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Abstract

We discuss the problem of fitting an implicit
shape model to a set of points sampled from a
co-dimension one manifold of arbitrary topol-
ogy. The method solves a non-convex op-
timisation problem in the embedding func-
tion that defines the implicit by way of its
zero level set. By assuming that the solu-
tion is a mixture of radial basis functions of
varying widths we attain the globally opti-
mal solution by way of an equivalent eigen-
value problem, without using or constructing
as an intermediate step the normal vectors of
the manifold at each data point. We demon-
strate the system on two and three dimen-
sional data, with examples of missing data
interpolation and set operations on the re-
sultant shapes.

1. Introduction

The problem of inferring a co-dimension one1 manifold
X ⊂ Rd from a finite sampling S = {x1, . . . ,xm ∈ X}
frequently arises in the domain of computer graphics
and machine vision. Most commonly one deals with
three dimensional data from a laser scanner or opti-
cal triangulation device, however the two dimensional
case of inferring contours and the four dimensional case
of estimating a three dimensional shape evolving over
time are also common.

Although piece-wise linear approximations of X (i.e.

1That is a manifold of dimensionality one less than that
of the space in which it lies.

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

triangulated meshes) are the most common represen-
tation, recent years have seen increasing interest in
the use of implicit shape models (Carr et al., 2001;
Walder et al., 2003; Shen et al., 2004; Schölkopf et al.,
2005). Implicit shape models (or simply implicits) use
an embedding function f : X → R, that defines the
hyper-surface implicitly by way of its zero level set
f−1(0). Such models can smoothly interpolate holes
in the data, and a number of derivatives of f will typ-
ically exist, which can be used for analysis (see for
example (Ohtake et al., 2004)). Additionally, as the
sign of f indicates whether a given point is interior or
exterior to the surface (see Figure 1), collision detec-
tion and other set operations between shapes can be
implemented easily and efficiently.

Most of the work on implicits as we have defined them
can be divided into two classes. The first class does not
separate inferring f from (or in other words fitting f
to) the data and evaluating f – the complete data-set
is retained and analysed locally each time f is eval-
uated. This approach is simple and effective (Alexa
et al., 2001; Shen et al., 2004), but the local nature of
the analysis necessitates the use of normal vectors of
the target surface X at each sample point in order to
correctly orientate the implicit.

In the other category, a function f is inferred from the
data, hopefully serving as a compact representation
of the key geometrical information without requiring
the data itself for evaluation. Typically these methods
use a mixture of radial basis functions, either fully sup-
ported as in (Carr et al., 2001) or compactly supported
as in (Ohtake et al., 2003). Although it is not strictly
necessary, all of the methods we are aware of in this
class other than that of Schölkopf et al. (2005) also
require the surface normal vector at each data point.
The present work also falls into this category, and also
without using normal vectors.
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The decision to use normal vectors is a pragmatic one
– it tends to make the fitting process simpler since the
normals contain a great deal of information about the
target surface, even if this information is somewhat re-
dundant when one has the data points. In some cases
however it is not possible to derive these normal vec-
tors reliably. In the case of sparse or high dimensional
data for example, deriving the normal vectors (by some
local processing) as an intermediate step to the final
fitting process could introduce more difficulties than
it avoids. To quote the documentation of the state of
the art commercially available software product based
on the work of Carr et al. (2001): “in general, with-
out additional information determining normals [from
points] is ambiguous”.

It turns out that there are few implicit shape fitting
algorithms that do not use normal vectors, and the
present work is inspired by one of these few, namely
the Slab SVM (Schölkopf et al., 2005). The reason
that few authors have taken this approach is probably
due in part to the fact that, as we shall see, most natu-
ral formulations of the problem will be non-convex. To
deal with this our method uses only quadratic terms in
the optimisation problem in order to derive an equiv-
alent eigenvalue problem that can be solved both op-
timally and efficiently.

The paper is structured as follows: in the next Section
we review the Slab SVM, particularly identifying the
improvements that we are aiming for, before describing
in detail our new algorithm in the following Section
3. We then demonstrate the algorithm on both two
and three dimensional problems in Section 4, before
finishing with some concluding remarks in Section 5.

