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Abstract 

Five different RNA extraction methods have been tried out on the red seaweed, 

Gracilaria changii collected from the mangrove area at Morib, Selangor, Malaysia. 

Two methods, one utilising guanidinium thiocyanate, and another using cetyltrimethyl 

ammonium bromide (CTAB), were found to be potential alternatives to obtain pure 

RNA. By incorporating sand while grinding the tissue, the method using CTAB was 

found most suitable to obtain pure RNA (high A260:280nm ratio) with high yield (0.16µg 

RNA per gram of fresh tissue).  

 

 

Introduction 

The Rhodophyceae and Phaeophyceae are important producers of phycocolloids, e.g. 

agar, agarose, algin and carrageenan (Hoppe & Schmid 1969). These polysaccharides, 

credited for their gel-forming capability, are widely used as immobilising and 

encapsulating agents for analytical elements, especially in the emerging enzyme and 

biosensor technology in medical fields (Jensen 1993; Renn 1997). Gracilaria 

(Gracilariales, Rhodophyta), with its agar content ranging from 4.4% to 40.0%, is the 
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most common agarophytic seaweed genus in Malaysia (Doty et al. 1983; Phang & 

Maheswary 1989). It has practically replaced Gelidium as the most important source of 

agar in the world, yielding 60–70% of the world agar (Schramm 1991; Tseng & Xia 

1999).  

 

Gracilaria changii is one of the more abundant agarophytic seaweeds in Malaysia 

(Phang 1994). Of the eight Gracilaria species reported in Malaysia, G. changii adapts 

well in the mangroves fringing the west coast of Malaysia, in muddy or silty areas, 

ponds, and even irrigation canals (Phang et al. 1996). As a food, G. changii is high in 

fiber and mineral, with substantial level of lipid and protein (Norziah & Chio 2000). 

More importantly, this tropical seaweed could produce agar and agarose with high gel 

strengths (Santos & Doty 1983; Phang et al. 1996). The domestic demand for agar in 

Malaysia is high, when more than US$ 2.6 million was spent on agar imports in year 

1987 alone (Jahara & Phang 1990), and the figure has never been stop increasing. With 

the abilities to produce good quality agar and adapt to harsh mangrove environments, G. 

changii fits well in industrial agar productions. There are a few papers reporting on 

molecular genetic studies on Gracilaria chilensis (Villemur 1990), G. gracilis (Lluisma 

& Ragan 1997; 1998a; 1998b) and G. verrucosa (Zhou & Ragan 1993; 1995a; 1995b; 

1995c) So far, the genetic basis of Gracilaria is not fully understood, and G. changii is 

one of the least studied species.  

 

To carry out molecular studies on a species with little information available, large-scale 

automated sequencing of partial cDNA clones as expressed sequence tags (ESTs) is 

essential. Similarity searches of these ESTs against public DNA and protein sequence 

databases can be carried out, and this approach is well-accepted for gene analysis of any 
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given species (Shoop et al. 1994; Sterky & Lundeberg 2000). Lluisma and Ragan (1997) 

have reported on the first project on EST from G. gracilis. These EST databases are a 

potentially valuable source of genetic markers, and they allow the construction of 

synthetic genome linkage maps of expressed genes among related species (Cato et al. 

2001). Genetic mapping with ESTs would enable a more rapid transfer of linkage 

information between species. The EST approach had been widely applied on plants 

(Delseny et al. 1997; Asamizu et al. 2000), algae (Crépineau et al. 2000; Nikaido et al. 

2000) and in Human Genome Project (Hillier et al. 1996; IHGSC 2001).  

 

The most critical step before cDNA library construction is to extract sufficient amount of 

high quality total RNA from G. changii prior to mRNA isolation. However, RNA 

extraction from G. changii is not as easy as it seems. The difficulty of nucleic acid 

extraction is magnified by the release of secondary metabolites after cells disruption, in 

which tissues are embedded in viscous polysaccharides (Ho et al. 1996; Gehrig et al. 

2000). Furthermore, samples of different species, different organ or part at different 

times of the year, show slight differences in their cell wall compositions (Dring 1982).  

