orders. For monotonic function f :
A → B , where A and B are complete partial orders, and directed set X of A
and codirected set X ′ of A, f is continuous if

f .(tX : X • X) = (tX : X • f .X),

and it is cocontinuous if

f .(uX : X ′
• X) = (uX : X ′

• f .X).

Next we verify that sublinear expectation transformers are cocontinuous. Pre-
viously, this property had not been verified to be correct with respect to the
expectation model of McIver and Morgan [20]: our proof applies to their ex-
pectation transformer model as well. Our proof of cocontinuity for expectation
transformers is similar to McIver and Morgan’s proof of bounded continuity [14].

Theorem 2 (cocontinuity). Sublinear expectation transformers are cocontin-
uous.
5 This definition differs from that used by Back and von Wright [2] since it constrains

directed and codirected sets to be non-empty.

10 Larissa Meinicke and Ian J. Hayes

Proof. For any sublinear expectation transformer T : EΣ → EΓ , and B a
≤-codirected subset of EΣ, we are required to show that

T .(uβ : B • β) = (uβ : B • T .β).

By monotonicity of expectation transformers we only need to show that
T .(uβ : B • β) ≥ (uβ : B • T .β).

For any constant c > 0, for each state σ : Σ, there exists an expectation βσ : B
such that βσ.σ 	 c ≤ (uβ : B • β).σ. Since B is codirected, and the state space
Σ is finite we then have that there exists a βc : B such that for all σ : Σ,
βc .σ ≤ βσ.σ, and hence βc 	 c ≤ (uβ : B • β). We then have that

T .(uβ : B • β)
≥ {monotonicity and the above}

T .(βc 	 c)
≥ {sublinearity}

T .βc 	 c

≥ {βc ∈ B and monotonicity}
(uβ : B • T .β) 	 c,

which suffices because c may be arbitrarily close to zero. 2

Continuity of an expectation transformer R, guarantees continuity of function
f = (λX • R; X), and similarly, cocontinuity of R, guarantees cocontinuity of
f . We verify this for cocontinuity, the proof for continuity is similar.

Theorem 3. For any cocontinuous expectation transformer R, the function f =
(λ X • R; X) is cocontinuous.

Proof. Let X be a v-codirected set of expectation transformers. From the def-
inition of refinement it is sufficient to show that for all φ

(R; (uX : X • X)).φ
= {definition of sequential composition}

R.((uX : X • X).φ)
= { u defined pointwise over expectation transformers}

R.(uX : X • X .φ)
= {cocontinuity of R (since X is codirected, the set

{X : X • X .φ} is codirected, see below for justification)}
(uX : X • R.(X .φ))

= {definition of sequential composition}
(uX : X • (R; X).φ)

= { u defined pointwise over expectation transformers}
(uX : X • R; X).φ.

For all φ we have that the set B = {X : X • X .φ} is codirected, since

Algebraic Reasoning for Probabilistic Systems 11

B 6= {} ∧ (∀α, β : B • (∃ γ : B • γ ≤ α ∧ γ ≤ β))
⇔ {definition of B}

X 6= {} ∧ (∀X ,Y : X • (∃Z : X • Z .φ ≤ X .φ ∧ Z .φ ≤ Y .φ))
⇔ {X is codirected, refinement order on expectation transformers}

true.
2

Basic Algebraic Properties. Monotonic expectation transformers share the
same set of basic algebraic rules (Fig. 4) as monotonic predicate transformers
[24]. Unlike conjunctive predicate transformers, sublinear+ expectation trans-
formers satisfy right sub-distributivity R; (S uT) v R; S uR; T , but do not in
general satisfy right distributivity R; (SuT) = R; SuR; T . For example, given

R , (x := 0 1

2

⊕ x := 1),

S , [x = 0]; y := 0 u [x = 1]; y := 1, and

T , [x = 0]; y := 1 u [x = 1]; y := 0,

we have that,

R; (S u T) = (x := 0 1

2

⊕ x := 1); (y := 0 u y := 1), but

R; S u R; T = (x , y := 0, 0 1

2

⊕ x , y := 1, 1) u (x , y := 0, 1 1

2

⊕ x , y := 1, 0).

In program R; S u R; T we have that y is chosen to be 0 with probability
1

2
, and 1 with probability 1

2
, whereas in R; (S u T), y is not guaranteed to be

assigned 0 with probability 1

2
, nor is it guaranteed to be assigned 1 with prob-

ability 1

2
: the value of y may be chosen nondeterministically. Hence R; (S u T)

is refined by R; S u R; T , but is not equivalent to it.

R; (S ; T) = (R; S); T (associativity)

skip; S = S = S ; skip (unit)

R u (S u T) = (R u S) u T (associativity)

magic u S = S (unit)

R u S = S u R (commutativity)

R u R = R (idempotence)

(R u S); T = R; T u S ; T (left distributivity)

R; (S u T) v R; S u R; T (right sub-distributivity)

magic; R = magic (preemption)

abort; R = abort (preemption)

Fig. 4. Basic algebraic properties of monotonic expectation transformers.

12 Larissa Meinicke and Ian J. Hayes

3 Iteration Constructs

We use the same iteration constructs for probabilistic programs as those that are
used for standard programs [5, 2]. These constructs are expressed using fixpoints,
and may be reasoned about using the usual fixpoint theory [8, 5, 2].

Lemma 4 (Knaster-Tarski). Every monotonic function on a complete lattice
has a complete lattice of fixpoints.

Recall from earlier that, because we have introduced the ability to express mirac-
ulous behaviour, the set of expectation transformers forms a complete lattice.
The least, µ, and greatest, ν, fixpoint operators satisfy the following induction
and unfolding properties.

f .(µ .f) = µ .f and f .(ν.f) = ν.f (unfolding)

f .x v x ⇒ µ .f v x and x v f .x ⇒ x v ν.f (induction)

We also use the rolling rules for fixpoints [5].

Lemma 5 (rolling). Given monotonic functions f and g on a complete lattice,

f .(µ .(g ◦ f)) = µ .(f ◦ g) and f .(ν.(g ◦ f)) = ν.(f ◦ g).

The following fusion lemma [2] (attributed to Kleene) is used to verify a com-
mutativity property (Theorem 21).

Lemma 6 (fusion). Let f : Σ → Σ and g : Γ → Γ be monotonic functions on
complete lattices Σ and Γ .

(a) If h : Σ → Γ is continuous, then
h ◦ f v g ◦ h ⇒ h.(µ .f) v µ .g and

h ◦ f = g ◦ h ⇒ h.(µ .f) = µ .g .

(b) If h : Σ → Γ is cocontinuous, then
h ◦ f v g ◦ h ⇒ h.(ν.f) v ν.g and

h ◦ f = g ◦ h ⇒ h.(ν.f) = ν.g .

For continuous and cocontinuous functions on a complete lattice, reasoning about
least and greatest fixpoints respectively can be reduced to reasoning about finite
iterations of the functions [8], where f 0.x , x and for i ∈ N f i+1 = f .(f i .x).

Lemma 7.

(a) The least fixed point of the continuous function f on a complete lattice is the
limit

µ .f = (ti : N • f
i
.⊥),

where ⊥ is the bottom element of the complete lattice.
(b) The greatest fixed point of a cocontinuous function, f , on a complete lattice

is the colimit
ν.f = (ui : N • f

i
.>),

where > is the top element of the complete lattice.

Algebraic Reasoning for Probabilistic Systems 13

3.1 Iteration Operators

The iteration operators are defined in Fig. 2. Informally, T ∗ executes T any
finite number of times, T∞ executes T an infinite number of times, and Tω

executes T any infinite or finite number of times. From the definition of our
iteration operators, and the induction and unfolding properties of fixpoints we
immediately get the usual unfolding and induction rules:

R
ω = R; R

ω u skip (unfold strong iteration)

R
∗ = R; R

∗ u skip (unfold weak iteration)

R
∞ = R; R

∞ (unfold infinite iteration)

R; X u skip v X ⇒ R
ω v X (strong iteration induction)

X v R; X u skip ⇒ X v R
∗ (weak iteration induction)

R; X v X ⇒ R
∞ v X (infinite iteration induction)

For a conjunctive expectation transformer R, R∗ satisfies the Kleene axioms
of Kozen [12] and Cohen [6], in particular,

R
∗ = (ui : N • R

i),

where for expectation transformer R, R0 , skip, and for i ∈ N, Ri+1 = R; Ri .
However, this equivalence does not hold in general for sublinear expectation
transformers. Instead the definition of weak iteration satisfies the following al-
ternative theorem.

Theorem 8 (Kleene star equivalence). Let R be a monotonic, cocontinuous
expectation transformer, then

R
∗ = (ui : N • (R u skip)i).

Proof. Before verifying our statement we prove four lemmas. The first lemma
is used in the verification of lemmas two and three, and the second and third
lemmas are used to verify the fourth.

1. (∀ i : N • R; (R u skip)i u skip = (R u skip)i+1)
(a) Base case: i = 0

R; (R u skip)0 u skip

= {definition}
R; skip u skip

= {skip is unit}
(R u skip)1

(b) Inductive case: assume R; (R u skip)i u skip = (R u skip)i+1

(R u skip)i+2

= {definition}
(R u skip); (R u skip)i+1

= {left distributivity}
R; (R u skip)i+1 u skip; (R u skip)i+1

= {inductive assumption on second choice}
R; (R u skip)i+1 u R; (R u skip)i u skip

= {by monotonicity, (R u skip)i+1 = (R u skip); (R u skip)i v (R u skip)i

and from basic lattice properties we have that x v y ⇒ x u y = x}
R; (R u skip)i+1 u skip

14 Larissa Meinicke and Ian J. Hayes

2. (∀ i : N • (λX • R; X u skip)i+1.magic v (R u skip)i)

(a) Base case: i = 0

(λX • R; X u skip)0+1.magic

= {function application}
R; magic u skip

v {general lattice rule x u y v x}
skip

= {definition}
(R u skip)0

(b) Inductive case: assume (λX • R; X u skip)i+1.magic v (R u skip)i

(λX • R; X u skip)i+2.magic

= {definition}
(λX • R; X u skip).((λX • R; X u skip)i+1.magic)

v {inductive assumption and monotonicity}
(λX • R; X u skip).(R u skip)i

= {function application}
R; (R u skip)i u skip

= {By 1.}
(R u skip)i+1

3. (∀ i : N • (R u skip)i v (λX • R; X u skip)i .magic)

(a) Base case: i = 0

(R u skip)0

v {magic is top element}
magic

= {definition}
(λX • R; X u skip)0.magic

(b) Inductive case: assume (R u skip)i v (λX • R; X u skip)i .magic

(λX • R; X u skip)i+1.magic

= {definition}
(λX • R; X u skip).((λX • R; X u skip)i .magic)

w {inductive assumption and monotonicity}
(λX • R; X u skip).(R u skip)i

= {function application}
R; (R u skip)i u skip

= {By 1.}
(R u skip)i+1

4. (ui : N • (λX • R; X u skip)i .magic) = (ui : N • (R u skip)i)

First we have that,

(ui : N • (λX • R; X u skip)i .magic)
= {for any monotonic function f we have that

(ui : N • f i .> = ui : N • f i+1.>)}
(ui : N • (λX • R; X u skip)i+1.magic)

v {from 2}
(ui : N • (R u skip)i).

