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Preface

This book attempts to make growth models more accessible to foresters and
others interested in mixed forests, whether planted or natural. There is an
increasing interest in, and controversy surrounding the use of mixed
plantations and natural forests, and rational discussion and resolution of
management options require reliable growth models linked to other
information systems. It is my hope that this book will help researchers to
build better models, and will help users to understand how the models work
and thus to appreciate their strengths and weaknesses.

During recent years, vast areas of natural forest, especially in the
tropics, have been logged or converted to other uses. Well-meaning forest
managers have often been over-optimistic in estimating forest growth and
yields, and this has contributed to over-cutting in some forests. Growth
models can provide objective forecasts, offering forest managers the
information needed to maintain harvests within the sustainable capacity of
the forest, and providing quantitative data for land use planners to make
informed decisions on land use alternatives. In this way, I hope that this
book will contribute to the conservation and sustainable management of
natural forests in the tropics and elsewhere.

This is not a "How to do it" manual with step-by-step instructions to
build a growth model for mixed forests. Unfortunately, modelling these
forests isn't that easy. There is no single "best" way to build a model for
these forests. Rather, many approaches can be used, and the best one
depends on the data available, the time and expertise available to build the
model, the computing resources, and the inferences that are to be drawn
from the model.

So instead of writing a "cookbook" with one or two recipes, I review
and illustrate some of the many approaches available, indicate the
requirements of and output from each, and highlight their strengths and
limitations. The book emphasizes empirical-statistical models rather than
physiological-process type models, not because they are superior, but
because they have proven utility and offer immediate benefits for forest
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management. A more comprehensive treatment of all the options is beyond
the scope of this book, which is intended to serve as a ready reference
manual for those building growth models for forest management. Because
of my limited linguistic ability, the material covered is more-or-less
restricted to English-language material. I have not attempted to review all
the published work on growth modelling (it would be a huge task), but have
tried to highlight examples that may be applicable to mixed forests in
tropical areas.

I hope that the language and terminology used in this book will be
accessible to all readers, especially those for whom English is a second
language. The glossary may help to clarify some terms, and those that have
a specific technical meaning are printed in italics the first time they are
used. Readers should consult the glossary to clarify the meaning of these
words unless they are sure of the meaning.

Exercises are given at the end of each chapter to reinforce points made
in the chapter. These are simple exercises, deliberately chosen so that they
can be completed quickly with pen and paper or PC and spreadsheet, but
within these constraints, I have tried to keep them realistic. Some exercises
(e.g. 9.1 and 10.3) require more specialized statistical analyses, but many
commercial statistical packages (e.g. GLIM) are suitable. Where possible,
these exercises draw on real data, but some data were simulated to create
interesting exercises with few data.

Whilst my approach places more responsibility on the reader to choose
and develop a suitable modelling methodology, I hope it will help readers
gain a better understanding of modelling, which should in turn lead to
better models and more reliable predictions. And I hope that better models
will provide better information, greater understanding, and better
management of mixed forests.

Jerry Vanclay
Copenhagen, 1994
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Foreword

Forest managers, planners and policy makers forecast the outcomes of
different types of forest use in order to make wise decisions for balanced
management. Careful selection and analysis of data will always be vital to
the decision-making process, but efficient and readily understandable
models of growth and yield now promise to become invaluable tools. I am
delighted to say this book provides the necessary access to such models.
Also in a world where increasingly complex computer models are the order
of the day, it is heartening to find a text which provides both a robust
framework for further model development as well as a direct tool for those
managers and planners with a limited modelling background. Unlike many
texts that focus on esoteric aspects of modelling processes, the primary
emphasis here is on robust, empirical models that can be fitted to the kinds
of data that exist within many forest services.

It is widely accepted that, while growth and yield models are
fundamental to management, the global community now demands more
sustainable use and a more comprehensive understanding of forests and
forest products. A key element of this book is the inclusion of growth and
yield models for mixed-species stands. This is a notable departure from the
more traditional focus on monocultural systems and opens the way to
modelling the performance of species assemblages in natural or semi-
natural forested lands. The demands for concepts and algorithms which can
deal with complex biophysical interactions will increase with the widening
perception of the forest as a resource. In each of these respects, the
conceptual approaches in this text lend themselves to wider applications
which may include, for example, physical environmental determination of
biological diversity as well as cellulose production.