2. Related Work

Another method that does not use normal vectors is
the Slab SVM – a generalisation of the one-class SVM
that essentially applies the “maximum margin” reg-
ulariser to the problem of implicit surface modelling
(Schölkopf et al., 2005). This is a natural application
of kernel methods, and a related approach was taken
in (Walder et al., 2003) which generalises the SVM
classifier – an alternative which we briefly introduce
after the following the description of the Slab SVM.

For the sake of clarity we shall take a simplified view of
the Slab SVM – we replace the ε-insensitive loss with
a simple one-norm loss, and assume that a radial basis
function (RBF) kernel is being used. In this case the
algorithm is similar to a one-class SVM, however the
data incur a penalty proportional to

∑
i |f(xi)|, rather

than the usual term
∑

max(0, f(xi)). It turns out that

Figure 1. The Slab SVM embedding function (left) is rea-
sonable for 3D rendering, however tends to a negative value
both inside and outside the surface of interest, whereas the
present method (right) indicates by way of the sign of the
resultant embedding function whether a given point is inte-
rior to the surface. The dots are the 2D input data points,
the colours represent function value, and the lines depict
the zero level set.

the optimisation problem it solves is the following:

arg minf∈H ||f ||2H + C
∑m

i=1 |f(xi)| − const(f)

where const(f) denotes the zero order component of
the function f (usually denoted b or ρ in the SVM lit-
erature), and H is a reproducing kernel Hilbert space
(RKHS) such that the term ||f ||2H in the above formu-
lation acts as a regulariser. From this perspective we
can view this as a variant of a regression problem that
has target values of zero at each of the xi. Clearly such
a regression problem is solved trivially by the function
f = 0, but the Slab SVM avoids this by including the
term const(f) in the objective function.

The above approach is advantageous insofar as it yields
a convex optimisation problem, however the maximisa-
tion of const(f) can cause some problems – as a result
of it, rather than being positive inside and negative
outside the manifold of interest, if an RBF kernel is
used this property will often only hold within some
local neighbourhood of the data points, as in Figure
1. This causes no problems in rendering an implicit
in three dimensions (since the extraneous zero set will
always be obscured), but the property that the sign
of the function indicates whether a given point is in-
side the shape no longer holds. The method of Walder
et al. (2003), on the other hand, is similar to the above
but rather than including the term const(f) in the ob-
jective, introduces inequality constraints that force the
function to be greater/less than the value plus/minus
one at some additional points interior/exterior to the
target manifold – thereby typically requiring normal
vectors in order to derive these additional points.

The goal of the present work then, is to preserve the
strengths of the Slab SVM (especially the fact that
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it does not use normal vectors) while producing em-
bedding functions with the behaviour depicted on the
right side of Figure 1, as these are more suitable for
inside/outside tests etc. Also, by choosing a regular-
isation rather than an RKHS perspective, we give an
improved treatment of multi-scale basis functions.

3. Algorithm

The method we propose can also be viewed as a variant
of a regression problem in which all the target values
are zero. Essentially we aim for a means of avoiding
the triviality of minimising

∑
i f(xi)2 with respect to f

that produces embedding functions whose sign behaves
in the manner described previously. The approach we
propose is based on the following observations, that
are generally true of such embedding functions:

1. The values |f(xi)| are relatively small (data
term).

2. The value |f(x)| is relatively large over most of
the space X (energy term).

3. The gradients ||(∇f)(xi)|| are relatively large
(gradient term).

4. f is smooth (regularisation term).

With the exception of the third point, the above objec-
tives can be likened to a number of methods proposed
for semi-supervised learning. In this analogy, we relate
the first item to the classification function targets on
the labelled points, and the second item to the treat-
ment of the unlabelled points. We mention this to il-
lustrate the non-trivial nature of the problem – similar
difficulties arise as in the semi-supervised case. In par-
ticular the second item tends to lead to difficult non-
convex optimisation problems as in the transductive
Support Vector Machine (Vapnik, 1998) for example.

