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17.  Forestry Applications of Linear Programming 
 

Steve Harrison 
 
 
Linear programming (LP) is a highly versatile mathematical optimization technique which has 
found wide use in management and economics. It is used both as a research technique and 
as a planning tool, particularly at the individual firm and industry level. In general, LP is 
designed to maximize or minimize a linear objective function subject to a set of linear 
constraints. Linear programming is one of a group of techniques which may be referred to as 
mathematical programming. Other related techniques are goal programming, mixed integer 
programming and quadratic programming. Some typical applications of linear programming 
include: 

 
1) determining the most profitable combination of enterprise or activity levels for a 

business firm with limited supplies of various resources 
2) determining the most profitable investment portfolio, given the amount of 

investment capital available, rates of return on various stocks, bonds and other 
‘paper assets’, and limits on high-risk investments. 

3) formulating mixtures to combine ingredients such that a required overall 
composition of the mix is satisfied at least cost. Important applications are fuel 
and fertilizer blending and determination of livestock rations or supplementary 
feeds. 

4) scheduling the various tasks in a construction project so as to complete the 
overall project in minimal time or at minimal cost 

5) determining the location and size of storage facilities and processing plants 
together with the distribution pattern, so as to minimize the total of transport, 
storage and processing costs. 

 
As illustrated by this list, the range of applications of linear programming is indeed wide, and 
this is one of the most widely used operations research techniques. In this module, the 
algebraic formulation of LP models in explained, and a simplistic decision problem is 
formulated in a linear programming framework, and is then solved graphically to illustrate the 
basic principles of the technique. Computer solution of this problem using the simplex 
method is then demonstrated, with reference to setting up the model on a spreadsheet and 
interpreting the output. Further applications to transshipment modeling, capital budgeting 
and goal programming are then illustrated. 
 
 
1.  ALGEBRAIC FORMULATION OF 

LINEAR PROGRAMMING PROBLEMS 
 
In mathematical terms, the purpose of linear 
programming is to optimize a linear 
objective function subject to a set of linear 
constraints. The objective function may, for 
example, express the profit from a 
combination of enterprises or activities, the 
cost of a combination of ingredients, or the 
time required to complete a series of tasks. 
In these contexts, optimization may mean 
either maximization of profits or 
minimization of costs or time. The nature of 
linear programming will be illustrated with 

reference to a profit maximization problem. 
A highly simplified example has been 
chosen deliberately, so as to illustrate the 
technique without undue computational 
distraction. More realistic applications will 
be developed later in this module. 
 
Example 1 
 
A cabinet-maker produces dining room 
suites and grandfather clocks out of 
Australian red cedar timber. He can obtain 
annual supplies of up to 600 linear metres 
(lm) of red cedar (one linear metre is 
equivalent to one metre in length by one 
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metre in width by one centimetre in depth). 
Up to 4000 hours of labour a year are 
available for operations such as sawing, 
joining and polishing. Each dining room 
suite requires 12 lm of timber, and each 
grandfather clock requires 7.5 lm of timber. 
One hundred hours of labour are required 
to produce a dining room suite, and 40 
hours to produce a grandfather clock. The 
profit from each dining room suite is $900, 
and that from each grandfather clock is 
$450. The cabinet-maker wishes to know 
how many units of each furniture line to 
produce in order to maximize profits. 
Formulate this decision problem as a linear 
programming model. 
 
Formulation of the model 
 
Before this problem can be solved by 
graphical or other means, it must be 
expressed in algebraic form, i.e. as a 
model. The first step is to introduce an ‘x’ 
notation for the decision variables, here 
numbers of suites and clocks to be 
produced. Thus we let x1 = number of 
dining room suites produced, and x2 = 
number of grandfather clocks produced. 
 
It is now possible to formulate an objective 
function which in this case is an equation 
defining total profit. The term ‘profit’ is used 
loosely here, in that the figures of $900 and 
$450 are more correctly called ‘gross 
margins’ for the two activities, i.e. they are 
returns net of variable but not fixed costs. In 
obtaining these figures, allowance is made 
for allocatable costs such as materials, 
labour and marketing costs, but not for 
overheads such as rent on premises or 
rates, depreciation of equipment, and 
accountancy. In this module the term net 
revenues will be used and the objective 
function will be referred to as a revenue 
function. If each dining room suite has a net 
revenue of $900, then the total of net 
revenues from producing (and selling) x1 
dining room suites will be 900 x1 dollars. 
Similarly, the total net revenue from 
producing x2 grandfather clocks will be 450 
x2. If the symbol Z is used to represent total 
net revenue, the objective function may be 
written as 
 

Z = 900 x1 + 450 x2 
 

The objective can now be identified more 
precisely as finding those values of x1 and 
x2 for which Z is a maximum, bearing in 
mind the restrictions on production imposed 
by limited supplies of timber and labour.  
 
Resource restrictions also can be 
expressed in algebraic form. If x1 dining 
room suites are produced, each requiring 
12 lm of red cedar timber, then dining room 
suites will consume a total of 12 x1 lm of 
timber. Similarly, if x2 grandfather clocks are 
produced these will consume 7.5 x2 lm of 
timber. The total amount of timber 
consumed cannot exceed the supply, so the 
production plan is constrained by the 
inequality expression 
 

12 x1 + 7.5 x2 ≤ 600 
 
The left-hand-side of this expression 
indicates the amount of timber which will be 
used for any production policy (combination 
of x1 and x2 levels); the right-hand-side 
indicates timber supply. This timber 
constraint ensures that the demand for 
timber cannot exceed the supply; any 
production plan consuming more timber 
would violates this constraint and would 
therefore be infeasible. 
 
Similar reasoning can be applied to derive a 
labour constraint. Since suites and clocks 
require 100 and 40 manhours of labour 
respectively, and since the labour supply is 
4000 manhours, feasible levels of x1 and x2 
are bounded by 
 