It is eminently clear that forest managers and planners will rely
increasingly on access to simplified models of forest dynamics which can
be used to generate options for improved resource management. This book
will provide the entry point.
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Forestry research has been characterized as being reductionist. In
particular, forest science has been slow to respond to rapidly changing
perceptions of the value of forests and to demand for changed products and
markets. Scientists have acquired sophisticated knowledge of components
of forest systems but have failed to integrate and synthesize information in
a way that can provide adequate decision-making tools. The models
outlined in this book are a potentially valuable tool to help remedy this
situation.

Jeff Sayer
Director General,
Center for International Forestry Research
Bogor, Indonesia
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Chapter One

Introduction

Growth models assist forest researchers and managers in many ways. Some
important uses include the ability to predict future yields and to explore
silvicultural options. Models provide an efficient way to prepare resource
forecasts, but a more important role may be their ability to explore
management options and silvicultural alternatives. For example, foresters
may wish to know the long-term effect on both the forest and on future
harvests, of a particular silvicultural decision, such as changing the cutting
limits for harvesting. With a growth model, they can examine the likely
outcomes, both with the intended and alternative cutting limits, and can
make their decision objectively. The process of developing a growth model
may also offer interesting new insights into stand dynamics.

There is an extensive literature on growth modelling of pure even-aged
forest stands, especially of plantations. However, these ecosystems are in
many respects rather simplistic, and many of these modelling approaches
do not apply in forest stands with trees of many ages or many species.
Tropical moist forests pose a special problem, as there may be hundreds of
species and a great diversity of tree sizes and growth patterns. This
complexity means that many techniques ideal for plantation modelling are
not well suited to modelling mixed forests, especially in the tropics.

Tropical moist forests (especially rainforests) are singled out for
specific attention in this book, but material is not confined to the tropics or
to moist forests. The book focuses on the special problems of modelling
forests comprising many species, a wide range of trees sizes, and
indeterminate ages. These problems are common to most tropical forests,
and to many natural and semi-natural forests elsewhere.
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Fig. 1.1. The role of growth models and complementary data in providing
forest management information.

Role of Growth Models

Growth models are of limited use on their own, and require ancillary data
to provide useful information. With suitable inventory and other resource
data, growth models provide a reliable way to examine silvicultural and
harvesting options, to determine the sustainable timber yield, and examine
the impacts of forest management and harvesting on other values of the
forest.

Forest managers may require information on the present status of the
resource (e.g. numbers of trees by species and sizes for selected strata),
forecasts of the nature and timing of future harvests, and estimates of the
maximum sustainable harvest. This information can be compiled from three
sources:

1. area estimates of the existing forest,
2. stand level inventory of the present forest, and
3. growth and harvesting models based on dynamic inventory data.

The role of, and relationship between these three primary data sources is
illustrated in Fig. 1.1. Static inventory ("snapshot" or point-in-time
inventory using temporary plots) and area estimates will not be addressed
here — readers should refer to standard inventory texts (e.g. Loetsch et al.
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Fig. 1.2. The role of growth models in decision making, forest management
and the formulation of forest policy (after Nix and Gillison 1985).

1973, de Vries 1986, Schreuder et al. 1993). A growth model is a synthesis
of dynamic inventory data indicating growth and change in the forest.
These data may be obtained from permanent plots. The construction of
models from such data is the main subject of this book.

Growth models may also have a broader role in forest management and
in the formulation of forest policy. Used to advantage and in conjunction
with other resource and environmental data, growth models can be used to
make predictions, formulate prescriptions and guide forest policy.
Figure 1.2 is a simplified representation of this process. It shows that
growth models are but one step in the formulation of forest policy and
management prescriptions, and that supplementary data and adequate
testing are also required. Some important feedbacks are indicated, but in
practice, there should be many more arrows indicating interactions between
the various boxes. The feedback loops are especially important. In the
context of growth modelling, there should be sufficient feedback to ensure
that inventory is adequate and model predictions are reliable across the
range of resource conditions and management prescriptions entertained.
These various roles draw on different qualities in growth models and
provide a place for different kinds of models.



4 Modelling Forest Growth and Yield

What is a Growth Model?