To deal with this we can either set up a difficult non-
convex optimisation problem and then apply heuris-
tics to solve it, or instead opt for an easier to solve
(although less ideal) problem that can be solved opti-
mally. Here we take the latter approach, in particular
we devise four quadratic penalties motivated by the
four objectives above, thereby leading to an eigenvalue
problem. To this end, we propose to minimise with re-
spect to f ∈ F (to be defined shortly) the functional

Θ(f) =
m∑

i=1

f(xi)2︸ ︷︷ ︸
data term

+ λΩ < f, f >2
F︸ ︷︷ ︸

regularisation term

−

λe

∫
u∈Rd

f(u)2dµ(u)︸ ︷︷ ︸
energy term

−λ∇

m∑
i=1

||(∇f)(xi)||2︸ ︷︷ ︸
gradient term

(1)

Here we have noted the correspondence between the
four terms of the objective function (balanced by the
positive real-valued λ’s) and the properties we listed
at the start of the section. The terms themselves each
appear in quadratic form in order to allow us to formu-
late the optimisation as an eigenvalue problem. To do
this, we must also define the function class as a mix-
ture of radial basis functions – that is, we let f ∈ F
admit the form:

f(x) =
∑n

j=1 πjφ(||vj − x||/σ2
j ) (2)

for some set of basis centres {vj}1≤j≤n with asso-
ciated widths σj , and basis function φ : R+ → R.
This type of approximation is widely known as the fi-
nite element method of approximately solving integro-
differential equations, frequently used to calculate heat
flows, electro-magnetic fields and material stresses.
We shall return to the choice of φ, presently we rewrite
the objective function in π. Letting [Kxv]i,j = φ(||vj−
xi||/σ2

j ), the data term is:∑m
i=1 f(xi)2 = πTKT

vxKvxπ

Next, due to the quadratic nature of the energy term
as well as the linearity of integration, we can write the
energy term as a vector-matrix-vector product in the
following way. Indeed, let us define Ke as

[Ke]i,j =
∫
u∈Rd

φ(||vj − u||/σ2
j )φ(||vk − u||/σ2

k).

Then,∫
u∈Rd

f(u)2dµ(u) =
∫

(
n∑
j

πjφ(||vj − u||/σ2
j ))2dµ(u)

=
∑
j,k

πjπk[Ke]j,k

= πTKeπ

Similarly we can rearrange the gradient term to get∑m
i=1 ||∇x=xif(x)||2 = πTK∇π, defining [K∇]i,j as∑m
i=1〈∇x=xiφ(||x− vj ||/σ2

j ),∇x=xiφ(||x− vk||/σ2
k)〉

The only remaining term is the regulariser ||f ||2, which
we discuss in the following sub-section.
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3.1. Regulariser

Here we discuss and motivate our choice of regulariser.
In the first part we indicate some difficulties in using
an RKHS norm as a regulariser when one wishes to use
basis functions of various widths. We then outline a
principled approach to achieving this before proposing
a simpler alternative.

3.1.1. Regularisation in an RKHS

The regulariser that arises in the SVM has already
been used to good effect in implicit shape modelling
(Walder et al., 2003; Schölkopf et al., 2005), so it
seems natural to apply it here. Assuming we have
a constant basis function width so that σi = γ, it
is straightforward to define the SVM regulariser Ω(f)
corresponding to the RKHS2 of the reproducing kernel
kγ(xi,xj)

.= φ(||xi − xj ||/γ2):

Ω(f) =
∑n

i,j=1 πiπjφ(||vi − vj ||/γ2) (3)

But if the σj are not constant we cannot write down
an analogous regulariser the same way. The approach
taken in the Slab SVM is to fit an embedding function
on a course scale, and then to calculate another em-
bedding function (to be added to the first) using the
residual values, rather than 0, as the regression target.
This is somewhat suboptimal however, since the indi-
vidual regularisation terms added together will typi-
cally only upper bound the regularisation of the final
embedding function. Assuming that the regulariser is
a norm of the function, we can see this from the tri-
angle inequality ||f + g||2 ≤ ||f ||2 + ||g||2. To put it
in intuitive terms, if the course scale solution is con-
cave in a given region, an incentive should be given at
finer scales to be convex to the same degree over the
same region, whereas the method in question actively
penalises this behaviour.