100 x1 + 40 x2 ≤ 4000 
 
Two further constraints are necessary to 
define the decision problem fully. These are 
that the numbers of suites and clocks 
produced cannot be negative 
 
i.e.                  x1 ≥ 0 and x2 ≥ 0 
 
Non-negativity constraints may at first 
appear unnecessary in a practical sense; 
after all, it is not possible to produce 
negative numbers of suites or clocks. 
However, they must be included for 
mathematical completeness, to delineate 
fully the feasible region of production. The 
cabinet-maker's decision problem may now 
be summarized as a linear programming 
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model with an objective function, two 
activities (dining room suites and 
grandfather clocks), two resource 
constraints (timber and labour) and two 
non-negativity constraints, as follows: 
 

maximize revenue Z = 900 x1 + 450 x2 
 
subject to the  resource constraints 
 

12 x1 + 7.5 x2 ≤ 600 
 

100 x1 +  40 x2 ≤ 4000 
 
and non-negativity constraints 
 

x1 ≥ 0,  x2 ≥ 0 
 
General algebraic formulation 
 
For the more mathematically inclined, the 
above problem formulation may be 
generalized in abstract terms for greater 
numbers of activities and constraints. 
Suppose levels are to be determined for n 
activities (x1, x2, ... xn) yielding individual net 
revenues c1, c2, ... cn. Limited supplies are 
available of m resources, the supply levels 
being b1, b2, ... bm. Each activity uses fixed 
amounts of resources; in particular, the 
requirement of resource i by one unit of 
activity j is aij. The elements of the matrix of 
aij values (for i=1 to m and j=1 to n) are 
known as technical or input-output 
coefficients. The linear programming model 
may now be written as 
 

maximize Z = c1 x1 + c2 x2 + ... + cn xn 
 
subject to the linear resource constraints 
 

a11 x1 + a12 x2 + ... + a1n xn ≤ b1 
a21 x1 + a22 x2 + ... + a2n xn ≤ b 

                : 
am1 x1 + am2 x2 + ... + amn xn ≤ bm 

 
and the non-negativity constraints 
 

x1 ≥ 0, x2 ≥ 0, ... xn ≥ 0. 
 

For readers familiar with matrix algebra, the 
decision problem may be expressed more 
compactly in matrix notation, as 
 

maximize Z = CT X 
 

subject to A X ≤ B and X ≥ 0 
 
where C is a vector of activity net revenues 

(and CT is the transpose of C) ; 
    X is a vector of activity levels; 
    A is a matrix of input-output 

coefficients;  
    B is a vector of resource supplies; 

and 0 is the null vector. 
 
2.  GRAPHICAL SOLUTION OF 

RESOURCE ALLOCATION MODELS 
 
Having expressed the production planning 
problem as an algebraic model, it is now 
time to derive optimal levels of the decision 
or policy variables. For simple problems 
such as this (with two activities), solution by 
graphical means is possible. Graphical 
presentation provides a number of practical 
insights into the nature of the decision 
problem and its solution. For the above 
example, a graph is set up as in Figure 1, in 
which the number of dining room suites (x1) 
is measured on the horizontal axis and the 
number of grandfather clocks (x2) is 
recorded on the vertical axis. The resource 
and non-negativity constraints are entered 
as straight lines on this graph, delineating 
the feasible region. 
 
To fix the position of the timber constraint 
line, note that the maximal number of suites 
which could be produced if all timber were 
devoted to suites is the total timber supply 
divided by the per unit demand, i.e. x1 = 
600/12 or 50. No timber would then be 
available for production of clocks, i.e. x2 = 0. 
On the other hand, if no timber were 
devoted to suites (x1 = 0) then up to x2 = 
600/7.5 or 80 clocks could be produced 
before the supply of timber became 
exhausted. The two end points of the timber 
constraint – (0,80) and (50,0) – are drawn in 
Figure 1. If half the timber were used for 
suites and half for clocks then up to 25 
suites and 40 clocks could be produced, 
corresponding to midway on the straight 
line joining the above end points. In fact, 
any point on the straight line between (0,80) 
and (50,0) corresponds to a production plan 
in which exactly 600 lm of timber are used. 
Any combination of x1 and x2 levels on or to 
the left of (below) this line is feasible in 
terms of the timber constraint 12x1 + 7.5x2 ≤ 
600. Any point to the right would use more 



Socio-economic Research Methods in Forestry 194 

than 600 lm of timber and violate this 
constraint. 
 
Applying similar reasoning to that above, 
the labour constraint 100x1 + 40x2 ≤ 4000 
can be drawn as a straight line connecting 
x1 = 4000/100 = 40 and x2 = 0 on the 
horizontal axis to x2 = 4000/40 = 100 and x1 
= 0 on the vertical axis, as in Figure 2. Any 
production plan represented by an (x1,x2) 
pair on or to the left of this line is feasible in 
terms of labour use, while any production 
plan represented by a point to the right is 
infeasible. The combined effect of the 
timber and labour constraints is to restrict 
the feasible region to on or to the left of the 
line BCD in Figure 2. 
 
It was noted earlier that in addition to 
resource constraints, non-negativity con-
straints must be imposed on the feasible 
region, these being of the form x1 ≥ 0 and x2 
≥ 0. In Figure 2, the constraint x1 ≥ 0 
confines solutions to on or to the right of the 
vertical axis, while x2 ≥ 0 means any point 
on or above the horizontal axis. The 
feasible region of production is now defined 
fully; it is the irregular area ABCD. Any 
numbers of suites and clocks corresponding 
to an (x1,x2) pair within or on the boundary 
of this region is feasible in that it will not use 
more timber or labour than is available. If a 
point corresponding to an (x1,x2) pair is not 
on the production frontier BCD then some 
timber and labour remain unused. 
 
Having defined the feasible region it is now 
possible to determine the most profitable 
production policy, i.e. the policy for which 
the objective function Z takes as large a 
value as possible. Revenue considerations 
are introduced by drawing lines on the 
graph joining equally profitable (x1,x2) 
combinations, called isorevenue lines. The 
location of the initial isorevenue line is 
arbitrary. Suppose, for example, the policy 
of producing 30 dining room suites and no 
clocks were chosen; the total net revenue 
would then be  
 

Z = 900(30) + 450(0) = 27,000 dollars 
 
This same level of revenue could be 
achieved by producing no suites and 
27,000 / 450 or 60 clocks. In fact, any 
combination of (x1, x2) values along the line 

from (30,0) to (0,60) corresponds to a total 
net revenue of $27,000. The $27,000 
isorevenue line is drawn as a broken line in 
Figure 3. 
 
Various other isorevenue lines could be 
drawn, as illustrated in Figure 3. Each of 
these other lines is parallel to the $27,000 
isorevenue line. The higher the revenue the 
further the line from the origin. For example, 
the $31,500 isorevenue line corresponds to 
the production of 35 suites or 70 clocks or 
any combination along the straight line 
joining these points. The most profitable 
plan would be indicated by the (x1,x2) pair 
touching the highest possible isorevenue 
line. A parallel shift to the right for the 
isorevenue line reveals that this must be at 
point C. Reading from the graph, the 
co-ordinates for point C correspond to an 
optimal plan of producing approximately 22 
dining room suites and 44 grandfather 
clocks. The total net revenue from this plan 
is approximately 900(22) + 450(44) or 
39,600 dollars. 
 
