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Abstract. We present a new scheme for modeling rotational energy exchange with the direct simulation Monte Carlo (DSMC)
method. This new scheme is fundamentally different to conventional Borgnakke-Larsen (BL) procedures, in which energy
exchange is performed at the time of collision. In the new scheme, all collisions are performed elastically. Rotational energy
exchange is performed after the collision routine, in an independent step. The rotational energy of all particles in each cell is
adjusted by a factor, to satisfy the desired macroscopic relaxation behaviour. To conserve the total energy in a cell, the thermal
velocities of all particles in the cell are adjusted. DSMC calculations of shock structure show that the new scheme gives results
in reasonable agreement with those provided by conventional BL procedures. The new scheme has a potential advantage over
BL procedures: It is easy to use with any DSMC collision model.
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INTRODUCTION

The direct simulation Monte Carlo (DSMC) method [1] captures general non-equilibrium gas behaviour and is the
most useful computational tool for modeling rarefied gas flows of engineering interest. To obtain the non-equilibrium
distribution of molecular velocities, the DSMC collision routine must perform collisions such that the distribution of
relative speeds g for colliding particles is correct. This is achieved by using the no-time counter (NTC) method [2],
which selects collision partners within each DSMC cell.

The non-equilibrium distribution of rotational energy captured by the DSMC method depends on the details of the
rotational energy exchange scheme. Usually, a version of the phenomenological Borgnakke-Larsen (BL) scheme [3]
is used in DSMC calculations to perform rotational energy exchange. BL exchange procedures cannot be expected
to accurately model the complex exchange processes that occur in real intermolecular collisions, so they are unlikely
to capture the real distribution of rotational energies. In a typical DSMC engineering calculation, the distribution of
rotational energies is rarely important; rather the mean rotational energy (or rotational kinetic temperature Trot) is the
required information. There is therefore some justification in a new scheme that simplifies the complex problem of
rotational-translational energy exchange by concentrating only on this mean value of rotational energy, and does not
attempt to capture the non-equilibrium distribution of rotational energy.

This paper describes a new rotational energy exchange scheme for DSMC calculations that applies a decoupled
approach to rotational energy exchange in which all intermolecular collisions are performed elastically and energy
exchange is performed independently, after the DSMC collision routine. The distribution of rotational energies is
ignored. Rotational energy exchange is performed for each computational cell according to a macroscopic adiabatic
relaxation equation. We test the decoupled scheme with DSMC shock calculations and demonstrate that it can capture
detailed shock structure, including Trot, with reasonable accuracy relative to standard BL procedures. The new scheme
can be readily applied to any DSMC collision model. This flexibility represents a potential advantage over conventional
BL procedures.

Macroscopically, rotational relaxation is described in terms of Trot or a mean rotational energy ε̄rot per molecule.
Jeans [4, p. 120] gives

dε̄rot

dt
=

2ε̄tr/3− ε̄rot(t)
τrot

(1)
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to describe the instantaneous rotational relaxation of diatomic molecules. Here ε̄tr is the mean translational energy per
molecule and τrot is some characteristic time. Under isothermal conditions, ε̄tr is constant and Eq. 1 has the solution

ε̄rot(t)−2ε̄tr/3
ε̄rot(0)−2ε̄tr/3

= exp

[

−
∫ t

0

dt
τrot(t)

]

.