The other direction follows from 3.

Algebraic Reasoning for Probabilistic Systems 15

As a result, the following derivation proves our goal:

R∗

= {definition}
(νX • R; X u skip)

= {cocontinuity of (λX • R; X u skip) (see below), and Lemma 7}
(ui : N • (λX • R; X u skip)i .magic)

= {By 4.}
(ui : N • (R u skip)i).

We may verify that function (λX • R; X u skip) is cocontinuous as follows.
Let X be a v-codirected set of expectation transformers. We have that

(uX : X • R; X u skip)
= {lattice property (ux : X • x u y) = (ux : X • x) u y}

(uX : X • R; X) u skip

= {cocontinuity of R and Theorem 3}
R; (uX : X) u skip.

2

Note that for conjunctive R, (ui : N • Ri) = (ui : N • (R u skip)i). For
conjunctive predicate transformers we can decompose Rω into its terminating
(R∗) and nonterminating (R∞) behaviours: that is we have that

R
ω = R

∗ u R
∞
.

For sublinear expectation transformers this is, in general, not the case. The main
reason for this difference is that, from a particular initial state, a standard pro-
gram may either exhibit non-terminating behaviour (that is it may abort) or it
may behave miraculously, or it may terminate in a set of states. A probabilis-
tic program may exhibit some probabilistic distribution of these behaviours: for
example it may not terminate (abort) with probability a half, and it may pro-
duce some distribution of states with the other half. Because of this, we cannot
trivially separate out the strong iteration operator into its finite and infinite
behaviours. For example, take R = [x = 1] u [x = 0]; (x := 1 1

2

⊕ x := 2). We
have that

Rω = [x = 1]; abort u [x = 0]; (abort 1

2

⊕ x := 2) u skip,

R∗ = [x = 1]; skip u ([x = 0]; (x := 1 1

2

⊕ x := 2)) u skip,

R∞ = [x = 1]; abort u [x = 0]; magic, and

R∗ u R∞ = [x = 1]; abort u [x = 0]; (x := 1 1

2

⊕ x := 2) u skip.

Since we equate program non-termination with abortion, the infinite iteration
operator is not as interesting as the other two, and so in the remainder of this
paper we focus on constructing transformation rules for the weak and strong
iteration operators.

For a conjunctive predicate transformer R, we also have that the strong
iteration operator may be expressed in terms of the weak iteration operator as
follows [5]:

R
ω = {Rω

.True}; R
∗
.

16 Larissa Meinicke and Ian J. Hayes

Again, this relationship does not hold in general for sublinear expectation trans-
formers. Using our previous example, we can see that

{Rω.True}; R∗

= {λσ • (σ.x 6∈ {0, 1}) × 1 + (σ.x = 1) × 0 + (σ.x = 0) × 1

2
}; R∗

= [x = 1]; abort u [x = 0]; (abort 1

2

⊕ ((x := 1 1

2

⊕ x := 2) u skip)) u [x 6∈ {0, 1}].

3.2 Generalised Induction Properties

The following lemma and theorem may be used to specify more general induction
rules.

Lemma 9. Given monotonic expectation transformers S and T,

S
ω; T = (µX • S ; X u T) and

S
∗; T = (νX • S ; X u T).

Proof. The proof presented by Back and von Wright [5] applies to monotonic
expectation transformers. 2

For conjunctive expectation transformers S and T , we have that

T ; S
∗ = (νX • X ; S u T)

holds, but this equivalence does not hold in general for sublinear expectation
transformers, so we present an alternative theorem.

Theorem 10. Let S and T be monotonic, cocontinuous expectation transform-
ers. Then

T ; S
∗ = (νX • X ; (S u skip) u T).

Proof. First we prove

(∀ i : N • (λX • X ; (S u skip) u T)i+1
.magic = T ; (S u skip)i)

by induction.

(a) Base case: i = 0

(λX • X ; (S u skip) u T)1.magic

= {function application}
magic; (S u skip) u T

= {preemption and magic is unit}
T

= {skip is unit}
T ; skip

= {definition}
T ; (S u skip)0

Algebraic Reasoning for Probabilistic Systems 17

(b) Inductive case:
for any i ∈ N assume (λX • X ; (S u skip) u T)i+1.magic = T ; (S u skip)i

(λX • X ; (S u skip) u T)i+2.magic

= {definition}
(λX • X ; (S u skip) u T).((λX • X ; (S u skip) u T)i+1.magic)

= {inductive assumption}
(λX • X ; (S u skip) u T).(T ; (S u skip)i)

= {function application}
T ; (S u skip)i ; (S u skip) u T

= {definition}
T ; (S u skip)i+1 u T

= {T ; (S u skip)i+1 v T ; skipi+1 = T ; skip = T , and general lattice rule
x v y ⇒ x u y = x}
T ; (S u skip)i+1

We now prove our main result.

(νX • X ; (S u skip) u T)
= {Lemma 7 and cocontinuity of (λX • X ; (S u skip) u T)

follows from left distributivity of monotonic expectation transformers}
(ui : N • (λX • X ; (S u skip) u T)i .magic)

= {property of limits over descending chains}
(ui : N • (λX • X ; (S u skip) u T)i+1.magic)

= {see above}
(ui : N • T ; (S u skip)i)

= {{i : N • (S u skip)i} is a v-codirected set, cocontinuity of T , and Theorem 3}
T ; (ui : N • (S u skip)i)

= {cocontinuity of S and Theorem 8}
T ; S∗

2

There is no equivalent theorem to Theorem 10 for the strong iteration oper-
ator.

Theorem 11 (general induction). Let R, S and T be monotonic expectation
transformers, then

S ; X u R v X ⇒ S
ω; R v X , (1)

X v T ; X u R ⇒ X v T
∗; R, and (2)

X v X ; (T u skip) u R ⇒ X v R; T
∗
, if T and R cocontinuous. (3)

Proof. The first two properties are consequences of Lemma 9 and induction.
The third follows from cocontinuity of T and R, Theorem 10 and induction. 2

3.3 Basic Properties of Iterations

The following properties of iterations hold for both predicate and expectation
transformers [5]:

18 Larissa Meinicke and Ian J. Hayes

Lemma 12. For monotonic expectation transformer S,

S v T ⇒ S
ω v T

ω
and S v T ⇒ S

∗ v T
∗
, (4)

S
ω v S and S

∗ v S , (5)

S
ω v skip and S

∗ v skip, (6)

S
ω; S

ω = S
ω

and S
∗; S

∗ = S
∗
, (7)

(Sω)ω = abort and (Sω)∗ = S
ω
, (8)

(S∗)ω = abort and (S∗)∗ = S
∗
, and (9)

S
∞ = S

ω; magic. (10)

Proof. The proofs provided by Back and von Wright [5] for these properties
are valid here. They do not require any properties not satisfied by monotonic
expectation transformers. 2

The decomposition property also holds for monotonic expectation transform-
ers (note that we do not require conjunctivity for this proof, we require left, but
not right distributivity, which is implied by monotonicity alone (Fig. 4)).

Lemma 13 (decomposition). For monotonic expectation transformers R and
S,

(R u S)ω = R
ω; (S ; R

ω)ω
and (R u S)∗ = R

∗; (S ; R
∗)∗.

Proof. See Back and von Wright [5]. 2

The leapfrog property [5] is valid for conjunctive expectation transformers,
but not for all sublinear expectation transformers. For monotonic expectation
transformers we have a weaker result.

Theorem 14 (leapfrog). For monotonic expectation transformers R and S.

R; (S ; R)ω v (R; S)ω; R and R; (S ; R)∗ v (R; S)∗; R.

In addition, if R is conjunctive then

R; (S ; R)ω = (R; S)ω; R and R; (S ; R)∗ = (R; S)∗; R.

Proof. The proof for strong iteration is as follows: it is very similar to the proof
of Back and von Wright [5]. The proof for weak iteration is similar.

R; (S ; R)ω

= {definition}
R; (µX • S ; R; X u skip)

= {rolling (Lemma 5) with f , (λX • R; X) and g , (λX • S ; X u skip)}
(µX • R; (S ; X u skip))

v {right sub-distributivity and for any functions f and g ,
f v g ⇒ (µX • f .X) v (µX • g .X)}
(µX • R; S ; X u R)

= {Lemma 9}
(R; S)ω; R

If R is conjunctive the third step is an equality. 2

Algebraic Reasoning for Probabilistic Systems 19

Corollary 15. For monotonic expectation transformer R, we have that

R; Rω v Rω; R and R; R∗ v R∗; R.

Proof. This follows directly from Theorem 14 with S = skip. 2

Note that for sublinear (and hence monotonic) expectation transformer S , we
do not necessarily have S ; Sω = Sω; S , or that S ; S ∗ = S ∗; S . For example,
take S , [x = 0]; (skip 1

2

⊕ x := 1), we then have that

Sω = [x = 0]; (skip u x := 1) u [x 6= 0],

S ; Sω = [x = 0]; ((x := 1 u skip) 1

2

⊕ x := 1), and

Sω; S = [x = 0]; (skip 1

2

⊕ x := 1).