3.1.2. From kernel to regularization
operator

More accurate is to choose a given scale of basis func-
tion γ, at which to induce a regulariser via Equation 3.
It turns out (see for example the work of Girosi et al.
(1993) and Schölkopf and Smola (2002)) that we can
write Ω(f) = 〈Υf,Υf〉 for some regularisation oper-
ator Υ. In the present framework, we use the same
type of rearrangement as with the energy and deriva-
tive terms, which allows us to write Ω(f) = πTKΩπ,

2Note that for such an RKHS with reproducing ker-
nel kγ(·, ·) to exist it must satisfy the conditions given by
Bochner’s theorem. In particular, it is sufficient that φ(·)
has a non-negative Fourier transform.

where KΩ is defined element wise by:

[KΩ]i,j = 〈Υfi,Υfj〉

and we have defined fk(x) = φ(||x−vk||/σ2
k) An anal-

ysis in (Schölkopf & Smola, 2002) of the regularisa-
tion operator of a translation invariant reproducing
kernel function shows an interesting interpretation in
the Fourier domain – in signal processing terms the
regulariser computes the energy of the function after
attenuation by some filter function (determined by the
choice of kernel function) in the frequency domain.
Following this exposition, it turns out that we can
write

〈Υfi,Υfj〉D =
∫

F [fi](ω)F [fj ](ω)
F [fγ ](ω)

dω (4)

where F is the (forward) Fourier transform operator,
x is the complex conjugate of x, and we have defined
fγ(x) = φ(||x||/γ2). As an aside, it is interesting to
consider applying this use of multi scale basis func-
tions in combination with the described regularisa-
tion method, to the SVM classifier problem, in order
to trade between optimality and computation time in
large scale problems – one could imagine using finer
width basis functions nearer to the decision boundary.
In fact, a related exposition in which basis function
and regulariser are separated has lead to a generalised
framework that includes a number of learning algo-
rithms as special cases (Smola & Schölkopf, 1997).

3.1.3. Separation of Regulariser and Basis

Unfortunately however, while some cases can be ana-
lytically solved the integral of Equation 4 is, roughly
speaking, arbitrarily difficult to solve for an arbitrary
kernel function. Thus, we adopt a simpler regularisa-
tion operator in order to provide a cleaner treatment
of the multi-scale case. The one we choose, already
applied to good effect in the context of implicit sur-
faces (Carr et al., 2001), and analysed some time ago
as a regulariser (or stabiliser) in the context of approx-
imation theory by Duchon (1976) is the following thin
plate energy:

Ω(f) =
∫
||∇∇Tf(x)||2F dµ(x)

(||.||F denotes the Frobenius matrix norm), which de-
rives its name from the fact that in two dimensions it
is equal to:∫ (

(
∂2f

∂x2
)2 + (

∂2f

∂y2
)2 + 2(

∂2f

∂x∂y
)2

)
dxdy

which approximates the bending energy of the thin
metal plate with height f(x, y). Using the same re-
arrangement as before it is easy to write this as a
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Figure 2. The B3 spline (solid line) and its second deriva-

tive scaled by a factor one on twelve: ∂2B3(r)

12∂r2 (dashed line).
It is the integral of the squared second derivative that we
use as a regulariser. The support of the function is [−1, 1].

quadratic term in π, and the resultant matrix has the
same sparsity structure as Ke. Note that if there is
a small enough number of different values for the σj

(as in all our experiments), we can efficiently compute
Ke and KΩ by precomputing the integral for a range of
values of ||vj−vk|| and for each unique value of σj , and
then use the results to construct the required matrices.
Numerically integrating in this manner introduces no
computational disadvantage as the integrals can each
be done once and stored for later reuse.

3.2. Basis Function

The use of compactly supported basis functions φ(·)
is attractive as it leads to sparse matrices – reduc-
ing computational and storage requirements. Further-
more, as, unlike most authors, we have separated the
choice of basis function from the choice of regulariser,
our choice of basis constitutes nothing more than a
means of trading between efficiency and accuracy. As
such, the basis function need only satisfy some quite
basic requirements such as not lying in the null space
of our regulariser. The basis function we choose then
is the so-called Bd-spline function, which is defined re-
cursively by B0(r) = u(r), where u(.) is the centred
heaviside function, and Bd(r) =

⊗d+1
i=1 B0(r), where⊗

denotes convolution. Interestingly one can show
that the Bd spline approaches the Gaussian as d →∞.
For our experiments, we used the B3 spline (see Figure
2), which can be evaluated using the equation:

Bd(r) ∝
d+1∑
n=0

(−1)n

d!