 

The main objective of this study is to obtain sufficient amount of good quality RNA for 

cDNA library construction and EST generation for G. changii, so as a means for large-

scale gene expression analysis of this species. Here we reported five different RNA 

extraction methods for G. changii. 
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Materials and methods 

Sample collection, preparation and maintenance 

Fresh plants of G. changii, preferably the reproductive parts, were collected from 

mangrove at Morib, Selangor. The seaweeds were collected in bunches if possible to 

minimise thalli fragmentation or breakage, and cleansed from mud and entangling 

epiphytes. The samples were frozen in liquid nitrogen upon cleansing immediately and 

stored at -80°C. 

Total RNA extraction 

Method 1 (Soares & Bonaldo 1997) 

Frozen tissue, ground in liquid nitrogen, was added to extraction buffer (4M guanidinium 

thiocyanate, 25mM sodium citrate, 0.5% sarkosyl, 100mM β-mercaptoethanol) in a ratio 

of 1:3 (w/v). The tube was gently mixed at room temperature for 15 min, before 0.1 vol 

of sodium salt solution (2M sodium acetate, 57% acetic acid pH 4.0) and 1.2 vol of 

phenol-chloroform (5:1) were added. The mixture was incubated on ice for 15 min and 

centrifuged (10000 rpm, 10 min, 4°C). Nucleic acid was extracted using equal vol of 

high-salt solution (1.2M NaCl, 0.8M sodium citrate)-isopropanol (1:1). The pellet was 

washed with isopropanol and then with 70% ethanol. This is followed by extraction with 

equal vol of chloroform, and standard ethanol precipitation with 0.1 vol 3M sodium 

acetate pH 5.2 and 2.5 vol ethanol. The RNA pellet was resuspended in 1 mL TES buffer 

(10mM Tris-HCl, 1mM EDTA, 0.5% SDS).  

Method 2 (Hong et al. 1997)  

After grinding in liquid nitrogen, the frozen tissue was added to the extraction buffer 

(4M guanidinium thiocyanate, 0.8M LiCl, 0.6% sarkosyl, 10mM EDTA, 0.2% PVPP, 

2% β-mercaptoethanol) in a ratio of 1:3 (w/v). The mixture was heated at 55°C for 10 

min, shaken gently on ice for 1 h, and centrifuged (10000 rpm, 20 min, 4°C). Nucleic 
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acid was precipitated using 0.1 vol of 3M sodium acetate pH 5.2 and 0.6 vol of 

isopropanol. This was followed by standard phenol-chloroform extraction and ethanol 

precipitation. The RNA pellet was dissolved in DEPC-treated water.  

Method 3  

For Method 3, extraction was carried out as stated in Method 2. After phenol-chloroform 

extraction, 1/5 vol of 3M potassium acetate pH 6.0 and 1/4 vol of ethanol were added, 

followed by extraction with equal vol of chloroform. The aqueous phase was made to 

3M LiCl and left overnight at 4°C. The RNA was spun down by centrifugation (12000 

rpm, 4°C, 30 min), followed by 70% ethanol washing and ethanol precipitation. 

Method 4  

Frozen sample, ground in liquid nitrogen, was added to extraction buffer (200mM Tris-

HCl pH 9.0, 100mM NaCl, 10mM EDTA, 1% SDS, 14mM β-mercaptoethanol) in a ratio 

of 1:3 (w/v). The mixture was extracted once with 2 vol of phenol-chloroform (1:1), 

once with 1 vol of phenol:chloroform (1:1), and once with equal vol of chloroform. 

Ethanol precipitation were carried out using 1/30 vol of 3M sodium acetate pH 5.2 and 

1/10 vol of ethanol, and again using 1/15 vol of 3M sodium acetate pH 5.2 and 2.5 vol of 

ethanol. Further 70% ethanol washing and standard ethanol precipitation were carried 

out. 