From a start state in which x is 0, Sω may either skip or it may iterate until it
assigns x to 1, or it may do some probabilistic combination of these behaviours:
it is possible for Sω to assign x to the value 1 because on each iteration of the
loop it has a constant, non-zero probability of assigning x to 1.

3.4 Commutativity Properties

In this section we describe how commutativity properties are inherited by it-
erations. Such properties are useful when reasoning about data refinements of
iterations.

Theorem 16. Let R, S , and T be monotonic expectation transformers,

R; S v T ; R ⇒ R; S
∗ v T

∗; R, (11)

R; S v T ; R ⇒ R; S
ω v T

ω; R, if R is continuous, (12)

S ; R v R; T ⇒ S
∗; R v R; T

∗
, if R is conjunctive, (13)

S ; R v R; T ⇒ S
ω; R v R; T

ω
, if R is conjunctive, (14)

S ; R v R; (T u skip) ⇒ S
∗; R v R; T

∗
, if R and T are cocontinuous, and (15)

S ; R v R; (T u skip) ⇒ S
ω; R v R; T

ω
. (16)

Proof. The proofs for the first four commutativity rules have been verified by
Back and von Wright in the standard case [5]: the proofs for these do not require
any properties that are not satisfied by monotonic expectation transformers. We
focus on proving the last two rules because they differ from the usual rules for
conjunctive predicate transformers. Assume R, S , and T are monotonic expec-
tation transformers.

Proof of (15): Assume R and T are cocontinuous, then

S∗; R v R; T ∗

⇐ {cocontinuity of T and R, general induction (Theorem 11(3))}
S∗; R v S∗; R; (T u skip) u R

20 Larissa Meinicke and Ian J. Hayes

⇔ {unfolding and left distributivity}
S ; S∗; R u R v S∗; R; (T u skip) u R

⇐ {Corollary 15}
S∗; S ; R u R v S∗; R; (T u skip) u R

⇐ {monotonicity}
S ; R v R; (T u skip).

Proof of (16): Assume S ; R v R; (T u skip). First we have that

Sω; R v R; Tω

⇐ {general induction (Theorem 11(1))}
S ; R; Tω u R v R; Tω.

Refining the LHS,

S ; R; Tω u R

v {general lattice property x u y v x}
S ; R; Tω

v {assumption}
R; (T u skip); Tω

v {general lattice property x u y v x , and skip is unit}
R; Tω.

2

For monotonic expectation transformers, Theorem 16 parts (13) and (14) do
not hold in general if R is sublinear+ (and not conjunctive). For example, take

S , [x = 0]; (x , z := 1, 1 1

2

⊕ abort),

T , [x = 0]; x , z := 1, 2, and

R , [x = 0]; (skip 1

2

⊕ x := 1) u [x 6= 0].

Note that S , R, and T , are sublinear. Then we have that

S ; R v R; T

⇔ [x = 0]; (x , z := 1, 1 1

2

⊕ abort) v [x = 0]; (x , z := 1, 2 1

2

⊕ magic)

⇔ true.

However,

Sω = ([x = 0]; (x , z := 1, 1 1

2

⊕ abort)) u skip,

Tω = ([x = 0]; x , z := 1, 2) u skip,

Sω; R = [x = 0]; ((x , z := 1, 1 1

2

⊕ abort) u (skip 1

2

⊕ x := 1)) u [x 6= 0], and

R; Tω = [x = 0]; ((x , z := 1, 2 u skip) 1

2

⊕ x := 1) u [x 6= 0].

Hence we have that Sω; R is not refined by R; Tω. To see that this is the
case, take initial state σ in which variable x has value 0 and z has value 0, and
expectation φ = (λ σ • (σ.z = 0 ∧ σ.x = 0) ∨ (σ.z = 1 ∧ σ.x = 1)). We can see
that the expectation of φ from σ in Sω; R is 1

2
, however the expectation of φ

from σ in R; Tω is 0. We can also show that S ∗; R is not refined by R; T ∗.

Algebraic Reasoning for Probabilistic Systems 21

The following two rules, Theorems 17 and 18, are used later to verify com-
mon special cases of our data refinement rules for probabilistic action systems.
They are more general than commutativity Theorem 16 parts (13) and (15),
respectively. To see this observe that from Lemma 12 (5) we have that

R; S v T ; R ⇒ R; S
∗ v T ; R and

S ; R v R; (T u skip) ⇒ S
∗; R v R; (T u skip).

Theorem 17. Given monotonic expectation transformers R, S , and T,

R; S
∗ v T ; R ⇒ R; S

∗ v T
∗; R.

Proof.
R; S∗ v T ; R

⇒ {monotonicity}
R; S∗; S∗ v T ; R; S∗

⇔ {Lemma 12 (7)}
R; S∗ v T ; R; S∗

⇒ {basic lattice properties, and from Lemma 12 (6) we have that R; S∗ v R}
R; S∗ v T ; R; S∗ u R

⇒ {general induction (Theorem 11(2))}
R; S∗ v T ∗; R

2

Theorem 18. Given a monotonic expectation transformer S and monotonic
and cocontinuous expectation transformers R and T,

(S∗; R v R; (T u skip)) ⇒ (S∗; R v R; T
∗).

Proof.
S∗; R v R; (T u skip)

⇒ {monotonicity}
S∗; S∗; R v S∗; R; (T u skip)

⇔ {Lemma 12 (7)}
S∗; R v S∗; R; (T u skip)

⇒ {basic lattice properties, and from Lemma 12(6) we have that S∗; R v R}
S∗; R v S∗; R; (T u skip) u R

⇒ {cocontinuity of R and T , general induction (Theorem 11(3))}
S∗; R v R; T ∗

2

Note that although R; S ∗ v T ; R is equivalent to R; S ∗ v (T u skip); R,
condition S ∗; R v R; (T u skip) is not equivalent to S ∗; R v R; T .

Next we present commutativity rules for guarded loops. Theorems 21, 22 and
23 are used in Sect. 4.2 to verify transformation rules for action systems, and in
Sect. 5 to verify transformation rules for while-loops. It is possible to generate
commutativity rules for guarded loops straight from the commutativity rule for
iterations (Theorem 16). For example, take the following two theorems.6

6 For standard guarded loops, Theorem 19 appears in the work of Back and von Wright
[5, 24].

22 Larissa Meinicke and Ian J. Hayes

Theorem 19. Given monotonic expectation transformers R, S and T such that
R is continuous, and predicates g and p, we have that

R; S
ω; [g] v T

ω; [p]; R,

provided

R; S v T ; R and (17)

R; [g] v [p]; R. (18)

Proof.
R; Sω; [g]

v {assumption (17), Theorem 16 (12) and R is continuous}
Tω; R; [g]

v {assumption (18)}
Tω; [p]; R

2

Theorem 20. Given monotonic expectation transformers S , R and T, and
predicates g and p, we have that

S
ω; [g]; R v R; T

ω; [p],

provided

S ; R v R; (T u skip) and (19)

[g]; R v R; [p]. (20)

Proof.
Sω; [g]; R

v {assumption (20)}
Sω; R; [p]

v {assumption (19), Theorem 16 (16)}
R; Tω; [p]

2

However, it is possible to generate a rule that is more general than Theorem
19 by taking into consideration the failure condition of the iteration body. Be-
fore we introduce such a rule we define some necessary terminology. Given an
expectation transformer S , we refer to the set of states from which S may abort
with probability one as fail.S , where

fail.S , (λσ • S .(λσ • ∞).σ = 0).

Our new rule, which does not appear in the work of Back and von Wright [5,
24], is then given as follows. This new theorem is more general than Theorem
19 since [g ∨ fail.S] v [g], hence

(R; [g] v [p]; R) ⇒ (R; [g ∨ fail.S] v [p]; R).

Algebraic Reasoning for Probabilistic Systems 23

Theorem 21. Given monotonic expectation transformers R, S and T such that
R is continuous, and predicates g and p, we have that

R; S
ω; [g] v T

ω; [p]; R,

provided

R; S v T ; R and (21)

R; [g ∨ fail.S] v [p]; R. (22)

Proof.

R; Sω; [g] v Tω; [p]; R

⇔ {Lemma 9}
R; (µX • S ; X u [g]) v (µX • T ; X u [p]; R)

⇐ {from continuity of R, (λX • R; X) is continuous, fusion (Lemma 6)}
(λX • R; X) ◦ (λX • S ; X u [g]) v (λX • T ; X u [p]; R) ◦ (λX • R; X)

⇔ {function application}
(λX • R; (S ; X u [g])) v (λX • T ; R; X u [p]; R)

And we have that for any expectation transformer X , in order to show

R; (S ; X u [g]) v T ; R; X u [p]; R,

it is sufficient to show the following.

(a) R; (S ; X u [g]) v T ; R; X

R; (S ; X u [g])
v {general lattice property x u y v x}

R; S ; X

v {assumption (21)}
T ; R; X

(b) R; (S ; X u [g]) v [p]; R

First we prove

S ; X

v {basic guard rule skip v [g]}
[fail.S]; S ; X

= {basic guard and assumption rules}
[fail.S]; {fail.S}; S ; X

= {from the definition of fail, {fail.S}; S = abort}
[fail.S]; abort; X

v {preemption, abort is least element}
[fail.S].

We then have that,

R; (S ; X u [g])
v {S ; X v [fail.S], see above}

R; ([fail.S] u [g])
= {basic guard rules}

R; [g ∨ fail.S]
v {assumption (22)}

[p]; R.

24 Larissa Meinicke and Ian J. Hayes

2

The proof obligations in Theorem 20 seem to be quite restrictive, for example,
condition (19) requires S ; R to be refined by R. For guarded loops of the specific
form ([g]; S)ω; [¬g], it is possible to construct an alternative rule. As suggested
by the commutativity rule for iterations, Theorem 16 (16), the conditions re-
quired to prove a refinement of the form ([g]; S)ω; [¬g]; R v R; ([p]; T)ω ; [¬p],
for monotonic expectation transformers S , R, and T , differ from those that one
would normally expect for the case when R is conjunctive.

