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Abstract

In this paper an attempt is made to derive
new criteria for input selection of dynamic
systems using the fuzzy curve approach.
The Approximate Fuzzy Data Model
(AFDM), the output of which is the fuzzy
curve, is shown to be a special case of the
Generalized Fuzzy Model (GFM).
Moreover, AFDM 1is proved to be an
unconditional expectation of the output thus
linking fuzzy rules with probability. The
validity of the criteria for input selection
has been studied on GFM by means of
significance of inputs, which is determined
from the ratio of change in the output of
AFDM to the range of the actual output.
The complexity of the criteria has been
proved to be of the order of O(n), which is
a significant achievement in comparison to
the complexity of the existing criteria.
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1 Introduction

To build a fuzzy model, the first step is to select
significant inputs among the many input candidates
[1-4]. We can identify the significant inputs to the
model by using any identification algorithm [1-3].
But, these algorithms either fail to select the exact
number of inputs [2] to the model or involve
expensive computations [1,3]. A number of models
are available for identification. The models of Xu
and Lu [2] are based on two input variables, and are,
therefore, not suitable for multivariable systems.
Takagi and Sugeno [1] have proposed a method that
requires a maximum of n{(2p—1)n+1}/2 test

models and 27 partitions for n input candidates and

p outputs. Hence, the number of test models is of

the order O(n2 p). Sugeno and Yasukawa [3] have
proposed another method, which requires n(n+1)/ 2

test models for input selection, by decoupling the
number of partitions. Hence, the number of test
models is of the order of o(nz). In this paper, we

seek to select the input variables that significantly
affect the output by evaluating the performance of a
model using some criterion.

Lin and Cunningham III [4] have proposed a
fuzzy curve approach for input variable selection.
This approach lists only a comparative significance
of each input candidate without any further test for
input selection. In this paper, we propose new
criteria for input variable selection on the basis of
significance evaluated from fuzzy curves, which are
obtained from the Approximate Fuzzy Data Model
(AFDM) over the domain of input.

2 Dynamic Fuzzy Models

Dynamic system models may be constructed by
mapping from the input space to the output space.
The mapping function for a fuzzy system is the
result of function approximation and is called the
universal function approximator. To construct fuzzy
rules for a Multi-Input and Multi-Output (MIMO)
system, we separate the overall system into several
Multi-Input and Single-Output (MISO) systems,
which can be represented by the any one of the
following models with the associated rules:

Compositional Rule of Inference (CRI) Model
R':ifx isAfA X, iSAEA ... Ax iSAL

then y is B (1)
Takagi-Sugeno (TS) Model
R':ifx iSAf A X, isASA ... Ax, isAL

then y is f* (x) (2)
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Generalized Fuzzy Model (GFM)
R :ifx isAf A x, iSASA ... Ax, is Af

then y is B* (fk (x), vk) (3)
where, x,(i=1,2,...,n) are the inputs and y is the

output. Af denotes the linguistic labels of fuzzy sets
describing the qualitative state of the input variable

. h . k . . .
x; in k" rule, ie.,R", A is a fuzzy conjunction

operator and B*(f*(x),v* )< R
linguistic labels attached to the local nonlinear
regression of inputs f* (x) with an index of

denotes  the

fuzziness v*, which describes the qualitative state of

the output variable y .

A linear form of f*(x) in Eqn. (2) is as follows:
fr(x)=bf +bfx, +... +bfx, @

The firing strength of the k™ rule is obtained by
taking T-norm of the membership functions of the
premise parts of the rule as:

,uk(x)=,ulk(xl) A ) A A i (x,) &)

where, 'uik (x;) is the membership function of fuzzy

set A% . The firing strength of k™ rule for variable y

is also represented as a fuzzy set A* = R” in the

input space. Hence, Eqn. (3) can be written in

compact form as:
R* :if xis A" then y is Bk(fk(x),vk) (6)
For the specific class of GFM [5] where we use
the multiplicative T-norm operator for mapping

fuzzy subsets from the input space, A* < R" to
fuzzy subset in the output space, B* ( (x), v") cR,

and the additive S-norm operator to join all the
mapped region in the output space, the weighted

average defuzzified output value y° is:
k k
. neooout(x)w
Yi (x) = z P ( )
k=1 ,Ll k (x ) .Vk
k=1

This model can be reduced to either CRI-model by
applying the condition f* (x) =b" or TS-model by

S(x) O

m

applying the conditiony' =v> = . . . =v

3 AFDM as a special case of GFM

To prove the above, we split the MISO system,
into a set of SISO systems. We intend to derive
AFDM for each of the inputs x; and then evaluate its

significance. Here, we define a rule inx, — y space

for each element of the input X, so that the number

of rules would be equal to the number of elements.
The rule is of the form:

RI:If x, is X* then Y is Y, (®)
where, X! is the fuzzy set having a Gaussian
membership function * (x,) corresponding to the

data point (x,,y,) given by,

,uk(xl.)zexp{—(x”‘_x"j };k:I,Z,...m 9
w

The value of wis taken in the range of 10% to 20%
of the input interval of x, . By interpreting the terms,

Eqn.(6) can be adapted to obtain the defuzzified
output for the Eqn.(8). Since each membership

function ,*(x)of X;is located at x, =x, with the

maximum value of 1 having the same width, w, the
strengths of all ,*(x)are the same. This leads to

Vv =V =... =v". We replace ,*(x)in Eqn.(6) by
" (x)and f¥(x) by f£*(x). According to the rule,
f*(x,)=y,. In view of these substitutions, Eqn. (6)
becomes:

D H )y,

Ho=E 10

i#k(x,-)

where, superscript ‘0’ stands for the output of
fuzzy curve and yl.o represents the fuzzy curve

corresponding to the input x, .Thus, GFM becomes

AFDM when all elements of input have the same
membership function

3.1 Proof of y as unconditional expectation

The membership function 4" (x,)of each
point(x,,y,), can be thought of as the distribution
ofx, . Let, this distribution be denoted by,

ph(x) =" (x,). The distribution of y, is 1 since



it is a singleton. In view of this interpretation, we
can rewrite Eqn. (10) as,

i P (x)py ()Y,
¥ (x)=+1— (11)
D Pi(x)

Let, p%. (x.,»)=ph(x)p, (y)as both terms on the

right side are have:

ipffy(xny)yk L
yio(x,-): Bl p :Zykpk(y|xi) :E(y|xj)

=1
D py(x)
k=1

independent,  we

(12)
Thus, we have proved that the fuzzy curve is the
unconditional expectation.

3.2 Proof of conditional expectation of the
output of GFM

Replacing y; by f*(x;) introducing vy in Eqn.(12)
yields the defuzzified output of GFM:
DV P () (%)
yio (xi) = 4=l

2 VP ()
k=1

:ifk(xi)pv"(ylxi) =E(y|x,) (13)

However, it is easy to show that CRI model output is
the unconditional expectation contrary to TS model.

4 Input Selection Criteria

From the shape of a fuzzy curve [4], the following
inferences can be drawn. Change in positive slope of
the input results in an increase of the output with an

increase inx,. Based on the heuristic that fuzzy

model will interpolate between maxima and minima,
the minimum number of rules required to
approximate the fuzzy curve can be determined from
the number of maxima and minima. The importance

of variable x; is evaluated from the approximate
changes in the output of AFDM, i.e., ¢; over the
range of input x,. Thus, ¢; is defined as in [6]:
O(v. N—mi O (4.
s (o min (26
max (yk j—mln [yk j

c; =

Before applying the following criteria, we sort
out all the input candidates for the model in

descending order ofc; .

Criterionl: Select all those input candidates for
whiche; > I, where h e [0,100].