It is to be noted that the above solution is 
approximate only, having been read 
imprecisely from a graph. Procedures are 
available for finding a more precise solution; 
this is to produce 44.44 clocks and 22.22 
suites. However, in practice only whole 
numbers of suites and clocks can be 
produced, so these numbers could be 
rounded downwards to 44 and 22 
respectively. 
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Figure 3. Isorevenue lines and optimal plan 
 
 
Sensitivity or stability analysis 
 
The graphical solution procedure illustrated 
above has identified the most profitable 
combination of activity levels for given net 
revenues, resource supplies, and so on. 
However, in practice the concept of a single 
best policy is of limited value; it is desirable 
to know under what circumstances this 
policy remains optimal, and how it would 
change if any of the parameters were 
varied. Decision makers frequently require 
information about the sensitivity or stability 
of the optimal plan with respect to changes 
in net revenues, resource supplies or 
input-output coefficients. Two relatively 
simple but highly useful forms of sensitivity 
analysis are net revenue ranging and 
calculation of shadow prices. 
 
Net revenue ranging 
 
The fact that point C is optimal is due to the 
relative net revenues of clocks and suites. If 
the relativity between net revenues were to 
change then the slope of the isorevenue 
line would change, and a different plan 
could become optimal. For example, 
suppose the net revenue of suites remains 
at $900 per unit, but that for clocks rises to 
$600. The $27,000 isorevenue line will now 
run from (30,0) on the horizontal axis to 
(0,45) on the vertical axis, as in Figure 4. A 
parallel shift outwards in the isorevenue line 

reveals that the optimal plan is now at point 
B, i.e. production of 80 clocks and no 
suites, with a total net revenue of 80 times 
$600 or $48,000. 
 
By examining different slopes of isorevenue 
lines on a graph such as Figure 4, it is 
possible to determine within what range the 
net revenue of one activity can vary for a 
fixed net revenue of the other activity, while 
the current production plan remains optimal. 
The slope of any line on the (x1,x2) 
co-ordinate axis system is defined as the 
change in level of the variable on the 
vertical axis divided by the corresponding 
change in the variable on the horizontal 
axis. For the labour constraint, there is a 
decline in x2 of 100 for an increase in x1 of 
40, and hence a slope of -100/40 or -2.5. 
Similarly, the slope of the timber constraint 
is -80/50 or -1.6. The slope of the 
isorevenue line is the negative of the ratio 
of net revenue of the activity on the 
horizontal axis to net revenue of the activity 
on the vertical axis, i.e. slope of isorevenue 
line 
       net revenue of suites            
 = -                                       (or - c1/c2) 
       net revenue of clocks           
 
             = - $900 / $450 = -2 
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Figure 4. Determination of the optimal plan when the net revenue of clocks is  
increased to $600 

 
 
Provided the slope of the isorevenue line 
remains between -2.5 and -1.6, the point 
furtherest from the origin touched by an 
isorevenue line will be point C. Now 
suppose the net revenue per suite is fixed 
by a sales contract at $900, but that for 
clocks is uncertain, depending on demand 
conditions. For point C to remain optimal, 
the net revenue of clocks must be such that 
the net revenue ratio remains between -2.5 
and -1.6, 
                                   
i.e.       - 2.5 ≤  -c1 / c2  ≤ - 1.6 
 
i.e.          2.5 ≥  -c1 / c2  ≥  1.6 
 
Solving the two parts of this inequality 
expression for c2, it is found that  
 

c2 ≥ c1 / 2.5 = $900/2.5 = $360, and 
 

c2 ≤ c1 / 1.6 = $900/1.6 = $562.50. 
 
That is, the net revenue for clocks can vary 
in the range $360 to $562.50 without 
optimal activity levels changing. 
 
A special case exists where the slope of the 
isorevenue line is exactly equal to that of a 
linear segment on the boundary of the 
feasible region. For example, if the net 
revenues of suites and clocks were $900 

and $360 respectively then the slope of the 
isorevenue line would be -2.5, exactly 
matching that of segment CD on the 
boundary of the feasible region. In this 
case, any point along CD would be equally 
profitable; there is no unique optimal policy. 
Further, small variations in net revenues 
may result in large changes to the optimal 
policy. This, of course, is a an unusual 
situation in that it would only be by 
coincidence that the slopes of the 
isorevenue line and one of the constraint 
lines were exactly equal. 
  
Shadow prices 
 
The computer solution method for LP 
problems involves selecting activities to be 
brought into the basis (solution) only if their 
net revenue exceeds their opportunity cost. 
When an LP problem is solved, a number of 
activities may be absent from the optimal 
solution. These include real or production 
activities, and also what are called disposal 
activities or resource non-use activities. The 
latter are a device to convert inequalities 
into equations to provide an initial feasible 
solution for the simplex solution method. In 
this context, the constraints for the decision 
solved graphically above can be written as 
 

12 x1 + 7.5 x2 + 1 x3 = 600 
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100 x1 +  40 x2 + 1 x4 = 4000 

 
where x3 and x4 are non-use or ‘disposal’ of 
timber and  labour respectively. 
 
In the case of a maximization problem, for a 
real activity, the shadow price is the amount 
by which the net revenue would be reduced 
if one unit of this activity were forced into 
the solution. Equivalently, it is the amount 
by which the net revenue would have to 
increase before this activity entered the 
optimal solution. For a disposal activity, the 
shadow price is the cost of forcing one unit 
of a resource into disposal or non-use, or 
equivalently the amount by which overall 
revenue would increase if another unit of 
the resource were available. The calculation 
of shadow prices will not be illustrated here, 
but the concept will be discussed further 
with respect to computer output. 
  
3.  APPLYING THE SIMPLEX METHOD 

TO RESOURCE ALLOCATION 
MODELS 

 
The above method of solving linear 
programming problems is quick and simple 
when there are only two activities, even if 
there are many constraints. But if there are 
three or more activities, then the 
two-dimensional graphical approach breaks 
down. However, a mathematical procedure 
known as the simplex method has been 
devised which can be used to solve LP 
problems regardless of the numbers of 
activities and constraints (even when there 
are 1000 or more of each). The 
mathematical basis of the simplex solution 
algorithm involves advanced matrix algebra 
which will not be explained here. While it is 
desirable to have an understanding of the 
economic logic of the solution procedure, to 
use the technique it is only necessary to be 
able prepare the data (objective function, 
activities and constraints) for input to a 
computer package and to interpret the 
computer output.  
Invariably, linear programming problems 
are solved using a computer package. A 
variety of computer programs are available 
for solving LP problems. Provided the 
problem is not too large – not more than a 
couple of hundred activities and constraints 
– Excel Solver may be used to obtain the 

optimal solution and shadow prices. For 
illustration purposes, an extension of the 
cabinet-maker's decision problem in which 
there are three activities and three 
constraints is presented below, and the 
method of using Excel Solver is 
demonstrated. 
 