A model is an abstraction, or a simplified representation, of some aspect of
reality (and should not be confused with the normative meaning of the
word, something worthy of being imitated). We frequently use models
unconsciously, e.g. making mental models to visualize cause-effect
relationships to help explain and anticipate the behaviour of systems.
Models may be stated in verbal (e.g. a description) or material forms (e.g.
a scale model). A mathematical model is like a verbal model, but uses
mathematical language which is more concise and less ambiguous than
natural language. Computers have become indispensable as tools to assist
modelling, but are not central to the process of modelling. Modelling is
about making a good representation, and the computer is merely a
convenient way to realize it. García (1994) likened "computer modelling"
to "typewriter poetry".

A stand growth model is an abstraction of the natural dynamics of a
forest stand, and may encompass growth, mortality, and other changes in
stand composition and structure. Common usage of the term "growth
model" generally refers to a system of equations which can predict the
growth and yield of a forest stand under a wide variety of conditions. Thus
a growth model may comprise a series of mathematical equations, the
numerical values embedded in those equations, the logic necessary to link
these equations in a meaningful way, and the computer code required to
implement the model on a computer. In its broadest sense, the term may
also embrace yield tables and curves, which are analogous to equations, but
which have been stated in a tabular or graphical form, rather than a
mathematical form.

Growth refers to the increase in dimensions of one or more individuals
in a forest stand over a given period of time (e.g. volume growth in m3

ha y ). Yield refers to their final dimensions at the end of a certain period!1 !1

(e.g. volume in m ha ). In even-aged stands, a growth equation might3 !1

predict the growth of diameter, basal area or volume in units per annum as
a function of age and other stand characteristics, whereas a yield equation
would predict the diameter, stand basal area or total volume production
attained at a specified age. In an uneven-aged stand, yield is the total
production over a given time period, while growth is the rate of production.
Growth and yield are related mathematically (if yield is y, growth is the
derivative dy/dt), and little distinction will be made in this book between
these analogous forms (see Chapter 6).

An important but simple model in forestry is the plantation yield table,
which may comprise only two columns of figures, the left column showing
plantation age, and the right column indicating the expected standing
volume at that age. Additional columns may indicate production for
different sites (Fig. 1.3). The yield table may also be expressed graphically
as a series of curves, with the horizontal axis indicating age and the vertical
axis indicating volume produced. It may also be expressed more concisely
as a mathematical equation.
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Fig. 1.3. Pulpwood yield table, curves and equation for Eucalyptus deglupta
in the Philippines (after Tomboc 1977).

At the other extreme are complex plantation growth models which may
model the spatial positions of individual trees, their diameter, height and
crown size. Such models may indicate timber quality and knot size, and
may be linked to conversion simulators which predict veneer and sawn
timber outturn. Similarly, growth models for mixed forests may vary from
the simple to the complex.

Growth Modelling Approaches

There are so many growth models in existence that it is impossible to
examine the methodology used in each. Thus it is necessary to identify
some commonality, and to consider just a few examples for each class of
model. It is useful to classify models on the level of detail they provide. A
model may be considered a whole stand model, a size class model, or a
single-tree model, depending on the detail required, provided and utilized
by the model.

Whole stand models are often simple and robust, but may involve
complexities not possible in other approaches. Population parameters such
as stocking (number of trees per unit area), stand basal area and standing
volume are used to predict the growth or yield of the forest. No details of
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the individual trees in the stand are determined. Stem size distributions may
be inferred from existing or predicted distributions.

Size class models provide some information regarding the structure of
the stand. Several techniques are available to model stand structure, but one
of the most widely used is the method of stand table projection which
essentially produces a histogram of stem diameters. This approach is a
compromise between whole stand models and single-tree models. When the
class size is infinitely large and only one class exists, then the method is a
whole stand approach. When the class width is infinitely small and each
tree is considered a single class, then the method is the single-tree
approach.

The most detailed approach is that of single-tree models which use the
individual tree as the basic unit of modelling. The minimum input required
is a list specifying the size of every tree in the stand. Some models also
require the spatial position of the tree, or tree height and crown class.
Single-tree models may be very complex, modelling branches and internal
stem characteristics, and may be linked to harvesting and conversion
simulators (e.g. Mitchell 1988, Vanclay 1988b).

These three classes of model will be used throughout this book, but
they are only for convenience, and in practice, models form a continuum
from one extreme to another and some do not fit comfortably in any of
these classes.