Theorem 22. Given monotonic expectation transformer R, S and T, and pred-
icates g and p, we have that

([g]; S)ω; [¬g]; R v R; ([p]; T)ω; [¬p],

provided

{g}; S ; R v R; {p}; T and (23)

R; [¬p] v [¬g]; R. (24)

Proof. This rule is a special case of the following theorem, Theorem 23. 2

For proving refinements of the form ([g]; S)ω; [¬g]; R v R; ([p]; T)ω ; [¬p],
this rule appears to have a more useful form than Theorem 20. (Although we
cannot say that Theorem 20 is weaker than Theorem 22 because the precondi-
tions in Theorem 20 do not imply those in Theorem 22.) The following theorem
is slightly more general than Theorem 22, it is applicable to guarded loops of
the form ([p1]; S)ω; [p2], where p1 ⇒ ¬p2. It is used later to give an alternative
stuttering sensitive action system data refinement rule (Theorem 34).

Theorem 23. Given monotonic expectation transformer R, S and T, and pred-
icates g and p, we have that

([g1]; S)ω; [g2]; R v R; ([p1]; T)ω; [p2],

provided

{¬g2}; S ; R v R; {¬p2}; T , (25)

R; [¬p1] v [g2]; R, (26)

[g1 ∨ g2]; R v R; [p1 ∨ p2], (27)

g1 ⇒ ¬g2, and (28)

p1 ⇒ ¬p2. (29)

Proof.

([g1]; S)ω; [g2]; R v R; ([p1]; T)ω; [p2]
⇐ {general induction (Theorem 11 (1))}

[g1]; S ; R; ([p1]; T)ω; [p2] u [g2]; R v R; ([p1]; T)ω; [p2]

Refining the LHS,

Algebraic Reasoning for Probabilistic Systems 25

[g1]; S ; R; ([p1]; T)ω; [p2] u [g2]; R

= {basic guard and assertion rules and assumption (28)}
[g1]; {¬g2}; S ; R; ([p1]; T)ω; [p2] u [g2]; R

v {assumption (25)}
[g1]; R; {¬p2}; T ; ([p1]; T)ω; [p2] u [g2]; R

= {basic guard rule {p} = [¬p]; abort u [p], left distributivity and preemption}
[g1]; R; ([¬p2]; T ; ([p1]; T)ω; [p2] u [p2]; abort) u [g2]; R

v {assumption (29), basic guard rules, abort is bottom}
[g1]; R; ([p1]; T ; ([p1]; T)ω; [p2] u [p2]) u [g2]; R

= {left distributivity and unfolding}
[g1]; R; ([p1]; T)ω; [p2] u [g2]; R

v {basic guard rule skip v [g]}
[g1]; R; ([p1]; T)ω; [p2] u [g2]; R; [¬p1]

= {from the basic guard rules [¬p]; [p] = magic and magic is unit}
[g1]; R; ([p1]; T)ω; [p2] u [g2]; R; ([¬p1]; [p1]; R; ([p1]; T)ω u [¬p1])

= {right and left distributivity of conjunctive programs}
[g1]; R; ([p1]; T)ω; [p2] u [g2]; R; [¬p1]; ([p1]; R; ([p1]; T)ω u skip); [¬p1]

= {unfolding}
[g1]; R; ([p1]; T)ω; [p2] u [g2]; R; [¬p1]; ([p1]; T)ω; [¬p1]

v {assumptions (26) and (29), basic guard rules}
[g1]; R; ([p1]; T)ω; [p2] u [g2]; R; ([p1]; T)ω; [p2]

= {left distributivity and basic guard rules}
[g1 ∨ g2]; R; ([p1]; T)ω; [p2]

v {assumption (27)}
R; [p1 ∨ p2]; ([p1]; T)ω; [p2]

= {unfolding}
R; [p1 ∨ p2]; ([p1]; T ; ([p1]; T)ω u skip); [p2]

= {right distributivity of guards, left distributivity}
R; ([p1 ∨ p2]; [p1]; T ; ([p1]; T)ω; [p2] u [p1 ∨ p2]; [p2])

= {basic guard rules}
R; ([p1]; T ; ([p1]; T)ω; [p2] u [p2])

= {left distributivity and unfolding}
R; ([p1]; T)ω; [p2].

2

The other kind of commutativity law presented by Back and von Wright
[5] refers to a special kind of commutation: S is said to commute over T if
S ; T v T ; S . The following lemma (originally for predicate transformers [5])
also applies to expectation transformers given a conjunctivity assumption on T ,
however, it is important to note that it does not hold for the general case that
T is sublinear instead of conjunctive. Note that for any monotonic S and T ,
(S u T)ω v Sω; Tω .

Lemma 24. Assume that S is monotonic, T is conjunctive, and S ; T v T ; S.
Then

S
ω; T v T ; S

ω
, (30)

(S u T)ω = S
ω; T

ω
, if S is continuous, and (31)

26 Larissa Meinicke and Ian J. Hayes

(S u T)ω = S
ω; T

ω
, if T

ω = T
∗
. (32)

Proof. Refer to Back and von Wright [5]. 2

We can demonstrate that this lemma does not hold when T is not con-
junctive. For (30) chose S and T such that S equals T , we then have that
S ; S v S ; S , but from the Corollary 15 we have that S ; Sω v Sω; S , but not
necessarily Sω; S v S ; Sω. In Sect. 3.3 we presented a counter example that
demonstrated this. For (31) and (32) let,

S , [(y = 0 ∨ y = 1) ∧ x = 0]; x := 1 and

T , [y = 0]; (y := 1 1

2

⊕ y = 2).

We then have that S is continuous and Tω = T ∗ and

S ; T

= [y = 0 ∧ x = 0]; (x , y := 1, 1 1

2

⊕ x , y := 1, 2)

v [y = 0 ∧ x = 0]; (x , y := 1, 1 1

2

⊕ magic)

= T ; S ,

however,

Sω = [(y = 0 ∨ y = 1) ∧ x = 0]; x := 1 u skip,

Tω = [y = 0]; (y := 1 1

2

⊕ y := 2) u skip,

Sω; Tω = [y = 0 ∧ x = 0]; ((x , y := 1, 1 1

2

⊕ x , y := 1, 2) u x := 1

u (y := 1 1

2

⊕ y := 2) u skip)

u [y = 1 ∧ x = 0]; (x := 1 u skip)
u [y = 0 ∧ x 6= 0]; ((y := 1 1

2

⊕ y := 2) u skip)

skip, and
(S u T)ω = [y = 0 ∧ x = 0]; ((x , y := 1, 1 1

2

⊕ x , y := 1, 2) u x := 1

u ((x , y := 1, 1 u y := 1) 1

2

⊕ y := 2) u skip)

u [y = 1 ∧ x = 0]; (x := 1 u skip)
u [y = 0 ∧ x 6= 0]; ((y := 1 1

2

⊕ y := 2) u skip)

u skip.

Hence (S u T)ω is not a refinement of Sω; Tω .

4 Action Systems

So far we have investigated properties of the general iteration constructs. We
now follow the lead of Back and von Wright [5] by applying these results to
more well known and useful programming constructs: namely action systems.
Action systems can be used to model parallel or distributed systems in which
concurrent behaviour is modeled by interleaving atomic actions [3, 4]. Proba-
bilistic action systems (originally proposed by Sere and Troubitsyna [21, 23])
are an extension of standard action systems in which actions are defined to be

Algebraic Reasoning for Probabilistic Systems 27

sublinear+ expectation transformers instead of conjunctive predicate transform-
ers. The input/output behaviour of a probabilistic action system is defined in
terms of the iteration constructs as follows:

do A1 u ... u An od , (A1 u ... u An)ω; [¬gd.A1 ∧ ... ∧ ¬gd.An],

where for all 1 ≤ i ≤ n, the action Ai is a sublinear+ expectation transformer,
and gd.A is a predicate that specifies the set of states from which A does not
behave like magic.

gd.A , (λσ • A.False.σ = 0)

The following lemma describes some of the basic properties of the guard operator.

Lemma 25. For any sublinear+ expectation transformers A and Ai , for 1 ≤
i ≤ n, we have that,

[gd.A]; A = A, (33)

({gd.A}; A).False = False, and (34)

gd.(A1 u ... u An) = gd.A1 ∨ ∨ gd.An . (35)

Proof. Proof of (33):

[gd.A]; A = A

⇔ {refinement ordering}
(∀φ • ([gd.A]; A).φ = A.φ)

⇔ {definition of sequential composition and guard}
(∀φ • (λσ • if gd.A.σ then A.φ.σ else ∞) = A.φ)

⇔ {expectation ordering defined pointwise}
(∀φ • (∀σ • if gd.A.σ then A.φ.σ = A.φ.σ else ∞ = A.φ.σ))

⇔ {simplify}
(∀φ, σ • ¬gd.A.σ ⇒ (A.φ.σ = ∞))

⇔ {definition of gd}
(∀φ, σ • (A.False.σ 6= 0) ⇒ (A.φ.σ = ∞))

⇐ {sublinear+ expectation transformers satisfy 01-feasibility (Lemma 1)}
(∀φ, σ • (A.False.σ = ∞) ⇒ (A.φ.σ = ∞))

⇔ { False is bottom expectation, monotonicity}
true.

Proof of (34):

({gd.A}; A).False

= {definition of sequential composition}
{gd.A}.(A.False)

= {definition of assertion on predicate}
(λσ • if gd.A.σ then A.False.σ else 0)

= {definition of gd}
(λσ • if (A.False.σ = 0) then A.False.σ else 0)

= {simplify}
False.

28 Larissa Meinicke and Ian J. Hayes

Proof of (35):

gd.(A1 u ... u An)
= {definition of gd}

(λσ • (A1 u ... u An).False.σ = 0)
= {definition of demonic choice, expectations are bounded below by 0}

(λσ • (A1.False.σ = 0) ∨ ... ∨ (An .False.σ = 0))
= {definition of gd}
= gd.A1 ∨ ∨ gd.An .

2

In this model of action systems infinite behaviours are considered to be abort-
ing: we do not model reactive behaviour. Using our algebraic framework, we con-
struct and verify transformation rules for probabilistic action systems. First we
describe some basic properties, and then we consider data refinement of action
systems in detail.