Example 2 
 
Suppose the cabinet-maker of Example 1 
can produce roll-top desks as well as dining 
room suites and grandfather clocks. Also, 
he wishes to distinguish between general 
labour (for sawing, joining and polishing) 
and specialized woodcarving labour used in 
decorating his furniture. Supplies of timber 
and general labour are as in Example 1, 
while 700 hrs per year of woodcarving 
labour are available. The net revenue from 
each desk is $600. Suites and clocks 
require timber and general labour as in 
Example 1, plus five and eight hours of 
carving labour respectively per unit. Each 
desk requires 8 lm of timber, 60 hrs of 
carpentry labour and 7 hrs of carving 
labour. Assuming that the cabinet maker's 
objective is to maximize net revenue, 
determine the optimal production plan, net 
revenue ranges and shadow prices. 
 
Solution using Excel Solver 
 
Table 1 presents the linear programming 
formulation for this problem, set up on a 
spreadsheet ready for solution using Solver. 
The activities are represented across the 
columns of the tableau (columns B to D), 
and the resources down the rows (rows 5 to 
7), with the objective function as row 8. The 
technical coefficients form the body of the 
tableau (cell B5 through to D7). Column G 
lists the initial resource supplies or 
constraint right-hand-sides. 
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Table 1. Extended cabinet maker’s problem in spreadsheet format 
 

 A B C D E F G 
1 Extended cabinet maker’s decision problem    
2      

3 Constraint or objective Dining room 
suites 

Grandfather 
clocks 

Roll-top 
desks 

Resource 
use Sign Resource 

supply 

4 Activity level 0 0 0    
5 Timber 12 7.5 8 0 ≤ 600 
6 General labour (hrs) 100 40 60 0 ≤ 4000 
7 Carving labour (hrs) 5 8 7 0 ≤ 700 
8 Net revenue 900 450 600 0   

 
 
Prior to using Excel Solver, it is necessary 
to introduce a row for activity levels (row 4); 
these activity levels are initially set at zero. 
It is also necessary to introduce a column 
for resource use (column E). As well, a 
column for signs of the constraints is 
introduced (column F), in this case 
containing only ‘≤’ signs.1 
 
The most complex step in setting up the 
initial tableau is to enter formulae in the 
‘Resource use’ column, i.e. column E: 
 
1. the resource use for the timber 

constraint (cell E5) is entered as the 
formula 
‘=SUMPRODUCT(B$4:D$4,B5:D5)’. 
The cell value initially takes a level of 
zero, because the activity levels in row 
4 are zero. Note that absolute cell 
references are required for row 4 
(represented by the dollar sign before 
the row number). 

2. the contents of cell E5 are then copied 
to cell E6 through to cell E8. The 
coefficients in cell E5 to E7 represent 
‘resource use’ with respect to the 
resource constraints, while the value in 
cell E8 is the level of the objective 
function. Initial values in these cells are 
again zero. 

 
Once these data have been entered onto 
                     
1 If not available in the Excel version, these 

symbols may be copied and pasted from a 
wordprocessor file. These signs are included 
for readability of the tableau only, and could be 
replaced by text, e.g. ‘le’ for ‘less than or equal 
to’. 

the spreadsheet, Solver can be called up to 
further set up the problem for solution. 
Solver is to be found under the Tools menu 
of Excel. (If it is not currently available, seek 
assistance on how to access it.) Note that 
the general form of the Solver window is: 
 

Set Target Cell: 
Equal to: 
By Changing Cells: 
Subject to the Constraints: 

 
First declare the target cell. This is the 
objective function, and is chosen by clicking 
in the total net revenue cell, here E8. Next 
check that the maximization option of the 
‘Equal to’ row has been chosen, with a dot 
in the ‘Max’ circle. Cells B4 to D4 are 
selected as the changing cells, i.e. the 
levels of the decision or x variables. 
 
It is next necessary to add constraints. First 
click on the ‘Add’ button. When adding 
constraints, select corresponding cells in 
columns E and G. In the ‘Add constraints’ 
dialogue box, under ‘Cell reference’, click 
on the cell range E5 to E7, then under 
‘Constraint’ click on cells G5 to G7. The 
sign ‘≤’ is automatically selected as the 
default. Click on the Add or OK button to 
confirm that this constraint is to be added. 
 
It is also necessary to add non-negativity 
constraints. Hence click on the Add button 
again, then select cells B4 to D4. In this 
case, the sign must be changed to ‘≥’, and 
the value of zero must be entered on the 
right-hand-side (under ‘Constraint’). The OK 
button is now pressed to confirm addition of 
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this constraint. The constraints will now 
appear in the dialogue box. The Change 
button may be used to modify these 
constraints if there are any apparent errors. 
 
The Solve option may now be used to 
obtain the optimal product mix. When 
clicking on the Solve button, the 
spreadsheet should change to that of Table 
2. (If this is not the case, then there are 
errors in the tableau or Solver specifications 
such as errors in constraints which need to 
be tracked down.) The optimal solution is to 
produce 30.76 clocks and 46.15 desks 
(these levels could be truncated to whole 
numbers). The total net revenue is $41,538. 
All of the timber and general labour is used, 
but about 130 hours of carving labour are 
unused (or in disposal). 
 
A little further information can be gleaned 
from through sensitivity or post-optimality 
analysis. This is not generated 
automatically – the ‘Sensitivity’ option must 
be chosen under the ‘Reports’ options in 
the ‘Solver Results’ dialogue box. It is 
possible to move between the spreadsheet 
and the reports by clicking on buttons near 
the bottom of the computer screen. Table 3 
presents ‘Sensitivity Report 1’ for this 
decision problem. In the first section of this 
table, in the Reduced Gradient column, it is 
found that the net revenue of dining room 
suites would have to increase by a little 
over $69 for this activity to enter the basis 
or solution. In the second section, under 
Lagrange Multiplier, it is found that the 
reduction in total net revenue would be 
$23.08 if one unit of timber were removed 
and $6.92 if one hour of general labour 
were removed. These are the amounts the 
cabinet-maker could afford to pay for 
additional units of these resources and still 
be able to use them profitably. 
 
 As indicated by Example 2, inclusion of 
additional activities and constraints paves 
the way to more realistic formulation of 
decision problems. Of course, if there are 
large numbers of activities and constraints 
then there will be large numbers of columns 
and rows in the simplex tableau, and 
checking of the tableau becomes more 
critical. Even small linear programming 
problems are usually solved on a computer, 
and commercial computer packages of 

varying levels of sophistication are 
available. Some of these packages perform 
a more detailed post-optimality analysis 
than that presented above. 
 