Two other classes of models are beyond the scope of this book, but
warrant a mention. Process models attempt to model the processes of
growth, taking as input the light, temperature and soil nutrient levels, and
modelling photosynthesis, respiration and the allocation of photosynthates
to roots, stems and leaves (e.g. Landsberg 1986, Mäkelä 1992). These are
also known as mechanistic of physiological models. These models help to
provide a better understanding of growth and stand dynamics, but have not
yet successfully been used for predicting timber yields for forest
management. Ecosystem succession models (e.g. Shugart 1984, Botkin
1993) attempt to model species succession, but are generally unable to
provide reliable information on timber yields. The FORCYTE model
(Kimmins 1988) uses a hybrid approach and can predict forest yields
undera variety of nutrient regimes. These and other approaches are
contrasted in Table 1.1.

It is useful to distinguish between models for understanding and models
for prediction (Bunnell 1989). Models for understanding (e.g. process
models) are useful to comprehend and link previously isolated bits of
knowledge and may help to identify gaps where more work is needed. The
benefits come from the insights gained while developing and exploring the
model, and future uses (if any), are less important. Conversely, models for
prediction may sacrifice specific details of growth processes to achieve
greater efficiency and accuracy in providing information for forest
management. Realism is not necessarily a virtue in a model, and it may be
better to abstract just those aspects that are most relevant in each instance.
This book is concerned mainly with models for prediction, and their use in
forest management.
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Use Resolution Driving variables Example

Empirical models

Atmospheric
studies

Global primary
production

Evapo-
transpiration

Lieth & Box
(1972)

National forest
planning

Stand variables Age, stand
basal area

Clutter (1963)

Regional
planning

Individual trees Tree species
& sizes

Prognosis
(Stage 1973)

Silvicultural
studies

Tree crowns Tree & branch
variables

TASS
(Mitchell 1975)

Silvicultural &
conversion
studies

Wood
characteristics

Branches, ring
width & density

SYLVER
(Mitchell 1988)

Succession & Process models

Ecological
studies

Individual trees Tree species
& sizes

JABOWA
(Botkin 1993)

Nutrient
cycling

Individual trees Trees, nutrients FORCYTE
(Kimmins 1988)

Physiological
studies

Mass of foliage,
branches, roots

Biomass,
photosynthesis,
respiration

Sievänen et al.
(1988)

Table 1.1. Selected models to illustrate different scales and purposes.

Finally, irrespective of its detail, a model may be deterministic or
stochastic. A deterministic growth model gives an estimate of the expected
growth of a forest stand, in the same way that the mean indicates the
expected trend for a population. Given the same initial conditions, a
deterministic model will always predict the same result. However, because
of natural variation in the environment, real forest stands may not grow
exactly the same amount each year, but may grow more or less than the
expected amount.

A stochastic model attempts to illustrate this natural variation by
providing different predictions, each with a specific probability of
occurrence. Any one of these estimates may correspond exactly to the
growth under some circumstances, but may differ from the expected
growth. A single estimate from a stochastic model is of little use, as a
whole series of estimates is necessary to provide useful information of the
variability of predictions. For instance, twenty estimates from a stochastic
model will not only give a good indication of the expected growth (the
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mean or median), but also of its variability. The term "stochastic" is used
in preference to the term "probabilistic", which is sometimes used in other
contexts.

Deterministic and stochastic models serve complementary purposes.
Deterministic models are effective for determining the expected yield, and
may be used to indicate the optimum stand condition. Stochastic models
may indicate the reliability of these predictions, and the risks associated
with any particular regime. Other methods such as variance propagation
techniques (e.g. Gertner 1987a) may provide similar information more
efficiently than stochastic models. Both deterministic and stochastic
predictions can be obtained from some models. Although stochastic models
can provide some useful information not available from deterministic
models, most of the information needs for forest planners and managers can
be provided more efficiently with deterministic models.

Components of a Model
The more detailed approaches of forest stand modelling are not based on
the overall growth of a forest stand, but need to discriminate several growth
components in order to model these processes effectively. The nature of the
components distinguished depends upon the forest type and the approach
used. In mixed forests, an obvious requirement is to discriminate individual
species or several species groups. In models for intensively managed
plantations, mortality and recruitment may frequently be ignored. However
in many natural forests, these form an important aspect of the stand
dynamics, and may have considerable influence on volume yield of the
stand. In addition, the components identified in whole stand models tend
to differ from those of single-tree models.