4.1 Basic Properties

Lemma 26. For any sublinear+ expectation transformer A,

(do A od).False = False.

Proof. Since False is the least expectation it is sufficient to show that

(do A od).False ≤ False

⇔ {for all φ, abort.φ = False}
do A od; abort v abort

⇔ {action system definition}
Aω; [¬gd.A]; abort v abort

⇐ (general induction (Theorem 11(1)))
A; abort u [¬gd.A]; abort v abort

⇔ { Lemma 25 (33) and basic guard and assertion rules}
[gd.A]; {gd.A}; A; abort u [¬gd.A]; abort v abort

⇔ {{gd.A}; A is strict (Lemma 25 (34))}
[gd.A]; abort u [¬gd.A]; abort v abort

⇔ {left distributivity and basic guard rules}
[gd.A ∨ ¬gd.A]; abort v abort

⇔ {definition of skip and skip is unit}
true.

2

As for standard action systems, the leapfrog and decomposition properties
may be lifted to action systems.

Lemma 27 (action system leapfrog). Assume that R and S are sublinear+

expectation transformers. If R; [¬gd.(S ; R)] v [¬gd.(R; S)]; R, then

R; do S ; R od v do R; S od; R.

Algebraic Reasoning for Probabilistic Systems 29

Proof. The proof of this is similar to that of Back and von Wright for standard
programs [5], it differs because we have refinement in the second proof step in-
stead of equivalence.

R; do S ; R od

= {rewrite action system in terms of iteration constructs}
R; (S ; R)ω; [¬gd.(S ; R)]

v {sub-leapfrog (Theorem 14)}
(R; S)ω; R; [¬gd.(S ; R)]

v {assumption}
(R; S)ω; [¬gd.(R; S)]; R

= {rewrite iteration construct in terms of action system}
do R; S od; R

2

Note that unlike standard action systems [5], property

R; [¬gd.(S ; R)] v [¬gd.(R; S)]; R (36)

does not necessarily hold. Take for example,

R = (x := 0 1

2

⊕ x := 1) and

S = [x = 0].

We then have that

S ; R = [x = 0]; (x := 0 1

2

⊕ x := 1),

R; S = (x := 0 1

2

⊕ x := 1); [x = 0] = (x := 0 1

2

⊕ magic) = magic,

R; [¬gd.(S ; R)] = R; [x 6= 0] = (magic 1

2

⊕ x := 1) = magic, but

[¬gd.(R; S)]; R = [True]; R = R.

The top program magic is not refined by R unless R is magic. Hence we must
include (36) as an assumption in the action system leapfrog rule.

Lemma 28 (action system decomposition). Let R and S be sublinear+

expectation transformers such that gd.R ∧ gd.S = False, then

do R [] S od = do S od; do (R; do S od) od.

Proof. The proof of this lemma is similar to the proof by Back and von Wright
[5] for the standard case. We include it here for clarity.
First, if we assume that gd.S ∧ gd.R = False, then we have

30 Larissa Meinicke and Ian J. Hayes

R

= {definition}
(λφ • (λσ • R.φ.σ))

= {gd.S is standard}
(λφ • (λσ • if ¬gd.S .σ then R.φ.σ else gd.S .σ ∧ R.φ.σ))

= {Lemma 25 (33)}
(λφ • (λσ • if ¬gd.S .σ then R.φ.σ else if gd.S .σ ∧ gd.R.σ then R.φ.σ else ∞))

= {assumption}
(λφ • (λσ • if ¬gd.S .σ then R.φ.σ else if false then R.φ.σ else ∞))

= {simplify}
(λφ • (λσ • if ¬gd.S .σ then R.φ.σ else ∞))

= {definition}
[¬gd.S]; R.

Now,

do R [] S od

= {rewrite action system using iteration constructs}
(R u S)ω; [¬gd.R ∧ ¬gd.S]

= {decomposition (Lemma 13)}
Sω; (R; Sω)ω; [¬gd.S ∧ ¬gd.R]

= {basic guard rules}
Sω; (R; Sω)ω; [¬gd.S]; [¬gd.R]

= {above}
Sω; ([¬gd.S]; R; Sω)ω; [¬gd.S]; [¬gd.R]

= {guards are conjunctive, leapfrog (Theorem 14)}
Sω; [¬gd.S]; (R; Sω; [¬gd.S])ω ; [¬gd.R]

= {see separate derivation below}
Sω; [¬gd.S]; (R; Sω; [¬gd.S])ω ; [¬gd.(R; Sω; [¬gd.S])]

= {rewrite iteration constructs as action systems}
do S od; do R; do S od od.

The guard manipulation step is justified by

gd.(R; Sω; [¬gd.S])
= {rewrite iteration in terms of action system}

gd.(R; do S od)
= {definition of gd}

(λσ • (R; do S od).False.σ = 0)
= {definition of sequential composition}

(λσ • R.(do S od.False).σ = 0)
= {Lemma 26}

(λσ • R.False.σ = 0)
= {definition}

gd.R.
2

4.2 Data Refinement

An expectation transformer S is said to be data refined by T through R if either

R; S v T ; R or S ; R v R; T .

Algebraic Reasoning for Probabilistic Systems 31

In the first instance R can be seen as mapping from the concrete state of T to
the abstract state of S , and in the second R can be seen to map the abstract
state of S to the concrete state of T . We refer to data refinement in the first
instance as cosimulation, and simulation in the latter.

First we present basic cosimulation and simulation rules for probabilistic
action systems. These rules are stuttering insensitive, that is they require a
direct correspondence between actions. The cosimulation rule has a similar form
to the cosimulation data refinement rule for standard action systems [1]. The
simulation rule has (necessarily) a different form to the corresponding standard
action system rule. We demonstrate our simulation rule using a simple example.
After we have presented the basic rules we present and verify stuttering sensitive
versions of the rules: rules that do not require a direct correspondence between
actions. After this we present and verify some weaker versions of our general
rules: these weaker rules may be simpler to use in practice than our more general
rules.

The basic cosimulation and simulation rules are as follows.

Theorem 29 (basic cosimulation). Given sublinear+ expectation transform-
ers R, S and T, we have that R; do S od v do T od; R, if R is continuous,

R; S v T ; R, and (37)

R; [¬gd.S ∨ fail.S] v [¬gd.T]; R. (38)

Proof. This follows directly from the definition of action systems, assumptions
(37) and (38), continuity of R, and Theorem 21. 2

Theorem 30 (basic simulation). Given sublinear+ expectation transformers
R, S and T, we have that do S od; R v R; do T od, if

{gd.S}; S ; R v R; {gd.T}; T and (39)

R; [¬gd.T] v [¬gd.S]; R. (40)

Proof. This follows directly from the definition of action systems, assumptions
(39) and (40), and Theorem 22. 2

Our basic cosimulation rule is more general than the one presented by Back
and von Wright [5, 24] because it uses our more general commutativity rule,
Theorem 21.

General Rules. We now present data refinement rules that allow stuttering
actions in data refinement. We use the following lemma to generalise our previous
rules.

Lemma 31. Given action system do S]uS\ od, such that S\ and S] are sublinear+

expectation transformers and S\
ω = S\

∗,

do S] u S\ od = S\
∗; (S]; S\

∗)ω; [¬gd.S\ u ¬gd.S]].

32 Larissa Meinicke and Ian J. Hayes

Proof.

do S] u S\ od

= {rewrite action system in terms of iteration}
(S] u S\)

ω; [¬gd.S\ u ¬gd.S]]
= {decomposition (Lemma 13)}

S\
ω; (S]; S\

ω)ω; [¬gd.S\ u ¬gd.S]]
= {assumption}

S\
∗; (S]; S\

∗)ω; [¬gd.S\ u ¬gd.S]]
2

Our general cosimulation and simulation rules are then given as follows.

Theorem 32 (general cosimulation). Given sublinear+ expectation trans-
formers R, S = S] u S\ and T = T] u T\ such that S\

ω = S\
∗ and T\

ω = T\
∗,

we have that R; do S od v do T od; R, if R is continuous,

R; S\
∗ v T\

∗; R, (41)

R; S]; S\
∗ v T]; T\

∗; R, and (42)

R; [¬gd.S ∨ fail .(S]; S\
∗)] v [¬gd.T]; R. (43)

Proof.

R; do S od

= {Lemma 31}
R; S\

∗; (S]; S\
∗)ω; [¬gd.S]

v {assumption (41)}
T\

∗; R; (S]; S\
∗)ω; [¬gd.S]

v {assumptions (42) and (43), continuity of R, and Theorem 21}
T\

∗; (T]; T\
∗)ω; [¬gd.T]; R

= {Lemma 31}
do T od; R

2

Theorem 33 (general simulation). Given sublinear+ expectation transform-
ers R, S = S] u S\ and T = T] u T\ such that S\

ω = S\
∗ and T\

ω = T\
∗, we

have that do S od; R v R; do T od, if

S\
∗; R v R; T\

∗
, (44)

{gd.S}; S]; S\
∗; R v R; {gd.T}; T]; T\

∗
, and (45)

R; [¬gd.T] v [¬gd.S]; R. (46)

Proof.

do S od; R

= {Lemma 31}
S\

∗; (S]; S\
∗)ω; [¬gd.S]; R

= {Lemma 25(33) and (35)}
S\

∗; ([gd.S ∧ gd.S]]; S]; S\
∗)ω; [¬gd.S]; R

= {basic guard rules and Lemma 25(33)}
S\

∗; ([gd.S]; S]; S\
∗)ω; [¬gd.S]; R

Algebraic Reasoning for Probabilistic Systems 33

v {assumptions (45) and (46) and Theorem 22}
S\

∗; R; ([gd.T]; T]; T\
∗)ω; [¬gd.T]

= {Lemma 25(33) and basic guard rules}
S\

∗; R; ([gd.T ∧ gd.T]]; T]; T\
∗)ω; [¬gd.T]

= {Lemma 25(33) and (35))}
S\

∗; R; (T]; T\
∗)ω; [¬gd.T]

v {assumption (44)}
R; T\

∗; (T]; T\
∗)ω; [¬gd.T]

= {Lemma 31}
R; do T od

2

An alternative general simulation rule can be constructed using Theorem
(23). The third proof obligation is weaker than (46), however, we require the
extra proof obligation (50).