(
n

d + 1

)
(r + (

d + 1
2

− n))d
+

3.3. Eigenvalue Problem

By Rayleigh’s principle (Golub & Van Loan, 1996)
Equation 1 is minimized (for normalised coefficients

of Equation 2 satisfying
∑n

j π2
j = 1) by the eigenvec-

tor π∗ with the most negative eigenvalue λ∗ of the
following non positive definite eigenvalue problem:

(KvxKT
vx + λΩKΩ − λeKe − λ∇K∇)π∗ = λ∗π∗

which is in our case is typically a large system with
a high sparsity ratio, which we solve using the JDQR
algorithm (Sleijpen & Van der Vorst, 1996). Actually,
we found that it was numerically more appropriate
to add a multiple3 of the identity in order to yield
an equivalent positive definite system, and then solve
for the smallest magnitude eigenvalue rather than the
most negative.

As we have noted, by using a compactly supported ker-
nel function φ(·), all of the matrices that comprise the
above eigenvalue problem will also be sparse. More-
over, they can be constructed efficiently using standard
algorithms for range searching – a problem closely re-
lated to nearest neighbour searching. Range search al-
gorithms typically use a spatially hierarchical tree like
data structure in order to efficiently determine which
points lie within some range of a query point.

Since we are minimising two terms and maximising an-
other two, it may seem natural to minimise a ratio of
sums of vector-matrix-vector products, as this leads to
a positive definite generalised eigenvalue problem. Un-
fortunately this costs us an important degree of free-
dom in balancing the individual terms – minimising
a/b is the same as minimising (log(a)− log(b)), so that
if we balance the combination using a parameter c by
minimising (log(a)− c log(b)) we are equivalently min-
imising a/bc. In other words, many Rayleigh’s quo-
tient type problems probably ought to have an expo-
nent in the denominator, but as this no longer cor-
responds to an equivalent eigenvalue problem, it will
usually be considerably more difficult to solve. There
are cases however in which both the numerator and
denominator have equivalent units so that one may
argue in favour of the ratio problem on the grounds
that it measures a “unitless” ratio – popular among
physicists, but here this is not the case.

4. Experiments

Implicit shape modelling usually applied to 3D data,
however it is useful to experiment in 2D since we
can then visualise the embedding function as a two-
dimensional colour intensity plot. The following sub-
section investigates the behaviour of the system in two
dimensions for various parameter settings.

3Of magnitude λe||Ke||2 + λ∇||K∇|||2, where ||.||2 de-
notes the matrix spectral norm.
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4.1. Two Dimensional Toy Problem

Some specific examples of the qualitative nature of
the solutions that arise are given in Figure 3, which
demonstrates the nature of the energy/derivative bal-
ance. In general we found that the derivative term
was necessary to avoid the type of behaviour shown
on the bottom left of the figure. We also did some
“grid searches” over the three parameters λe, λ∇ and
λΩ in order to better understand how the optimisation
problem behaves. Note that the problem of parameter
choice is far more benign than in a classification prob-
lem, since we can make some reasonable measures of
the quality of the solution without requiring a holdout
set or cross-validation process. Two useful measures
are defined as follows: given an embedding function f
that models our training data set S, we take an ap-
proximately uniform sampling R ⊆ f−1(0) of the zero
set and compute the following:

mRS = maxx1∈Rminx2∈S ||x1 − x2||

mSR = maxx1∈S minx2∈R ||x1 − x2||
These are, roughly speaking, the largest distance from
R to S and vice versa. Both of these measures are
useful, and if either measure is large then the solution
cannot be a good one. It turns out that both the en-
ergy and the gradient term are necessary for maximum
topological stability of the solution. As evidenced by
Figure 4 however, too great a value of λ∇ leads to in-
stability, while increasing λe reduces this effect, the
net result being smoother but less precise solutions.
We stress however that these measures are a heuris-
tic and imperfect measure of the quality of solution –
superior being a visual inspection. As expected, the
regularisation parameter λ∇ controls the tradeoff be-
tween smoothness and fidelity to the data.

Note that Figure 3 also reveals how we chose our ba-
sis function centers – we use a coarse grid that covers
the entire region of interest, and increasingly fine grids
confined within some range of the data, using a mul-
tiple of the grid width as the basis function support.