Method 5 (Apt et al. 1995) 

Ground frozen tissue was added to extraction buffer (100mM Tris-HCl, 1.5M NaCl, 

20mM EDTA, 20mM DTT, 2% CTAB) in a ratio of 1:3 (w/v) and mixed gently at room 

temperature for 15 min. Extraction with equal vol of chloroform was carried out, and 

repeated after addition of 1/3 vol of ethanol. The resulting aqueous phase was made to 

3M LiCl and 1% v/v β-mercaptoethanol, and left at -20°C overnight. The RNA was spun 

down by centrifugation (12000 rpm, 4°C, 30 min). Standard phenol-chloroform 
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extraction and ethanol precipitation were then carried out. In the modified protocols, 

autoclaved and acid-washed sand was added to the mortal in a ratio of 1:2 while grinding 

the tissues, and LiCl precipitation was carried out at 3M for 3 hours, instead of overnight 

in the original protocol. 

 

Quantitative analysis  

Quantitave analysis of RNA was done using Ultrospec 2000 UV/Visible 

spectrophotometer (Pharmacia Biotech) by measuring the OD at 260nm and 280nm. One 

unit of absorption at 260nm represents 40µg/mL of RNA. 

 

Formaldehyde-agarose gel electrophoresis 

Formaldehyde-agarose gel (1.2%) was prepared using 1x F buffer (20mM MOPS pH 7.0, 

1mM EDTA, 5mM sodium acetate) and formaldehyde 6% v/v. A total of 5-10µL sample 

(± 2µg RNA) was added to the sample buffer (1x F buffer, 25% v/v formamide, 6% v/v 

formaldehyde, trace amount of saturated bromophenol blue). The mixture was heated at 

60°C for 10 min, and loaded to the gel after the addition of 0.5µL ethidium bromide 

(10mg/mL). The electrophoresis was run at 5 V/cm in the running buffer (1x F buffer, 

6% formaldehyde). 

 

Results and discussion 

Protein denaturants, such as guanidinium thiocyanate and guanidinium hydrochloride are 

extensively used as chaotrophic agents for mammal and plant cell disruption in nucleic 

acid extraction, especially in RNA extraction (Chirgwin et al. 1979; Karlinsey et al. 

1989; Dolferus 1991; Soares & Bonaldo 1997; Salzman et al. 1999; Wilkinson 2000). 

The earliest total RNA isolation from eukaryotic cells was reported by Glisin et al. 
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(1974), utilising guanidinium thiocyanate and cesium chloride centrifugation. Thirteen 

years later, Chomczynski and Sacchi (1987) developed a more favourable method, 

substituting cesium chloride ultracentrifugation with phenol-chloroform extraction, 

which is more time-efficient. Method 1 in this experiment is the Chomczynski and 

Sacchi (1987) method, with further modification by Chomczynski and Mackey (1995). 

The application of Method 1 on RNA extraction from G. changii yielded no RNA but 

DNA, as shown in Figure 1a.  

 

Method 2 is a modified method of Hong et al. (1997) for RNA extraction from seaweed 

tissues. In addition to guanidinium thiocyanate, Hong and his co-workers introduced the 

use of polyvinyl polypyrrolidone (PVPP) and lithium chloride in the extraction buffer 

(Hong et al. 1992; 1995a; 1995b; 1997). The insoluble PVPP, acts to bind phenolic 

compounds. It has been used in RNA extraction from recalcitrant tissues e.g. grapevine 

(Geuna et al. 1998). Some have also suggested the use of polyvinyl pyrrolidone (PVP), 

for it is smaller, soluble and able to bind to the phenolic compounds better (Liu et al. 

1998; Bekesiova et al. 1999). The use of LiCl in the extraction buffer is mainly to soften 

seaweed tissues, helping the release of nucleic acids through the loosened cell wall and 

cell membrane (Evans 1963; Hong et al., 1997). Hong et al. (1992; 1995a; 1995b; 1997) 

reported that extraction buffer containing LiCl could eliminate the entangling 

polysaccharides from nucleic acids in Porphyra, but this did not work well on G. changii 

(Figure 1b). The RNA yield and quality are very low (Table 1). 