Theorem 34 (alternative general simulation). Given sublinear+ expecta-
tion transformers R, S = S] u S\ and T = T] u T\ such that S\

ω = S\
∗ and

T\
ω = T\

∗, we have that do S od; R v R; do T od, if

S\
∗; R v R; T\

∗
, (47)

{gd.S}; S]; S\
∗; R v R; {gd.T}; T]; T\

∗
, (48)

R; [¬gd.T]] v [¬gd.S]; R, and (49)

[gd.S] ∨ ¬gd.S]; R v R; [gd.T] ∨ ¬gd.T]. (50)

Proof.

do S od; R

= {Lemma 31}
S\

∗; (S]; S\
∗)ω; [¬gd.S]; R

= {Lemma 25 (33)}
S\

∗; ([gd.S]]; S]; S\
∗)ω; [¬gd.S]; R

v {assumptions (48-50), Theorem 23 (see below for deferred justification)}
S\

∗; R; ([gd.T]]; T]; T\
∗)ω; [¬gd.T]

= {Lemma 25 (33)}
S\

∗; R; (T]; T\
∗)ω; [¬gd.T]

v {assumption (47)}
R; T\

∗; (T]; T\
∗)ω; [¬gd.T]

= {Lemma 31}
R; do T od

To see why Theorem 23 is applicable in the third proof step, observe that proof
obligations (28) and (29) hold given g1 = gd.S], g2 = ¬gd.S , p1 = gd.T] and
p2 = ¬gd.T . For example,

34 Larissa Meinicke and Ian J. Hayes

g1 ⇒ ¬g2
⇔ {definition of g1 and g2}

gd.S] ⇒ ¬(¬gd.S)
⇔ {simplify}

gd.S] ⇒ gd.S

⇔ {definition of S , Lemma 25 (35)}
gd.S] ⇒ gd.S] ∨ gd.S\

⇔ {simplify}
true.

The property p1 ⇒ ¬p2, may be proved in the same way. 2

Our stuttering sensitive rules are more general than those verified by Back
and von Wright using algebraic methods for standard action systems in [5, 24]:
they are more general because they allow stuttering steps to be removed as well
as added during refinement.

The basic cosimulation and simulation rules are special cases of the general
rules: they are the same when S\ and T\ is chosen to be magic. In the next section
we describe how the proof obligations of our general rules may be decomposed
into simpler forms.

4.3 Common Special Cases of the Data Refinement Rules

We present and verify lemmas that have equivalent or stronger proof obligations
than the general cosimulation and simulation lemmas, but may be simpler to
use in practice. We demonstrate the use of one of these simpler rules using an
example.

Cosimulation. Back and von Wright [1] observed that for conjunctive predicate
transformers S], S\, T], T\, and R, if T] = T1 u ... uTn , and S] v S1 u ... u Sn ,
then condition (42) holds if for each 1 ≤ i ≤ n,

R; Si ; S\
∗ v Ti ; T\

∗; R.

When our programs are sublinear+ expectation transformers instead of conjunc-
tive predicate transformers, we may decompose condition (42) from the general
cosimulation rule in the same way.

Lemma 35. For probabilistic action systems do S] u S\ od and do T] u T\ od,
and sublinear+ expectation transformer R, such that T] = T1 u ... u Tn , and
S] v S1 u ... u Sn , we have that

R; S]; S\
∗ v T]; T\

∗; R

(condition (42)) holds, if for each 1 ≤ i ≤ n,

R; Si ; S\
∗ v Ti ; T\

∗; R

holds.

Algebraic Reasoning for Probabilistic Systems 35

Proof. The proof of Back and von Wright [1] applies to expectation transform-
ers:

R; S]; S\
∗

v {assumption on S]}
R; (ui : [1, ..., n] • Si); S\

∗

v {left distributivity and right sub-distributivity}
(ui : [1, ..., n] • R; Si ; S\

∗)
v {assumption (35)}

(ui : [1, ..., n] • Ti ; T\
∗; R)

= {left distributivity}
(ui : [1, ..., n] • Ti); T\

∗; R

= {assumption on T]}
T]; T\

∗; R.
2

The following cosimulation rule is weaker than our general rule, however its
proof obligations may be simpler to use in practice. It is of a similar form to
the weak cosimulation rule presented by Back and von Wright [1] for standard
action systems with trace semantics.

Theorem 36 (weak cosimulation). Given sublinear+ expectation transform-
ers R, S = S] u S\ and T = T] u T\ such that S\

ω = S\
∗ and T\

ω = T\
∗, we

have that R; do S od v do T od; R, if R is continuous,

R; S\
∗ v T\; R, (51)

R; S]; S\
∗ v T]; R, and (52)

R; [¬gd.S ∨ fail.(S]; S\
∗)] v [¬gd.T]; R. (53)

Proof. Proof obligations (43) and (53) are identical, so we show that if (52) and
(51) hold, then (41) and (42) hold.

1. (51) ⇒ (41)
This follows directly from Theorem 17.

2. (52) ∧ (51) ⇒ (42)
R; S]; S\

∗

= {Lemma 12 (7)}
R; S]; S\

∗; S\
∗

v {assumption (52)}
T]; R; S\

∗

v {(using 41) (proved in part 1)}
T]; T\

∗; R

2

In Theorem 36, the weak iteration construct may be eliminated from the left
hand side of (52) and (51) by using Lemma 12 (5) to strengthen these conditions
to

R; S\ v T\; R and (54)

R; S]; S\ v T]; R. (55)

36 Larissa Meinicke and Ian J. Hayes

Simulation. For the general cosimulation rule, it was simple to decompose proof
obligation (42). The general simulation proof obligation (45) may be decomposed
in a similar way, however it requires an extra proof obligation.

Theorem 37. For probabilistic action systems do S od and do T od, and
sublinear+ expectation transformer R, where S = S] u S\, T = T] u T\, T] =
T1 u ... uTn , and S] v S1 u ... u Sn , we have that

{gd.S}; S]; S\
∗; R v R; {gd.T}; T]; T\

∗

(condition (45)) holds, if for each 1 ≤ i ≤ n,

{gd.S}; Si ; S\
∗; R v R; {gd.T}; Ti ; T\

∗
and (56)

R; (ui : [1, ..., n] • {gd.T}; Ti) = (ui : [1, .., n] • R; {gd.T}; Ti). (57)

Proof.
{gd.S}; S]; S\

∗; R

v {assumption on S]}
{gd.S}; (ui : [1, ..., n] • Si); S\

∗; R

= {left distributivity and right distributivity of conjunctive programs}
(ui : [1, ..., n] • {gd.S}; Si ; S\

∗; R)
v {assumption (56)}

(ui : [1, ..., n] • R; {gd.T}; Ti ; T\
∗)

= {left distributivity}
(ui : [1, ..., n] • R; {gd.T}; Ti); T\

∗

= (assumption (57))
R; (ui : [1, ..., n] • {gd.T}; Ti); T\

∗

= {right distributivity of conjunctive programs}
R; {gd.T}; (ui : [1, ..., n] • Ti); T\

∗

= {assumption on T]}
R; {gd.T}; T]; T\

∗

2

Proof obligation (57) is trivially satisfied if R is conjunctive. The following rule
is the simulation counterpart of our weak cosimulation rule.

Theorem 38 (weak simulation). Given sublinear+ expectation transformers
R, S = S] u S\ and T = T] u T\ such that S\

ω = S\
∗ and T\

ω = T\
∗, we have

that do S od; R v R; do T od, if

S\
∗; R v R; (T\ u skip), (58)

{gd.S}; S]; S\
∗; R v R; {gd.T}; T], and (59)

R; [¬gd.T] v [¬gd.S]; R. (60)

Proof. Proof obligations (46) and (60) are identical, so we show that if (59) and
(58) hold, then (44) and (45) hold.

1. (58) ⇒ (44)
This follows directly from cocontinuity of R and T\ (from Theorem 2 we have that
sublinear expectation transformers are cocontinuous), and Theorem 18.

Algebraic Reasoning for Probabilistic Systems 37

2. (59) ∧ (58) ⇒ (45)

{gd.S}; S]; S\
∗; R

= {Lemma 12 (7})
{gd.S}; S]; S\

∗; S\
∗; R

v {using (44) (proved in part 1) }
{gd.S}; S]; S\

∗; R; T\
∗

v {assumption (59)}
R; {gd.T}; T]; T\

∗

2

As for the weak cosimulation rule, the weak iteration construct may be elimi-
nated from the left hand side of (59) and (58) using Lemma 12 (5) to strengthen
these conditions to

S\; R v R; (T\ u skip) and (61)

{gd.S}; S]; S\; R v R; {gd.T}; T]. (62)

An equivalent theorem also exists for our alternative general simulation rule,
Theorem 34. It may be verified in the same way as Theorem 38.

Theorem 39 (alternative weak simulation). Given sublinear+ expectation
transformers R, S = S]uS\ and T = T]uT\ such that S\

ω = S\
∗ and T\

ω = T\
∗,

we have that do S od; R v R; do T od, if

S\
∗; R v R; (T\ u skip), (63)

{gd.S}; S]; S\
∗; R v R; {gd.T}; T], (64)

R; [¬gd.T]] v [¬gd.S]; R, and (65)

[gd.S] ∨ ¬gd.S]; R v R; [gd.T] ∨ ¬gd.T]. (66)

We present a simple example to demonstrate how the alternative weak sim-
ulation rule may be used in practice.

Example. Action system S1 (see Fig. 5) may be used to represent the behaviour
of a unfair scheduler with two processes, P1 and P2, where both P1 and P2
are feasible. Predicates env1 and env2 indicate when processes P1 and P2 are
able to be executed. If both processes are able to be executed at the same time,
then the scheduler may demonically chose between executing P1 or P2, if only
one process is ready, then it must execute that process, and if neither process is
ready it terminates. We may show that this scheduler is data refined by action
system S2 through representation program R. S2 represents a fair scheduler
that has the same processes as S1, but, when both processes are able to be
executed simultaneously, it chooses between them with equal probability. The
fair scheduler, S2, uses fresh variable a to determine which process to execute. It
also includes an extra action that is used to update the variable a. Fresh boolean
variable c is used to specify when the new action should be executed.