This may be written in the pure exponential form

∆ε̂rot = exp(−t̂)

where

∆ε̂rot =
ε̄rot(t)−2ε̄tr/3
ε̄rot(0)−2ε̄tr/3

=
ε̄rot(t)− ε̄rot(∞)

ε̄rot(0)− ε̄rot(∞)

is a normalized mean rotational energy and

t̂ =
∫ t

0

dt
τrot(t)

is a non-dimensional time. This may be regarded as the total number of relaxing collisions between time 0 and time t
[5]. ε̄rot(∞) is the mean rotational energy at equilibrium for isothermal conditions, which equals 2ε̄tr/3. Under adiabatic
conditions, ε̄tr varies with time and Eq. 1 has the solution

ε̄rot(t)−2ε̄/5
ε̄rot(0)−2ε̄/5

= ∆ε̂rot = exp

(

−
5
3

t̂

)

(2)

where ε̄ = ε̄tr(t)+ ε̄rot(t) is constant and 2ε̄/5 = ε̄rot(∞) is the mean rotational energy at equilibrium. This expression
for adiabatic relaxation has a characteristic relaxation time which is smaller than that for the isothermal case by a
factor of 3/5. A dimensionless rotational collision number may be defined by Zrot = τrot/τc, where τc is the mean time
between intermolecular collisions. In effect, Zrot characterizes the number of collisions required for rotational energy
to equilibrate after a perturbation to the equilibrium state.

BORGNAKKE-LARSEN ENERGY EXCHANGE PROCEDURES

Most DSMC codes employ versions of BL procedures to model rotational energy exchange. It has been shown [5, 6]
that these procedures can recover the macroscopic adiabatic relaxation behaviour described by Eq. 2. BL rotational
energy exchange proceeds in two steps: Particle selection followed by energy exchange between translation and
rotation.

The selection procedure identifies those particles that are to participate in the energy exchange process. Selection
occurs within the DSMC collision routine, when the collision occurs. It is a probabilistic process that is performed
according to some exchange probability φrot that may be applied to each individual particle (particle-based) or to each
collision pair (pair-based). The exchange probability is effectively controlled by the required macroscopic relaxation
rate and is usually described in terms of Zrot. It is possible to capture relaxation rates that depend on the macroscopic
temperature by including collision energy dependencies in φrot.

The second step of BL procedures performs the exchange of energy between rotation and translation. Post-exchange
energies are sampled from appropriate equilibrium energy distributions. This is also a probabilistic process and is
performed subject to the constraints of energy conservation and detailed balancing.

Here, we used the particle-based selection scheme of Gimelshein et al. [7] to select particles for BL energy exchange.
In this scheme, each collision partner is assigned an exchange probability. For particles A and B, these are denoted
(φrot)A and (φrot)B respectively. Multiple exchange events are prohibited, meaning that particle A or particle B can
exchange rotational energy in a given collision, but not both. A random fraction R f that is uniformly distributed
between 0 and 1 is generated, and then particle selection is performed according to:

If 0 ≤ R f < (φrot)A Particle A exchanges rotational energy with translational mode
If (φrot)A ≤ R f < (φrot)A +(φrot)B Particle B exchanges rotational energy with translational mode
If (φrot)A +(φrot)B ≤ R f ≤ 1 Elastic collision with no rotational energy exchange



This selection scheme allows different relaxation rates for different species to be captured, and is simpler and more
versatile than pair-based selection schemes. Recently, Lilley [8] showed that the selection probability for this particle-
based selection scheme must be

φrot =
1

Zrot

(

1+
ζrot

ζg

)

(3)

to provide the macroscopic relaxation behaviour of Eq. 2 with constant Zrot. Here, ζrot is the number of rotational
degrees of freedom (DOF) in the relaxing molecules and ζg is the effective number of DOF in the relative translational
energy of colliding molecules. This φrot expression compares to

φrot =
1

Zrot

[

1+
(φrot)A +(φrot)B

ζg

]

given by Lumpkin et al. [6] for pair-based selection. For the particle-based selection scheme of Gimelshein et al. in
which multiple exchange events are prohibited, (φrot)A = 0 or (φrot)B = 0, so Eq. 3 is equivalent to the expression
given by Lumpkin et al. Eq. 3 has been checked by performing a zero-dimensional DSMC simulation of a rotationally
relaxing gas [8]. The results are shown in Fig. 1, and demonstrate that Eq. 3 is correct. For the DSMC calculation, t̂
for time step s was calculated from

t̂(s) =
2

ZrotN

s

∑
j=1

Ncolls( j)

where N is the number of simulator particles and Ncolls( j) is the number of collisions performed during time step j
[8].