 

Method 3 is a modified version of Method 2, in which potassium acetate was used to 

precipitate the polysaccharides into potassium salts. It has been widely used for plant 

RNA extraction (Hughes & Galau 1988; Ainsworth 1994; Liu et al. 1998). Following the 
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addition of potassium acetate, chloroform extraction led to a compact inter-phase 

compound stuck strongly to the tube walls, making the transfer of aqueous phase a much 

easier task. LiCl precipitation was carried out at the later stage of this method to 

precipitate RNA specifically (Barlow et al. 1963). It is normally fixed at 2.0 – 3.0M, 

although 0.5M of LiCl is enough for RNA precipitation (Verwoerd et al. 1989; 

Wilkinson 2000; Ambion 2002). Furthermore, speed and duration of the centrifugation 

during LiCl precipitation are important to be kept at least at 12000 rpm for more than 15 

minutes, and at temperature less than 4°C (Ambion 2002). As shown in Table 1 and 

Figure 1c, the RNA yields and quality from this method are much better than the 

previous two. 

 

Extraction method 4 utilised phenol and sodium dodecyl sulphate (SDS). SDS, alike 

guanidinium thiocyanate, are chaotropic agents, for they are excellent hydrogen bonders 

that destroy the regular water structure. The destruction of the water structure decreases 

the hydrophobic effect thus promotes the unfolding and dissociation of protein 

molecules, leading to cell disruption (Pawlowski et al. 1994; Matthews et al. 2000). The 

ionic strength of the extraction buffer has to be maintained at certain level for effective 

nucleic acid extraction and cell disruption. If it is too low, the polysaccharides will co-

precipitate with the RNA. If the ionic strength is too high, the protein solubility will 

decrease, making the cell disruption difficult. In this method, NaCl, neutral salt with 

monovalent ions, contributed to the ionic strength needed. Meanwhile, EDTA acted to 

suppress further increase of ionic strength and inhibit any enzymatic activity by chelating 

divalent cations, which act as enzyme cofactors, present in the solution. Nucleic acid 

extraction using SDS is widely used for mammalian tissues (Emmett & Petrack 1988), 

plant tissues (Geuna et al. 1998; Liu et al. 1998), yeasts (Schmitt et al. 1990; Bang et al. 
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1995) and some red algae species e.g. Carpopeltis, Rhodymenia, Rhabdonia (Saunders 

1993), and Gracilaria chilensis (Meneses et al. 1999). Nonetheless, yield and quality of 

the RNA from G. changii resulted from this method are worse than those from Method 2 

and Method 3 (Figure 1d).  

 

Method 5 (Apt et al. 1995) used hexacetyltrimethyl ammonium bromide, CTAB as the 

cell-disrupting agent, and dithiothreitol, DTT as the reducing agent to prevent any 

oxidation and other unwanted reactions. DTT strengthened the function of the common 

anti-oxidant, β-mercaptoethanol, which is used in all five methods reported here. CTAB 

has been used for RNA extractions from plants (Bekesiova et al. 1999; Kiefer et al. 

2000) and brown algae (Apt et al. 1995). This method consists of a few times of 

chloroform extractions, and it consumes the least time on bench-work relatively (Table 

1). The G. changii RNA yield and quality are good, comparable to those of Method 3. 

Among the five methods being tried on G. changii, Method 3 and Method 5 were found 

to be the potential methods to obtain pure RNA.  

 

This CTAB method was further modified by incorporating sand while grinding the 

tissue, and with a shortened period of LiCl precipitation. The result of the modified 

methods is shown in Table 2 and Figure 2. It is clear that the CTAB method resulted in 

pure, intact RNA of high quality, with the A260:280nm ratio ranging from 1.75 – 2.00. The 

incorporation of sands while grinding has significantly increased the RNA yield by four-

folds. The approach of using sands, or glass beads in grinding tissues has been applied 

for nucleic acid extraction from recalcitrant or succulent plant tissues (Eggermaont & 

Goderis 1996). The sand acts as a chaotrophic agent that greatly facilitates cell disruption 

and the release of nucleic acids from the seaweed tissues. The three-hour LiCl 
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precipitation was found to give sufficiently good result as compared to the overnight 

LiCl precipitation in the original protocol (Table 1). This has dramatically shortened the 

total time required for the original CTAB method suggested by Apt et al. (1995). The 

three-hour LiCl precipitation has also recorded the better RNA yield, at approximately 

0.16µg per gram of fresh tissue. The RNA from G. changii may be more susceptible to 

degradation during longer period of LiCl precipitation. Therefore, the modified CTAB 

method 5D (Table 2; Figure 2) was found to be the most suitable method to obtain good 

quality RNA from G. changii, credited for its simplicity and time-efficiency.  