The value of “A” depends upon the number of input
candidates as well as values ofc;. The higher the

value of “h”, lesser is the number of selected input
candidates and vice-versa.

Criterion2: Among the selected input candidates,
start modeling with the input candidate of highest

value of ¢; and go on adding input candidates one

by one with the descending order of ¢; . In doing so,

accept only those input candidates which
significantly improve the performance of model and
reject those input candidates, inclusion of which
deteriorate the performance of a model. Terminate
the input selection when the model performance
reaches the target value. Supposing that n
variables are selected with criterion 1, and then we
need to evaluate n test models by checking every
input candidate to see whether it results in the best
performance of model. Again, on the basis of
criterion 2, we need a testing of n-1 models.
Together, the count comes to 2n-1 test models,
which is linear in the number of input candidates,

ie., O(n).
5 Simulation Results

A normalized mean square error J, is considered
for the evaluation of the test models using GFM.
The initial parameters for all the test models are
found from the fuzzy curve method. Further these
parameters are fine-tuned using Gradient Descent
(GD) and Least Squares Estimation (LSE)
techniques. For stopping the input selection, the
target value of J is set to 2x10™. In view of a limited
number of input candidates, we apply criterion 2
directly.

Example: Bilinear system

We consider a two-input and single output bilinear
dynamic model [2] given by the equation:
y(k)=0.8y(k —1)u, (k)+0.5u,(k-1)y(k—-2)
+u,(k—4)+a.e(k)

to provide the following input-output data sequence:

(15)



k), u,(k), uy(k), k= 1,400 & =1 }. Note that e(¢)
in Eqn. (16), is an uncorrelated random noise
uniformly distributed over the interval (-0.08, 0.08).
Inputs u,;(k) & uy(k) are both uncorrelated random
sequences uniformly distributed over the interval
(0.1, 0.9).

We consider the variables u;(¢), . . ., u;(t-4), ux(?),

« o Uy(2-6), y(t-1), . . ., ¥(¢-3) as input candidates to
the model. Using the fuzzy curves of all the input
candidates, the values of ¢; are obtained from Eqn.
(15). The number of fuzzy rules for the model is
given by the number of maxima and minima from
each of the fuzzy curves, i.e., m=3 in the example.

In Table I, the values of ¢; and descending order
of ¢; are listed. First, 80% of the data is used for
model learning and the rest is used for model
validation. In the figure, ‘+’ sign shows the model
performance with the each individual input
candidate added, the solid line shows the
performance of the models on applying criterion 2
and a circle on the solid line shows the acceptance of
that input candidate. The selected variables for the
data are y(z-1), y(¢-2), us(¢t-4), ui(f) and  u;(z-1).

Table 1: List of input candidates with descending

order of ¢; for the Example.
Inputs ¢ Order | Inputs ¢ Order
of ¢; of ¢;
uy(t) | 26.38 4 u,(t-3) | 5.66 13
u(t-1) | 24.16 5 u,(t-4) | 29.00 3
uy(t-2) | 14.66 10 y(t-1) | 42.60 1
u,(t) 2.29 16 y(t-2) | 33.32 2
u,(t-1) | 4.25 14 y(t-3) | 22.30 6
u,(t-2) | 3.84 15 y(t-4) | 16.13 9

6 Conclusions

The fuzzy curve, which is the output of AFDM,
is shown to be the special case of defuzzified output
of GFM in addition to proving that it is an
unconditional expectation of output. This fuzzy
curve is used to find the significance of inputs. The
significance is evaluated from the descending order
of a ratio that is the percentage change in the output
of AFDM. As compared to the requirement of
testing models of orders O(n2 p)and o(nz) in TS &

SY-methods, the new criteria require the testing
models of order O(n). The validity of the proposed

criteria is shown on the GFM of a dynamic system.
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Figure 1: Model Performance vs Descending Order
of ¢; for the Example
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