We may use Theorem 39 to verify that S1; R v R; S2 using the following
partitioning of actions.

38 Larissa Meinicke and Ian J. Hayes

S1 , do [env1]; P1 u [env2]; P2 od

S2 , do [a = 1 ∧ c]; P1; c := false

u [a = 2 ∧ c]; P2; c := false

u [¬c]; c := true; C

od

C , [env1 ∧ env2]; (a := 1 1

2

⊕ a := 2)

u [env1 ∧ ¬env2]; a := 1
u [¬env1 ∧ env2]; a := 2
u [¬env1 ∧ ¬env2]; a := 0

R , (c := true; C) u (c := false; a :∈ {0, 1, 2})

Fig. 5. Unfair and fair schedulers S1 and S2, and representation program R. We write
a :∈ {0, 1, 2} to mean a := 0 u a := 1 u a := 2. Assignment statements have the usual
meaning.

S1] , [env1]; P1 u [env2]; P2

S1\ , magic

S2] , [a = 1 ∧ c]; P1; c := false u [a = 2 ∧ c]; P2; c := false

S2\ , [¬c]; c := true; C

None of the actions from S1 are defined to be stuttering, however the action
from S2 in which the next process is chosen is defined to be stuttering. S1\ and
S2\ trivially satisfies the theorem conditions S1\

∗ = S1\
ω and S2\

∗ = S2\
ω. We

have that

S1\
∗ = skip and

S2\
∗ = [¬c]; c := true; C u skip.

Proof of condition (63):

R; (S2\ u skip)
= {expanding R and S2\, left distributivity }

c := true; C ; ([¬c]; c := true; C u skip)
u c := false; a :∈ {0, 1, 2}; ([¬c]; c := true; C u skip)

= {C does not modify c, right distributivity of conjunctive programs}
c := true; C ; ([False]; c := true; C u skip)
u c := false; a :∈ {0, 1, 2}; [True]; c := true; C

u c := false; a :∈ {0, 1, 2}; skip

= {preemption, magic is unit, skip is unit, definition of C}
c := true; C u c := true; C u c := false; a :∈ {0, 1, 2}

= {idempotence}
R

= {definition of S1\, skip is unit}
S1\

∗; R.

Proof of condition (64): it is interesting to note that there is no suitable decom-
position of actions S1] and S2] that enables us to use Theorem 37 to simplify

Algebraic Reasoning for Probabilistic Systems 39

this proof step. Starting with the right hand side.

{gd.S1}; S1]; S1\
∗; R

= {expanding definitions}
{env1 ∨ env2}; ([env1]; P1 u [env2]; P2); (c := true; C u c := false; a :∈ {0, 1, 2})

v {left distributivity, basic lattice property}
{env1 ∨ env2}; ([env1]; P1; c := false; a := 1 u [env2]; P2; c := false; a := 2)

= {basic guard property {p} = [¬p]; abort u [p]}
[env1 ∨ env2]; ([env1]; P1; c := false; a := 1 u [env2]; P2; c := false; a := 2)
u [¬env1 ∧ ¬env2]; abort

= {basic guard rules, simplify}
[env1 ∧ env2]; (P1; c := false; a := 1 u P2; c := false; a := 2)
u [env1 ∧ ¬env2]; P1; c := false; a := 1
u [¬env1 ∧ env2]; P2; c := false; a := 2
u [¬env1 ∧ ¬env2]; abort

= {demonic choice refined by probabilistic choice}
[env1 ∧ env2]; (P1; c := false; a := 1 1

2

⊕ P2; c := false; a := 2)

u [env1 ∧ ¬env2]; P1; c := false; a := 1
u [¬env1 ∧ env2]; P2; c := false; a := 2
u [¬env1 ∧ ¬env2]; abort

Which we now show to be equivalent to R; {gd.S2}; S2] by

R; {gd.S2}; S2]

= {definition of S2] and S2, basic guard rules}
R; {(c ∧ a ∈ {1, 2}) ∨ ¬c)}; [c ∧ a ∈ {1, 2}]; S2]

= {definition of R, left distributivity}
(c := true; C ; {(c ∧ a ∈ {1, 2}) ∨ ¬c}; [c ∧ a ∈ {1, 2}]
u c := false; a :∈ {0, 1, 2}; {(c ∧ a ∈ {1, 2}) ∨ ¬c}; [c ∧ a ∈ {1, 2}]); S2]

= {simplify}
(c := true; C ; {a ∈ {1, 2}}; [a ∈ {1, 2}]
u c := false; a :∈ {0, 1, 2}; {True}; [False]); S2]

= {basic guard rules, magic annihilates non-aborting statements }
(c := true; C ; {a ∈ {1, 2}} u magic); S2]

= {magic is top}
c := true; C ; {a ∈ {1, 2}}; S2]

= {expanding C , left distributivity, simplify}
c := true;
([env1 ∧ env2]; (a := 1 1

2

⊕ a := 2); {True}; S2]

u [env1 ∧ ¬env2]; a := 1; {True}; S2]

u [¬env1 ∧ env2]; a := 2; {True}; S2]

u [¬env1 ∧ ¬env2]; a := 0; {False}; S2])
= {abort is bottom and it annihilates feasible statements, skip is unit}

c := true;
([env1 ∧ env2]; (a := 1 1

2

⊕ a := 2); S2]

u [env1 ∧ ¬env2]; a := 1; S2]

u [¬env1 ∧ env2]; a := 2; S2]

u [¬env1 ∧ ¬env2]; abort

40 Larissa Meinicke and Ian J. Hayes

= {expand S2], left distributivity of probabilistic choice, magic is unit}
c := true;
([env1 ∧ env2]; (a := 1; P1; c := false; 1

2

⊕ a := 2; P2; c := false)

u [env1 ∧ ¬env2]; a := 1; P1; c := false

u [¬env1 ∧ env2]; a := 2; P2; c := false

u [¬env1 ∧ ¬env2]; abort.

Since a and c are not free in env1, env2, P1 and P2, the equivalence is es-
tablished.

Proof of condition (65): Starting with the left hand side.

R; [¬gd.S2]]
= {definition of S2]}

R; [¬c ∨ a 6∈ {1, 2}]
= {definition of R, left distributivity, simplify}

c := true; C ; [a 6∈ {1, 2}] u c := false; a :∈ {0, 1, 2}; [True]
= {definition of C , left distributivity, simplify}

c := true; ([env1 ∧ env2]; (a := 1 1

2

⊕ a := 2); [False]

u [env1 ∧ ¬env2]; a := 1; [False]
u [¬env1 ∧ env2]; a := 2; [False]
u [¬env1 ∧ ¬env2]; a := 0; [True])
u c := false; a :∈ {0, 1, 2}; [True]

v {magic is unit and annihilates non-aborting statements, skip is unit}
c := true; [¬env1 ∧ ¬env2]; a := 0 u c := false; a :∈ {0, 1, 2}

v {guards refine skip}
c := true; [¬env1 ∧ ¬env2]; a := 0
u [¬env1 ∧ ¬env2]; c := false; a :∈ {0, 1, 2}

v {c not free in env1 or env2}
[¬env1 ∧ ¬env2]; c := true; a := 0
u [¬env1 ∧ ¬env2]; c := false; a :∈ {0, 1, 2}

Which can be shown to equal the right hand side by

[¬gd.S1]; R

= {definition of S1}
[¬env1 ∧ ¬env2]; R

= {guards are conjunctive, right distributivity of conjunctive programs}
[¬env1 ∧ ¬env2]; c := true; C

u [¬env1 ∧ ¬env2]; c := false; a :∈ {0, 1, 2}
= {definition of C , simplify}

[¬env1 ∧ ¬env2]; c := true;
([False]; (a := 1 1

2

⊕ a := 2) u [False]; a := 1 u [False]; a := 2 u [True]; a := 0)

u [¬env1 ∧ ¬env2]; c := false; a :∈ {0, 1, 2}
= {preemption, magic is unit, skip is unit}

[¬env1 ∧ ¬env2]; c := true; a := 0
u [¬env1 ∧ ¬env2]; c := false; a :∈ {0, 1, 2}.

Algebraic Reasoning for Probabilistic Systems 41

Proof of condition (66):

[gd.S1] ∨ ¬gd.S1]; R

= {definition of S1]}
[gd.S1 ∨ ¬gd.S1]; R

= {simplify, skip is unit}
R

v {guards refine skip}
R; [gd.S2] ∨ ¬gd.S2].

5 Loops

Probabilistic while loops are a generalisation of the standard while loops pre-
sented by Back and von Wright [5]. They are of a similar form to action systems.
Their traditional expression in terms of the fixpoint operators is

do g1 → S1 [] ... [] gn → Sn od ,

(µX • [g1]; S1; X u .. u [gn]; Sn ; X u [¬g1 ∧ ... ∧ ¬gn]),

which may be rewritten using the iteration constructs as

do g1 → S1 [] ... [] gn → Sn od =
([g1]; S1 u ... u [gn]; Sn)ω; [¬g1 ∧ ... ∧ ¬gn]).

Probabilistic while loops differ from probabilistic action systems because
guards are explicitly stated, and for each action [gi]; Si , the guard of [gi]; Si

need not equal gi : that is, Si may behave miraculously even when its guard gi
is enabled. (Recall from the previous section that the guards of actions were
implicit).

We present two of the better known loop transformation rules: leapfrog and
decomposition, as well as data refinement rules for loops.

5.1 Leapfrog and Decomposition for Loops

As for the other probabilistic leapfrog and decomposition rules, we have that for
monotonic expectation transformers, we only get a weaker form of the leapfrog
rule, but for decomposition, the rule is exactly the same as for standard loops
(we do not require conjunctivity as required in [5]).