4.  PRACTICAL DIFFICULTIES IN LINEAR 

PROGRAMMING ANALYSIS 
 
The linear programming technique as 
outlined above is mathematically elegant, 
computer packages to derive optimal 
policies are readily available, and the 
technique is widely used. However, the user 
needs to be aware of a few theoretical 
limitations and occasional computational 
difficulties. 
 
Correct perception of the role of linear 
programming 
 
Linear programming is capable of 
simultaneously evaluating the profitability of 
large numbers of activities in the presence 
of numerous constraints. It can solve 
decision problems that are beyond the 
power of intuition, pencil-and-paper 
methods and formal budgeting. However, 
the role of this powerful decision aid is often 
poorly understood. The analyst carrying out 
a linear programming study in not usually 
the person responsible for making policy 
decisions and taking the consequences of 
these decisions. It should not be expected 
that the optimal plan derived from a single 
linear programming analysis will be 
implemented in precise detail by 
management. Decision-makers are likely to 
have particular hunches and 
preconceptions as to the best course of 
action. Results generated by a linear 
programming study typically are used to 
reinforce or challenge existing views and 
tentative plans, i.e. to provide decision 
support. Further, decision-makers often 
wish to ask a number of ‘what if’ type 
questions, e.g. ‘What if suites can be 
produced with 90 rather than 100 hours of 
labour?’ or ‘What if the net revenue of 
clocks is $500 rather than $450?’. 
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Table 2. LP spreadsheet after solution by Solver 
 

 A B C D E F G 
1 Extended cabinet-maker’s decision problem    
2      

3 Constraint or objective Dining room 
suites 

Grandfather 
clocks 

Roll-top 
desks 

Resource 
use Sign Resource 

supply 

4 Activity level 0 30.769231 46.1538    
5 Timber 12 7.5 8 600 ≤ 600 
6 General labour (hrs) 100 40 60 4000 ≤ 4000 
7 Carving labour (hrs) 5 8 7 569.231 ≤ 700 
8 Net revenue 900 450 600 41538.5   

 
 

Table 3. Sensitivity report for cabinet-maker’s decision problem, as generated by Excel 
Solver 

    
   Final Reduced 
Cell Name Value Gradient 
$B$4 Activity level Dining room suites 0 -69.23083027 
$C$4 Activity level Grandfather clocks 30.76923077 0 
$D$4 Activity level Roll-top desks 46.15384615 0 
    
   Final Lagrange 
Cell Name Value Multiplier 
$E$5 Timber Resource use 600 23.07692308 
$E$6 General labour (hrs) Resource use 4000 6.923076923 
$E$7 Carving labour (hrs) Resource use 569.2307692 0 

 
 
Results of post-optimality analysis and 
further computer solution runs will help to 
shed light on these questions. LP tends to 
be used interactively to explore a number of 
variations to a basic model in a single 
session on the computer, and to produce a 
good deal of information about optimal 
activity levels and sensitivity of profits or 
costs to variations in parameter levels (data 
estimates or assumptions). The broad 
picture which is built up of the alternatives 
and consequences can be of considerable 
help in guiding decision making. 
 
Assumptions of the technique 
 
The linear programming model presented 
above has implicitly relied upon a number of 
assumptions, the acceptability of which may 
be questioned in particular applications.  
Planning horizon. In production planning 
applications of linear programming, net 

revenues make no allowance for overhead 
costs. That is, the firm is assumed to 
possess a fixed asset structure and the 
analysis concentrates on how current 
resources should be deployed to maximize 
profits in the short term. The examples 
which have been presented all rely on 
single-period or static models. In the longer 
term the firm may acquire more land, 
factories, machines and so on. Planning 
these capital acquisitions over time is a 
problem of a different order to maximizing 
gross margins for a single production 
period. 
 
Single-valued expectations. It has been 
assumed that gross margins, resource 
supplies and input-output coefficients are 
known with certainty. In practice these are 
often estimated with a good deal of 
guesswork. Further, single point estimates 
are made when in reality it would be more 
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meaningful to specify a probability 
distribution of values, particularly in the 
case of net revenues. 
 
Linear objective function. The objective 
function of the decision maker is assumed 
to be a linear function, and to depend on 
net revenues or input costs alone. 
Particularly in enterprise planning 
applications, the decision-maker may be 
concerned about both level of income and 
variability of income over time. Activities 
which have relatively low expected net 
revenues may be chosen because of low 
risk associated with this revenue. Suppose 
in Example 2 that suites have an assured 
market outlet at a pre-arranged price but 
clocks are sold directly by the manufacturer, 
at prices which can vary widely depending 
on the whim of the market. He may then 
produce more suites than indicated in the 
‘optimal’ plan because of the lower 
uncertainty about the net revenue of suites. 
 
Additivity within activities. The amount of 
each resource used per unit of each activity 
is assumed to be constant regardless of the 
level at which the activity is conducted. If 
one suite requires 12 lm of timber and 100 
hrs of labour then 20 suites require 240 lm 
of timber and 2000 hrs of labour. In 
practice, increasing or decreasing returns to 
variable factors are common, e.g. as more 
suites are produced the labour input per 
suite may be reduced due to more 
streamlined production. 
 
Fixed resource proportions. The 
input-output coefficients are constant within 
each activity vector, e.g. fixed proportions of 
timber and labour are used to produce each 
suite. It may be possible to use timber more 
efficiently, including using offcuts, if greater 
time is taken in carpentry and joining.  
 
Independence of activities. It is assumed 
that the level at which any activity is 
conducted has no effect on input levels or 
revenue of any other activity, i.e. there is no 
complementarity between activities. If 
offcuts from production of suites could be 
used in production of clocks, then the 
timber requirement of the two activities 
would be less than that of either activity in 
isolation.  
 

Divisibility. Resource inputs and activity 
levels are assumed to take a continuous 
range of fractional units. In Example 1, the 
4000 hours of labour may be supplied by 
two full-time tradesmen, and any labour 
supply level which is not a multiple of 2000 
hrs may not be practicable. Also, the 
solution obtained for this decision problem 
includes 30.77 clocks and 46.15 desks. 
However, clocks and desks can only be 
produced in whole numbers. An 
approximate integer solution can be 
obtained by truncating the final values of 
the decision variables, which here would 
yield 30 clocks and 46 desks. But we 
cannot be certain that this is the optimal 
integer plan.  
 