1.0

0.8

0.6

0.4

0.2

0

 0  1  2  3  4  5

∆ε
ro

t

Non-dimensional time  t̂

ˆ

Exact
DSMC solution using Borgnakke-Larsen procedures

FIGURE 1. Exact adiabatic rotational relaxation history from Eq. 2 compared to DSMC solution using BL procedures with the
particle-based selection scheme of Gimelshein et al. [7] and φrot calculated from Eq. 3. Constant Zrot = 5 was used. Lilley [8] gives
full details of the DSMC simulation.

THE NEW DECOUPLED ROTATIONAL ENERGY EXCHANGE SCHEME

The decoupled exchange scheme is fundamentally different to conventional collision-based BL procedures. We
decouple the rotational energy exchange process from the intermolecular collisions and perform rotational energy
exchange as an independent step, after the DSMC collision routine. We based the decoupled scheme on the adiabatic
relaxation behaviour described by Eq. 2. The mean rotational energy ε̄rot at the end of a DSMC time step of duration
∆t is given by

ε̄ ′rot = ε̄rot(t +∆t) = F ε̄rot(t)+(1−F)2ε̄/5, (4)

where ε̄rot(t) is the mean rotational energy at the start of the step and

F = exp

(

−
5
3

1
Zrot

∆t
τc

)

. (5)



This assumes that the mean collision time τc is constant, which is sufficiently accurate when the DSMC time step ∆t is
small relative to τc. This is satisfied by the standard DSMC time step criterion in which ∆t . τc/3. The local collision
frequency in a DSMC calculation can be estimated with

τc =
N

Ncolls

∆t
2

, (6)

where N is the number of particles in the cell and Ncolls is the number of collisions performed in the cell by the DSMC
collision routine during time step ∆t. Substituting Eq. 6 into Eq. 5 gives

F = exp

(

−
10
3

1
Zrot

Ncolls

N

)

.

The decoupled exchange scheme forces the mean rotational energy of all particles in each cell to be the new mean
rotational energy ε̄ ′rot as dictated by Eq. 4. To implement this, we define an adjustment factor f = ε̄ ′rot/ε̄rot(t), and
assign new rotational energies to each individual particle according to

ε ′rot = f εrot.

The net change in total rotational energy in a cell is ∆Erot = ( f − 1)Erot, where Erot is the total rotational energy in
the cell at the start of the time step. This amount of energy is removed from the translational thermal energies of all
particles in the cell. To achieve this, we use the factor

Ψ = (1−∆Erot/Etr)
1/2,

where Etr is the total translational thermal energy in the cell at the start of the time step. We then adjust the velocity v
of each particle in the cell according to

v′ = Ψv+ v̄(1−Ψ) ,

which requires the mean velocity v̄ in each cell.

DETAILS AND RESULTS OF DSMC SHOCK CALCULATIONS

To test the decoupled exchange scheme, we applied it to simulate shocks in nitrogen with the DSMC method at Mach
numbers of 1.2, 1.7, 3 and 10. Bird [1] gives DSMC shock modeling procedures. We compared the resulting profiles of
density, translational kinetic temperature Ttr and rotational kinetic temperature Trot to those obtained with conventional
BL exchange procedures. Vibrational excitation was ignored. The variable hard sphere (VHS) collision model [9]
which has the collision cross-section σ(g) = σr(gr/g)2υ was used. We used σr = 4.991× 10−19 m2, gr = 1089 m/s
and υ = 0.26 for diatomic nitrogen [10]. The simulation domain contained 1000 cells, each with six subcells. Each
simulation had about 495× 103 simulator particles in total. The simulation time step ∆t was set to (τVHS)2 /4 where
(τVHS)2 was the mean collision time for VHS molecules at the downstream conditions. Bird [1] gives the formula
for τVHS. The number of DSMC time steps between flowfield samples was b∆x/(∆tu2)c+ 1, where ∆x was the cell
size and u2 was the downstream flow speed. The flowfield was sampled 2000 times. For VHS molecules, the effective
number of translational DOF for colliding molecules ζg is simply 4−2υ [6]. Using Eq. 3 with ζrot = 2 and constant
Zrot = 5, we obtained φrot = 0.315. The shock profiles are shown in Figs. 2 to 5. Table 1 includes some further details
of the DSMC simulations.