 

The effect of reaction surface area between the ground tissues and the extraction solution 

was tested, where both connical flasks (250mL) and the Nalgene centrifuge tubes 

(50mL) were used. There was not much difference in RNA yield between an initial 

extraction carried out in flasks or in tubes. Besides, the RNA quality of those extracted in 

tubes, are higher than those in flasks, as lysate transfer has to be carried out.  

 

RNA extractions were carried out on both fresh and frozen samples. All extraction using 

fresh seaweed samples gave no RNA at all. In some cases, the RNA yields were 

extremely low, with high interference of DNA. The high water content of fresh samples 

is the main culprit causing RNA degradations, due to the containment of endogenous 

RNAse present virtually in all living cells (Wu et al. 1997). In the frozen sample 

preparation, samples were immersed in liquid nitrogen before storage, rather than being 

stored directly at -80°C. The abruptness of the cooling process, where the samples were 

Fimmersed into liquid nitrogen (-196°C), would tremendously shortened the time needed 

for ice formation, thereby diminishing the RNA degradation, which is a problem in a 

gradual cooling process. Before this, air-dried samples have been suggested for nucleic 
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acid extraction from seaweed samples (Hong et al. 1992; 1997; Lim et al. 2001). 

However, we found that air-dried samples were good enough for DNA extraction from 

G. changii, but not RNA. The drying process in open air would be one of the main 

reasons why RNA is degraded before being extracted. Therefore, frozen sample is 

suggested to be used for RNA extraction from G. changii. 

 

Conclusion 

The total RNA extraction from the red seaweed, Gracilaria changii was optimised. The 

incorporation of sands while grinding the tissues and a three-hour LiCl precipitation in 

the CTAB method were found to give the best RNA yield with high quality from G. 

changii. This optimised CTAB method represents the best method for extracting high 

quality RNA from G. changii.  The reaction surface area did not affect the RNA yield 

much, and frozen samples are suggested for RNA extraction from G. changii. The 

integrity of the RNA isolated will be further verified for mRNA isolation and cDNA 

library construction. 
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Figure 1. Formaldehyde-agarose gel electrophoresis of RNA 
(± 0.5 µg) obtained from (a) Method 1; (b) Method 2; (c) 
Method 3; (d) Method 4; and (e) Method 5. 
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Figure 2. Formaldehyde-agarose gel electrophoresis 
of RNA (± 2 µg) obtained using modified protocols of 
the CTAB method. (A) grinding without sand, 
overnight LiCl precipitation; (B) grinding with sand, 
overnight LiCl precipitation; (C) grinding without 
sand; 3 h LiCl precipitation; (D) grinding with sand; 3 
h LiCl precipitation.  
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Table 1. Different RNA extraction methods tried on Gracilaria changii. 
 

Method A260:A280 
ratio 

RNA Yield  
(µg/g tissue) 

Total time 
required 
(hour) 

Time required for 
bench-works 

(hour) 

1 1.54 No RNA, but DNA 
was detected.  7 – 8  5 – 6  

2 1.60 0.03 4 – 5  3 – 4 

3 1.30 – 1.80 0.01 – 0.08 25 – 26  4 – 5  

4 1.33 0.02 7 – 25 5 – 6  

5 1.50 – 2.00 0.10 25 – 26  2 – 3  

 
 
 
 
 
Table 2. Different modified methods of RNA extraction using CTAB from Gracilaria 
changii. 
 

Method 
Incorporation 
of sand while 

grinding 

LiCl 
precipitation 

time 

A260:A280 
ratio 

RNA Yield 
(µg/g tissue) 

Total time 
required 
(hour) 

5A No Overnight 1.80 – 2.00 0.018 – 0.021 25-26 

5B Yes Overnight 1.75 – 1.85 0.070 – 0.073 25-26 

5C No 3 hours 2.0 0.040 – 0.043 9-10 

5D Yes 3 hours 1.9 0.161 – 0.165 9-10 
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