In practice, procedures have been devised 
to overcome most if not all of the limitations 
implied by these assumptions, though at the 
cost of greater tableau complexity. 
Multi-period models may be constructed to 
allow for expansion in the fixed asset base 
over time. Variations in factor proportions 
may be readily accommodated, e.g. if 
labour and timber can be combined in 
different proportions to produce suites then 
two or more suite activities, each having 
different input-output coefficient vectors, 
may be defined. If complementarity exists 
between two activities then these may be 
combined into a single activity producing 
two products. Optimal integer levels may be 
obtained using the mixed integer 
programming technique. The point to be 
made here is that one should not be 
discouraged from using the linear 
programming by what appear superficially 
to limitations of the technique. 
 
Some other potential problems 
 
Sometimes a linear programming tableau is 
constructed which possesses either no 
solution or no unique optimal solution. For 
example, consider the following models: 
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Model 1 
 

maximize Z = x1 + x2 
        subject to 2 x1 + x2 ≥ 7 
                        2 x1 + x2 ≤ 6 
        and         x1 ≥ 0, x2 ≥ 0 

 
 

Model 2 
 

maximize Z = x1 + x2 
          subject to 2 x1 + 3 x2 ≥ 7 
                           4 x1 + x2 ≥ 6 
          and          x1 ≥ 0, x2 ≥ 0 

 
The constraints of Model 1 are contradictory 
since 2 x1 + x2 cannot be at the same time 
greater than or equal to seven, and less 
than or equal to six, so this problem has no 
feasible solution. The objective function of 
Model 2 can be increased without limit, 
since no upper bounds are imposed on the 
values that x1 and x2 can take; this problem 
is said to be unbounded. The usual cause 
of these unsolvable problems is an error in 
specification of the model. For example, it is 
simply not possible to have unlimited 
resource supplies as implied by an 
unbounded problem.  
 
Other problems can arise during solution 
such as rounding errors and ‘degeneracy’. 
Specific procedures are available to 
overcome these. They will not be discussed 
further here. 
 
5.  OPTIMAL TRANSPORTATION AND 

LOCATIONAL EFFICIENCY MODELS 
 
The purpose of a transportation model is 
usually to determine the transport or 
‘shipping’ allocation or a commodity such 
that quantities are moved from various 
origins to various destinations at minimum 
cost. 
 
Example 3 
 
Suppose log timber is to be transported 
from various production regions to various 
markets in a small country, as in Table 4. 
The two domestic supply regions – central 
and islands – can produce an annual turnoff 
of 100,000 and 120,000 cubic metres (m3) 
respectively, and up to 200,000 m3 can be 

obtained annually as imports. Demands are 
200,000 m3 per year in the northern 
industrial region, 100,000 m3/year in the 
western region and 70,000 m3/year in the 
south and east region.  
 
Solution 
 
An initial transportation table is set up as in 
Table 4. This summarises the timber 
supplies from the various origins and 
demands at the various destinations. 
Transport costs from origin to destination in 
dollars per cubic metre are as indicated in 
the body of the table, e.g. $40/m3 for 
‘shipping’ from the central region to the 
northern industrial region. 
 
The optimal transport allocation can be 
obtained by linear programming. If we let 
 

Z = total transport cost 
xij = number of units transported from 
origin i to destination j (1000m3) 
cij = cost of transport from origin i to 
destination j ($/m3) 

 
then this decision problem may be 
represented algebraically as: 
 
minimize overall transport cost 
 
Z= 40x11 + 25x12 + 20x13 + 30x21 +…+ 60x33  
 
subject to supply and demand constraints 
 

x11 +  x12 +  x13 ≤ 100 
x21 +  x22 +  x23 ≤ 120 
x31 +  x32 +  x33 ≤ 200 
x11 +  x21 +  x31 ≥ 200 
x12 +  x22 +  x32 ≥ 100 
x13 +  x23 +  x33 ≥  70 

 
plus non-negativity constraints on all nine 
transport quantities (x11 ≥ 0, … x33 ≥ 0). 
 
Since the quantities are in terms of 
thousands of cubic metres, the objective 
function will be expressed in terms of 
$1000s. 
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Table 4. Log supplies, demands and transport costs 
 

Source  Destination  Supply (1000 m3) 

 
Northern 

industrial region 
Western 
region 

South and 
east  

Central region 40 25 20 100 
Islands 30 20 35 120 
Imports 100 100 60 200 
Demand (1000m3) 200 100 70  

 
 
The initial spreadsheet for this model is set 
up as in Table 5. The transport quantities 
are initially set to zero (cells B6 to D8). A 
column for sums of supply allocations 
(column E) is added, with elements set as 
the supply sum for each origin, e.g. cell E6 
is set equal to the sums of the values of 
cells B6 to D6. Similarly, a row for demand 
allocations (row 9) is added, with elements 
equal to the sums allocated for the various 
destinations, e.g. the value in cell B9 is set 
equal to the sum of values in cells B6 to B8. 
Transport costs are entered as a separate 
block (cells B12 to D14). A total transport 
cost (objective function) cell is set up) with 
the formula 
 
 ‘=SUMPRODUCT(B6:D8,B12:D14)’. 
 
Solver is now called up under the Tools 
menu, and the various entries are made in 
the dialog box. The target cell is set as cell 
C16, and the ‘Min’ option is chosen. The 
changing cells are selected as the range 
B6:D8. The constraints can now be entered. 
The column vector E6:E8 is set less than or 
equal to F6:F8 for supply constraints, the 
row vector B9:D9 is set greater than 
B10:D10 for the demand constraints, and 
the block of changing cells B6:D8 is set 
greater than or equal to zero.  
 
On solving this LP problem, Table 6 is 
obtained. No timber is to be transported 
from the central region to the northern 
region (allocation in cell B6 = x11 = 0), 100 
units (thousand cubic metres) are 
transported from the central region to the 
western region (allocation in cell C6 = x12 = 
100) and so on. Although up to 200 units of 
timber may be imported, the demands are 
satisfied by imports of 150 units (cell E8). 
 
A sensitivity table could be generated, and 

this would indicate for example the amount 
by which transport costs for each non-used 
shipment path would have to fall before 
transport through this path would become 
warranted (would reduce overall cost). 
 
Transhipment models 
 
The structure of transhipment models is 
similar to that of transportation models, 
except that intermediate destinations are 
added where product is stored or 
processed. For example, timber could be 
produced in a number of areas, processed 
into plywood at a specific location, and then 
transported to other areas for marketing. 
Changes in volume may take place with 
storage or processing, in which case it is 
necessary to standardize the volume units. 
In the case of processing, since the optimal 
shipment path will depend on processing 
cost at the various processing locations, but 
processing cost will vary with volume of 
throughput, it is usually necessary to adopt 
a trial-and-error solution approach. 
 