TABLE 1. Details of DSMC simulations using the decoupled rotational exchange
scheme. Here (λ2)VHS is the downstream mean free path for VHS molecules [1].

Mach number Mean particles per cell ∆x/(λ2)VHS CPU time relative
Upstream Downstream to BL solution

1.2 423 567 0.104 1.18
1.7 310 680 0.159 1.38
3 204 786 0.119 2.13
10 147 843 0.104 2.59
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FIGURE 2. Normalized profiles of density ρ , translational kinetic temperature Ttr and rotational kinetic temperature Trot within
a Mach 1.2 shock in nitrogen. Flow is from left to right. The normalized density ρ̂ is given by ρ̂ = (ρ −ρ1)/(ρ2 −ρ1) where ρ1
and ρ2 are the respective densities in the upstream and downstream flows. Similar normalization was applied to obtain T̂tr and T̂rot.
Here λ1 = 2µ1/(ρ1 c̄1) is the nominal mean free path in the upstream gas, where µ1 is the upstream viscosity and c̄1 is the upstream
mean thermal speed. x/λ1 = 0 was set at ρ̂ = 0.5.
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FIGURE 3. Normalized profiles of ρ , Ttr and Trot within a Mach 1.7 shock in nitrogen. For other details see caption of Fig. 2.

DISCUSSION AND CONCLUSIONS

The profiles in Figs. 2 to 5 show that the decoupled scheme gives shock solutions that are generally in close agreement
with those obtained using conventional BL exchange procedures. Agreement is best for lower Mach numbers.

A major perceived advantage of the decoupled exchange scheme is that it is simple to apply for any DSMC collision
model. In contrast, conventional BL procedures have been developed primarily for the VHS model. Variants have
been developed for the Sutherland hard sphere model [11] by Boyd [12] and for the generalized hard sphere model
[13] by Hassan & Hash [13] and Hash et al. [14]. From Boyd and Hash et al., it is evident that particle selection
procedures are quite complicated for these models, due to the difficulty associated with determining ζg for colliding
molecules. General BL procedures do not exist for realistic intermolecular potentials such as the Lennard-Jones and
Morse potentials. The decoupled scheme could be readily applied to such models.

A disadvantage of the decoupled scheme in its present form is its poor computational efficiency compared to BL
procedures, as shown by the relative CPU times in Table 1. However, there may be scope for improvements to the
decoupled exchange algorithm that could improve its efficiency relative to BL procedures.

Our results show that the new decoupled exchange scheme gives shock structure in reasonable agreement with that
given by conventional collision-based BL exchange procedures. This shows that the detailed distribution of rotational
energies is not important for obtaining the density and kinetic temperatures, which are the macroscopic flowfield
properties of engineering interest. Given its accuracy relative to conventional BL exchange procedures, and the fact
that it is easy to implement for any DSMC collision model, it is clear that the decoupled exchange scheme is worthy of
further investigation. A possibility is the extension of the decoupled approach to model vibrational energy exchange.
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FIGURE 4. Normalized profiles of ρ , Ttr and Trot within a Mach 3 shock in nitrogen. For other details see caption of Fig. 2.
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FIGURE 5. Normalized profiles of ρ , Ttr and Trot within a Mach 10 shock in nitrogen. For other details see caption of Fig. 2.
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