Lemma 40 (loop leapfrog). Given monotonic expectation transformers S and
T, if

S ; [¬h] v [¬g]; S and S ; [h] v [g]; S (67)

then
S ; do h → T ; S od v do g → S ; T od; S . (68)

42 Larissa Meinicke and Ian J. Hayes

For conjunctive predicate transformers, Back and von Wright [5] specified
the assumptions for the leapfrog rule as

S .True ∧ ¬g ≤ S .(¬h) and S .True ∧ g ≤ S .h. (69)

The guard propagation rules for conjunctive predicate transformers can be used
to show that assumptions (67) and (69) are equivalent. Since the same guard
propagation rules do not in general apply to our expectation transformers, we
may not express our constraints in this way.

Proof. The proof differs from that of Back and von Wright [5] because in the
second step we have refinement instead of equality since we cannot assume con-
junctivity of S .

S ; do h → T ; S od

= {rewrite loop using iteration constructs}
S ; ([h]; T ; S)ω; [¬h]

v {sub-leapfrog (Theorem 14)}
(S ; [h]; T)ω; S ; [¬h]

v {assumptions S ; [¬h] v [¬g]; S and S ; [h] v [g]; S }
([g]; S ; T)ω; [¬g]; S

= {rewrite iteration in terms of loop}
do g → S ; T od; ; S

2

Lemma 41 (loop decomposition). Given monotonic expectation transform-
ers S and T,

do g ∧ ¬h → S [] h → T od

= do h → T od; do g → (S ; do h → T od) od.

Proof. The proof of this is the same as that presented by Back and von Wright
[5]. We present it for clarity. We emphasise here that we may use the leapfrog
rule in the second step since guards are conjunctive, not because we have as-
sumed either S or T are conjunctive.

do h → T od; do g → (S ; do h → T od) od

= {rewrite loops using iteration constructs}
([h]; T)ω; [¬h]; ([g]; S ; ([h]; T)ω; [¬h])ω ; [¬g]

= {coercions are conjunctive, leapfrog (Theorem 14), basic guard rules}
([h]; T)ω; ([g ∧ ¬h]; S ; ([h]; T)ω)ω; [¬g ∧ ¬h]

= {decomposition (Lemma 13)}
([g ∧ ¬h]; S u [h]; T)ω; [¬g ∧ ¬h]

= {rewrite iteration in terms of loop}
do g ∧ ¬h → S [] h → T od

2

5.2 Data Refinement of Loops

The data refinement rules for loops are similar for those for action systems. We
present the basic and general loop simulation and cosimulation rules, however
we elide proofs because of their similarity to those in Sect. 4.

Algebraic Reasoning for Probabilistic Systems 43

Lemma 42 (basic loop cosimulation). Given monotonic expectation trans-
formers R, S and T, and predicates g and p, we have that R; do g → S od v
do p → T od; R, if R is continuous,

R; [g]; S v [p]; T ; R, and (70)

R; [¬g ∨ fail.S] v [¬p]; R. (71)

Lemma 43 (basic loop simulation). Given monotonic expectation trans-
formers R, S and T, and predicates g and p, we have that do g → S od; R v
R; do p → T od, if

{g}; S ; R v R; {p}; T, and (72)

R; [¬p] v [¬g]; R. (73)

As for the action system basic data refinement rules, these rules may be
verified using commutativity Theorems 21 and 22.

Lemma 44 (general loop cosimulation). Given predicates g1, g2, p1, p2,
and monotonic expectation transformers R, S], S\ and T], T\, such that ([g2]; S\)

ω =
([g2]; S\)

∗ and ([p2]; T\)
ω = ([p2]; T\)

∗, we have that

R; do g1 → S] [] g2 → S\ od v do p1 → T] [] p2 → T\ od; R,

provided R is continuous,

R; ([g2]; S\)
∗ v ([p2]; T\)

∗; R, (74)

R; [g1]; S]; ([g2]; S\)
∗ v [p1]; T]; ([p2]; T\)

∗; R, and (75)

R; [(¬g1 ∧ ¬g2) ∨ fail.([g1]; S]; ([g2]; S\)
∗)] v [¬p1 ∧ ¬p2]; R. (76)

Lemma 45 (general loop simulation). Given predicates g1, g2, p1, p2,
monotonic expectation transformers R, S], S\ and T], T\ such that ([g2]; S\)

ω =
([g2]; S\)

∗ and ([p2]; T\)
ω = ([p2]; T\)

∗, we have that

do g1 → S] [] g2 → S\ od; R v R; do p1 → T] [] p2 → T\ od,

provided

([g2]; S\)
∗; R v R; ([p2]; T\)

∗
, (77)

{g1 ∨ g2}; [g1]; S]; ([g2]; S\)
∗; R v R; {p1 ∨ p2}; [p1]; T]; ([p2]; T\)

∗
, and(78)

R; [¬p1 ∧ ¬p2] v [¬g1 ∧ ¬g2]; R. (79)

Lemma 46 (alternative general loop simulation). Given predicates g1,
g2, p1, p2, monotonic expectation transformers R, S], S\ and T], T\ such that
([g2]; S\)

ω = ([g2]; S\)
∗ and ([p2]; T\)

ω = ([p2]; T\)
∗, we have that

do g1 → S] [] g2 → S\ od; R v R; do p1 → T] [] p2 → T\ od,

provided

([g2]; S\)
∗; R v R; ([p2]; T\)

∗
, (80)

{g1 ∨ g2}; [g1]; S]; ([g2]; S\)
∗; R v R; {p1 ∨ p2}; [p1]; T]; ([p2]; T\)

∗
, (81)

R; [¬p1] v [¬g1 ∧ ¬g2]; R, and (82)

[g1 ∨ ¬g2]; R v R; [p1 ∨ ¬p2]. (83)

Weaker versions of these rules may be generated for loops in the same way
as we did for action systems in Sect. 4.

44 Larissa Meinicke and Ian J. Hayes

6 Conclusion

Back and von Wright have demonstrated how to reason about standard loops
in a concrete algebraic setting [5, 2]. We have demonstrated how probabilistic
loops may be reasoned about in a similar way. We have identified a number
of important transformation rules that are common to both probabilistic and
standard loops. In addition, we have identified a number of standard transfor-
mation rules that are not applicable to probabilistic programs. For the latter
rules, we have developed alternative transformation rules that are suitable in
the probabilistic context. We have applied our algebraic rules to develop trans-
formation rules for probabilistic action systems and while-loops. In particular,
we have constructed new data refinement rules for probabilistic action systems
and probabilistic while-loops. We have also analysed how our data refinement
rules may be decomposed into simpler forms.

There are many benefits to taking an algebraic approach to reasoning about
iterations and loops: the main benefit being that it can simplify reasoning about
complex theorems. The transformation rules that we have developed may be
used as a basis to develop further rules.

Acknowledgments. This research was supported by Australian Research Coun-
cil (ARC) Discovery Grant DP0558408, Analysing and generating fault-tolerant
real-time systems.

References

1. Ralph-Johan Back and Joakim von Wright. Trace refinement of action systems.
In International Conference on Concurrency Theory, volume 836 of LNCS, pages
367–384. Springer Verlag, 1994.

2. Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic

Introduction. Springer, 1998.
3. R.J.R. Back and R. Kurki-Suonio. Decentralization of process nets with central-

ized control. In Proc. of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of

Distributed Computing, pages 131–142. ACM Press, 1983.
4. R.J.R. Back and R. Kurki-Suonio. Distributed cooperation with action systems.

ACM Trans. Program. Lang. Syst., 10(4):513–554, 1988.
5. R.J.R Back and J. von Wright. Reasoning algebraically about loops. Acta Infor-

matica, 36:295–334, 1999.
6. Ernie Cohen. Hypotheses in Kleene algebra. Technical Report TM-ARH-023814,

Belcore, 1994.
7. Ernie Cohen. Separation and reduction. In Mathematics of Program Construction,

volume 1837 of LNCS, pages 45–59. Springer, 2000.
8. B. A. Davey and H.A Priestley. Introduction to Lattices. Cambridge University

Press, 1990.
9. Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

10. J. He, K. Seidel, and A. McIver. Probabilistic models for the guarded command
language. Science of Computer Programming, 28(2-3):171–192, 1997.

11. Joe Hurd. A formal approach to probabilistic termination. In TPHOLs, volume
2410 of LNCS, pages 230–245. Springer-Verlag, 2002.

Algebraic Reasoning for Probabilistic Systems 45

12. Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programming

Languages and Systems, 19(3):427–443, 1997.
13. Annabelle McIver and Carroll Morgan. Demonic, angelic and unbounded proba-

bilistic choices in sequential programs. Acta Informatica, 37(4/5):329–354, 2001.
14. Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for

Probabilistic Systems. Monographs in Computer Science. Springer, 2005.
15. Larissa Meinicke and Ian J. Hayes. Reasoning algebraically about probabilistic

loops. In Eighth Internatinal Conference on Formal Engineering Methods, volume
4260 of LNCS, pages 380–399, 2006. Accepted for publication.

16. Bernhard Möller. Lazy Kleene algebra. In Mathematics of Program Construction,
volume 3125 of LNCS, pages 252–273. Springer-Verlag, 2004.

17. C. Morgan. Programming from Specifications. Prentice Hall, second edition, 1994.
18. Carroll Morgan. Proof rules for probabilistic loops. In He Jifeng, John Cooke,

and Peter Wallis, editors, BCS-FACS 7th Refinement Workshop. Springer Verlag,
August 1996.

19. Carroll Morgan and Annabelle McIver. Cost analysis of games using program logic,
2001. Presented at 8th Asia-Pacific Software Engineering Conference.

20. Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate trans-
formers. ACM Transactions on Programming Languages and Systems, 8(1):325–
353, January 1999.

21. Kaisa Sere and Elena Troubitsyna. Probabilities in action systems. In Proc. of the

8th Nordic Workshop on Programming Theory, 1996.
22. Kim Solin and Joakim von Wright. Refinement algebra with operators for enabled-

ness and termination. In Mathematics of Program Construction, volume 4014 of
LNCS, pages 397–415, 2006.

23. Elena A. Troubitsyna. Reliability assessment through probabilistic refinement.
Nordic Journal of Computing, pages 320–342, 1999.

24. Joakim von Wright. From Kleene algebra to refinement algebra. In Mathematics

of Program Construction, volume 2386 of LNCS, pages 233–262. Springer, 2002.
25. Joakim von Wright. Towards a refinement algebra. Science of Computer Program-

ming, 51, 2004.