6.  CAPITAL BUDGETING OR 

PORTFOLIO SELECTION MODELS 
 
Another useful application of linear 
programming is to assist in the selection of 
investment projects. In this application, the 
investment projects are treated as separate 
activities, and the objective function is 
defined in terms of net present values. 
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Table 5. Initial spreadsheet for timber transportation model 
 

 A B C D E F 
1 Timber transportation model     
2       
3 Source  Destination    
4 

 Northern industrial 
region 

Western 
region 

South 
and east 

Sum of 
allocations Supply 

5       
6 Central region 0 0 0 0 100 
7 Islands 0 0 0 0 120 
8 Imports 0 0 0 0 200 
9 Sum of allocations 0 0 0   

10 Demand 200 100 70   
11       
12 Central region 40 25 20   
13 Islands 30 20 35   
14 Imports 100 100 60   
15       
16 Total transport cost = 0    

 
 

Table 6. Optimal log transport allocation 
 

 A B C D E F 
1 Timber transportation model     
2       
3 Source  Destination    
4 

 
Northern 
industrial 

region 

Western 
region 

South and 
east 

Sum of 
allocations Supply 

5       
6 Central region 0 100 0 100 100 
7 Islands 120 0 0 120 120 
8 Imports 80 0 70 150 200 
9 Sum of allocations 200 100 70   
10 Demand 200 100 70   
11       
12  40 25 20   
13  30 20 35   
14  100 100 60   
15       
16 Total transport cost = 18300    
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Example 4 
 
Three plantation type options are available 
for 200 ha of community land, viz. fast-
growing ‘softwood’ species (e.g. Gmelina)2, 
hardwoods (e.g. Mahogany) or mixed 
species planting. Resource constraints 
include land, labour, and capital in the first 
two years of plantation establishment. (The 
technical coefficients are provided in Table 
7.) Over a 20-year period, two rotations of 
softwoods or one rotation of the other 
plantation types could be grown. $400,000 
in capital is available for use in the first two 
years, and may be supplemented by 
borrowing of up to $50,000 in each of these 
years. The natural resource management 
agency wishes to determine what 
combination of the plantation types would 
provide the greatest aggregate NPV. 
 
Solution 
 
The initial spreadsheet for this decision 
problem is provided as Table 7. This is in a 
similar format to the earlier resource 
allocation model, except that a few features 
have been added: 
 
1. Provision is made to transfer unused 

capital from the first year to the second. 
This takes up or uses capital in the first 
year, but makes capital available in the 
second year, which is achieved by 
having a +1 coefficient for the first year 
and a –1 coefficient for the second year. 

 
2. Borrowing activities are introduced, with 

units of $1000. These are ‘supply’ 
activities, with negative coefficients (-1s) 
in the relevant capital rows. 

 
3. The objective function coefficients for the 

borrowing activities are the loan interest 
and redemption costs, in year 20 
currency equivalents. As an 
approximation, these are taken as 
negative NPVs equal to the amounts 
borrowed. 3 

                     

                              

2 Gmelina is not technically a softwood, but has 
similar wood properties. 

3  Calculation of objective function coefficient for 
the borrowing activity is rather complex. This is 
the present value of the interest plus 
redemption payments at the end of 20 years, 

and will depend on when the repayment is 
made and what is the inflation rate. If it is 
assumed that the loan interest rate is equal to 
the inflation rate, then a simple approximation 
may be made. If a loan were taken out at the 
beginning of a year, at say 15%, and paid at 
the end of the year with interest (i.e. $1.15 
repaid for each dollar valued), the present 
value of the repayment would be $1.15/1.15 or 
$1. Similarly, if a loan were repaid after 20 
years, and interest were compounded, the 
repayment would have a present value of $1. 

4. Constraint rows are introduced for the 
borrowing activities, with +1 coefficients 
in the columns of the borrowing 
activities, so as to limit the amounts 
borrowed. 

 
When this problem is solved, the 
spreadsheet of Table 8 is obtained. The 
optimal investment is to choose softwoods 
only, plant all 200 ha, and borrow $50,000 
in each year. Not all of the available labour 
is used. An aggregate NPV of $5.9M is 
predicted. 
 
Extensions to this portfolio selection model 
include specifying dependent or mutually 
exclusive projects, and specifying that if a 
project is to be introduced then the level 
must be sufficiently high to warrant the 
tooling up, i.e. imposing a minimum 
threshold level. For example, it might be 
decided that at most two of the three 
plantation type options considered above 
can be adopted, and that the minimum area 
for any plantation type is 50 ha. These 
requirements can easily be built into the 
model if mixed-integer programming – 
available within Excel Solver – is used. 
 
Portfolio selection models can also be 
designed to take risk on asset returns into 
account. For example, the variance as well 
as the expected payoff for each investment 
may be estimated, and quadratic 
programming used to determine the optimal 
investment portfolio given the decision-
maker’s degree of risk aversion. 
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Table 7. Initial tableau for forestry investment portfolio decision problem 
 

 A B C D E G H H I J 
1 Portfolio selection model         
2           
3 

Constraint or objective Soft-
woods Natives Mixed 

species 

Transfer 
capital, 
yr 1->2 

Borrow 
capital, 
year 1 

($1000) 

Borrow 
capital, 
year 2 

($1000) 

Res-
ource 
use 

Sign Resource 
supply 

4            
5 Activity level 0 0 0 0 0 0    
6 Land (ha) 1 1 1    0 ≤ 200 
7 Labour (person days) 45 30 35    0 ≤ 10000 
8 Capital, year 1 ($1000) 2 2.5 2.3 1 -1  0 ≤ 400 
9 Capital, year 2 ($1000) 0.5 0.5 0.7 -1  -1 0 ≤ 0 

10 Max. loan, year 1     1  0 ≤ 50 
11 Max. loan, year 2      1 0 ≤ 50 
12 NPV ($1000) 30 28 24  -1 -1 0   

 
 

Table 8. Final tableau for forestry investment portfolio decision problem 
 

 A B C D E G H H I J 
1 Portfolio selection model         
2           
3 

Constraint or objective Soft-
woods Natives Mixed 

species 

Transfer 
capital, 
yr 1->2 

Borrow 
capital, 
year 1 

($1000) 

Borrow 
capital, 
year 2 

($1000) 

Res-
ource 
use 

Sign Resource 
supply 

4            
5 Activity level 200 0 0 50 50 50    
6 Land (ha) 1 1 1    200 ≤ 200 
7 Labour (person days) 45 30 35    9000 ≤ 10000 
8 Capital, year 1 ($1000) 2 2.5 2.3 1 -1  400 ≤ 400 
9 Capital, year 2 ($1000) 0.5 0.5 0.7 -1  -1 0 ≤ 0 

10 Max. loan, year 1     1  50 ≤ 50 
11 Max. loan, year 2      1 50 ≤ 50 
12 NPV ($1000) 30 28 24  -1 -1 5900   

 
 