4.2. Three Dimensional Results

We also ran our system on some three dimensional
data sets, particularly focussing on two important ap-
plications of the algorithm that for reasons discussed in
Section 2 are difficult to achieve using the Slab SVM.
The first is the filling or interpolation of holes in the
data, as in Figure 5. This is a useful property as such
holes often arise due to occlusions. Using a 3GHz Pen-
tium III processer, we fit the bunny model in approx-
imately forty minutes. The drawing took a similar
amount of time, although this is due to the fact that

Figure 3. Investigating the role of the parameters in a two
dimensional problem. Top: the data (black dots) and basis
function centers (crosses), color-coded according to basis
function width. The way we choose the basis is discussed
in Section 4.1. There are a total of approximately 3K basis
centers which we colored from widest to narrowest blue,
red, black and magenta. Middle: a parameter set chosen
using our automatic criteria (see Section 4.1) – visually
there seems to be somewhat too much derivative term, but
the zero level rendered as a magenta line is reasonable – as
it is largely obscured by the data one must “zoom in” on an
electronic copy of the document to see it properly. Bottom-
left : too large an energy term results in a large smooth
“bump” in the function outside the shape. Bottom-right :
too large a gradient term results in a concentrated region
of high gradient at some location on the data set, in this
case in the bottom-left part of the shape.
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Figure 5. An example of smoothly interpolating missing data – we created a hole in the Stanford bunny data set (visible
in the upper rear region of the bunny as shown on the left), resulting in a data set of 35K data points in three dimensions.
The surface that we fit, using 14K basis functions, approximately recovers the original shape, as shown on the right.

Figure 4. The heuristic evaluation measures mRS (left)
and mSR (right) as defined in Section 4.1, over a range
of values of λ∇ (on the horizontal axis) and λe (on the
vertical axis), for constant λΩ with a 2D data set.

we employed a marching cubes algorithm that näıvely
evaluates the embedding function over the entire view-
ing region, rather than a faster method that follows the
surface. We avoided such fast rendering schemes in or-
der to be sure that there are no errant components of
the zero set lying away from the data.

The second interesting property that we demonstrate
is the ease with which set operations can be performed
using implicit shape definitions. For example, given a
pair of embedding functions f1 and f2 that are neg-
ative inside the shape and positive outside, the inter-
section of the shapes corresponds to the embedding
function f∩ = max(f1, f2). This is precisely how we
generated Figure 6. Alternatively one can define an
embedding function |f1| + |f2|, the zero level set of
which is the intersection of the zero level sets of f1

and f2. The fitting of the knot model took roughly
fifteen minutes. The plain knot model was drawn in
about forty minutes, whereas the intersection picture
took approximately a day using a higher resolution.

To define the union of the two implicit shapes we can
use f∪ = min(f1, f2). Similarly to the intersection
case, we can alternatively use the product f1f2, the
zero level set of which is the union of those of f1 and
f2, however this retains those components of the zero
set interior to the resultant shape in spite of the fact
that they will always be obscured from the observer.

5. Conclusions

We have proposed a method of fitting implicit shapes
to a finite sampling of a manifold, without using nor-
mal vectors – an important problem since normals can
be difficult to determine. The optimisation problem
that we solve incorporates four intuitively justifiable
terms, the balancing of which can be done automati-
cally. We overcome the possible difficulties associated
with the non-convexity of this problem by solving an
equivalent eigenvalue problem which efficiently yields
the globally optimal solution, and by using sparse ba-
sis functions of various widths the computational and
storage requirements are reduced such that the method
can handle many tens of thousands of points. It would
also be interesting to try an objective function that is
closer to ideal (such as forcing the gradient have ap-
proximately constant magnitude everywhere), in spite
of the more difficult optimisation problem that ensues.
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Figure 6. An example using the “knot” data set consisting
of 10K data points in three dimensions, as shown on the
top left (the colours have no special meaning). The implicit
surface rendered on the top right was constructed using ap-
proximately 5K basis functions. The lower image demon-
strates that set operations such as intersection are trivial
with implicit shape definitions, regardless of the topologi-
cal complexity that results – we intersected the knot shape
with a grid of balls (also defined as an implicit).
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