7.  GOAL PROGRAMMING 
 
A more systematic way of dealing with 
multiple goals is through goal programming 
(GP). Here, a number of goals are 
identified, and a target or aspiration level is 
specified for each. Deviational activities are 
then introduced in the tableau to allow for 
underachievement or overachievement of 
goals relative to the aspiration levels. In 
particular, an underachievement activity is 
introduced for each aspiration floor, and an 

overachievement activity is introduced for 
each aspiration ceiling. A series of 
constraints is then set up for the goals. In 
the objective function, the coefficients are 
not the activity payoffs. Rather, they are the 
costs of underachievement and 
overachievement of goals relative to the 
aspiration levels. The objective function 
now states that the sum of shortfalls and 
over-runs, with appropriate coefficients for 
each, be minimized.  
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Because of the presence of deviational 
variables in goal programming, the 
constraints are referred to as soft 
constraints, c.f. the hard constraints for 
resource limits. Even if some or all the 
aspiration levels cannot be met, the 
problem will not be found to be infeasible 
(with an error message when an attempt is 
made to find the optimal solution). Rather, 
levels of the deviational variables in the 
solution will indicate the extent to which it is 
not possible to meet the goal targets. 
 
The question arises as to what coefficients 
or weights to place on the deviational 
activities. Shortfalls can be expressed in a 
variety of different units, such as dollars, 
rate of return as a percentage, jobs and 
hectares. One approach would be to place 
a weight on each deviational variable to 
represent the cost of goal under-
achievement or overachievement. Applying 
a system of weights to these is known as 
weighted goal programming. In practice, 
expressing the deviations in a common unit 
– say dollars – may be difficult and 
unnecessary.  
 
Often a priority ordering can be established 
between goal dimensions, referred to as 
lexicographic or preemptive goal 
programming. For example, the 
requirement may be to achieve the target 
dividend rate first, then NPV payoff, then 
job creation, then the environmental 
requirement. This could be achieved by 
placing weights of different orders of 
magnitude on the shortfall activities. 
However, software has been developed in 
which the priority ordering is stated as input 
data and the solution algorithm enforces 
this priority ordering of goals. Often, it is 
possible to solve lexicographic goal 
programming problems by using an 
appropriate system of weighting on 
deviational variables (e.g. $1M per unit 
shortfall for top priority goals, $0.1M for 
second priority goals, and so on.) 
 
Example 5 
 
A government wishes to support local 
development projects with employment and 
environmental benefits. Three projects are 
identified which will contributed to these 
goals, viz. road construction, tree planting 

and public housing. Each kilometre of road 
construction provides 200 jobs (person 
months), has net carbon release of 2 
tonnes, and requires expenditure of 
$100,000. Each hectare of tree planting 
generates 3 jobs, sequesters 5 tonnes of 
carbon per year and requires $2000 of 
capital. Each house constructed provides 
20 jobs and requires expenditure of 
$30,000. Determine the government 
program which meets these goals most 
closely, if equal weights are attached to the 
three goals.  
 
Solution 
 
The initial tableau is set out as Table 9. 
Note that shortfall activities are included for 
jobs and carbon sequestration (with 
coefficients of +1 in the relevant constraint 
rows), and an expenditure over-run activity 
is included (with coefficient of +1 in the 
expenditure row). The objective is to 
minimize the sum of deviations. Note that 
the constraints are in inequality form, rather 
than forcing exact equalities. The 
constraints are set up in the usual way, i.e. 
the formula 
 
 ‘=SUMPRODUCT(B$4:G$4,B5:G5)  
 
is entered in cell H5, and copied into cells 
H6 to H8. For the objective function, this in 
effect means summing the numbers of units 
for the three deviation variables (values in 
cells E4 to G4). The objective function is 
one of minimization. 
 
The solution to this problem is reported in 
the spreadsheet of Table 10. The 
recommended portfolio includes about 3.5 
km of road construction and a little over 100 
ha of tree planting. The jobs and carbon 
sequestration goals are met, but there is an 
expenditure over-run of a little over 
$50,000. 
 
f any goal were considered more important 
than another, this could be reflected by 
weights of different orders of magnitude in 
the objective function. For example, if the 
expenditure control was a critical goal, a 
weight of say 1000 could be entered in cell 
G8. 
 
 

 



Forestry Applications of Linear Programming 209 

Table 9. Initial tableau of local government jobs and environment program 
 

 A B C D E F G H I J 
1 Goal programming example         
2           
3 Constraint or activity 

level 
Road 
constn. 
(km) 

Tree 
planting 
(ha) 

House 
constn. 
(houses) 

Job 
short-
fall 

Carbon 
seqn. 
shortfall 

Expen
diture 
over-
run 

Res. 
use 

Sign Resource 
supply 

4 Activity level 0 0 0 0 0 0    
5 Jobs (person months) 200 3 20 1   0 ≥ 1000 
6 Carbon sequestration 

 (tonnes) -2 5 0  1  0 ≥ 500 
7 Expenditure ($1000) 100 2 30   -1 0 ≤ 500 
8 Deviation    1 1 1 0   

 
 

Table 10. Final tableau for local government jobs and environment program 
 

 A B C D E F G H I J 
1 Goal programming example         
2           
3 Constraint or activity 

level 
Road 
constn. 
(km) 

Tree 
planting 
(ha) 

House 
constn. 
(houses) 

Job 
short-
fall 

Carbon 
seqn. 
shortfall 

Expend
iture 
over-
run 

Res. 
use 

Sign Resource 
supply 

4 Activity level 3.48 101.39 0 0 0 50.70    
5 Jobs (person months) 200 3 20 1   1000 ≥ 1000 
6 Carbon sequestration 

 (tonnes) -2 5 0  1  500 ≥ 500 
7 Expenditure ($1000) 100 2 30   -1 500 ≤ 500 
8 Deviation    1 1 1 50.70   

 
 
8.  CONCLUDING COMMENTS 
 
In this module, the highly versatile 
technique of linear programming has been 
introduced with reference to a simple profit 
maximization problem involving two 
production activities. This decision 
problem can be expressed as an algebraic 
model, and solved graphically, providing 
insights into the nature of the resource 
allocation problem. The simplex method, 
which is quite general in that it can solve 
linear programming problems containing 
any numbers of activities and constraints, 
and is readily available in computer 
packages. Sensitivity analysis has been 
shown to provide further information about 
solution stability and opportunities for 
short-run expansion of production.  
 
Extensions to the linear programming 

technique to handle more complex 
applications include transportation 
modeling, portfolio selection and goal 
programming. The technique has great 
potential for modeling decision situations 
in forest management and policy. 
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