In size class and single-tree models, the components usually identified
are diameter (or basal area) increment, mortality and recruitment (Fig. 1.4).
Diameter increment is a simple concept and is relatively easy to measure
and to predict. Forecasts of mortality must not only estimate the number of
trees, but also the species and sizes of trees dying. Another aspect of
change to be modelled is the deterioration of merchantable stems, which
can be modelled in the same way as mortality. Recruitment may be
predicted as ingrowth of trees reaching breast height, but some models may
simulate seedlings from germination, while other models may adopt a
larger threshold size such as 10 cm diameter. Each of these components
will be addressed individually in subsequent chapters.
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Fig. 1.4. Components of forest growth and the analogous representation in a
stand growth model.

Choosing a Model

The preceding sections have hinted at several modelling approaches, and
subsequent chapters will demonstrate the diversity of modelling techniques
that have been used. It is appropriate at this stage to give a few guidelines
for critical selection of an appropriate technique.

A map provides a convenient analogy to a growth model. To find your
way with the least inconvenience, you must choose the map with the right
amount of detail for your particular purpose. There is a place for national
route planning maps, for topographic maps, and for urban street directories,
and a map ideal for one application may prove useless in another situation.
Every model is an abstraction of reality and will be wrong in some sense.
Users should remember that all models may be wrong, and that some may
be more useful than others.

The right model to choose is the one that is most useful for your
application, and the choice should be based on your application and on your
resources. It is the end use that finally determines the best approach for
modelling forest stands. Some applications which may require growth
models include site evaluation, testing hypotheses of growth, estimating
expected yields, examining variability of yield, exploring silvicultural
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options, establishing optimal management regimes, investigating effects of
constraints on management, and evaluating the timber quality (cf. Figs 1.1
and 1.2). These and other applications each may require a different
approach to growth modelling. No single model can serve all these needs,
and all demand different qualities of a model, but some general guidelines
can be given.

A model should provide information that is sufficiently accurate and
detailed to suit the intended purpose. Flexibility to accommodate a range
of stand conditions and management options may be an important quality.
It should be possible to provide estimates for a range of time horizons and
to indicate species and size class combinations. Optimization studies may
require that functions are continuous in the first derivative of key response
variables (e.g. the diameter increment function should be smooth, not
stepped) and provide reasonable extrapolations. Models which are
unnecessarily complicated may incur several costs: greater computational
costs, loss in precision of estimates, and difficulty in understanding and
assessing the utility of the model. Intending users should ask:

1. Does the approach make sense?
2. Will the model work for my application and input data?
3. What range of data was used to develop the model?
4. Do model assumptions and inferences apply to my situation?
5. What confidence can I place in model predictions?
6. Be sceptical and demand proof !

Buchman and Shifley (1983) offered a more detailed checklist to help
potential users assess the suitability of a growth model for a stated
application; key items include ease of use, accuracy of predictions and
biological realism.

Both simple and sophisticated models have their place. The appropriate
approach depends upon the data, facilities and expertise available. What is
important is what you do with the model. A sophisticated model is of no
benefit if it is not used, while a very simple model may be of great benefit
if it leads to better forest management. Thus the model should be objective,
unbiased, documented and available. Users should understand how the
model was derived, and should appreciate its strengths and weaknesses.

Examples

The book does not delve into specific details of models, and readers who
wish to explore intimate details of models discussed here should consult the
references cited. Apart from some superficial coverage of plantation
models, most forest mensuration texts give few details of growth
modelling, and the best source of reference may be recent conference
proceedings (e.g. Ek et al. 1988, Pinto da Costa and Preuhsler 1994), a sign
of the rapid developments occurring in this field.
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Two well documented growth models that are widely used in north
America are STEMS (Leary 1979, Belcher et al. 1982) and Prognosis
(Stage 1973, Wykoff et al. 1982, Wykoff 1986). Good introductory and
reference manuals are available freely, in English, for both of these models.

In this book, we will study the NORM (North Queensland Rainforest
Management) model in some detail. This model provides a good case study
because the north Queensland rainforests comprise several hundred tree
species, including over one hundred of commercial importance. The
original model was used to provide information for management and
planning in the tropical rainforests of Queensland, Australia (e.g. Vanclay
and Preston 1989), and variants now exist for all indigenous forests
(managed for timber production) in Queensland. A brief overview of the
use and capabilities of the NORM model is given here in the introduction,
because it is important that modellers do not loose sight of their objective:
for management-oriented models, this should be their use in forest
management. Readers should keep this objective in mind while reviewing
the possible modelling methodologies presented in the next three chapters.

The NORM model includes a growth sub-model (with equations to
estimate diameter increment, mortality and recruitment) developed from
permanent plot data, and a harvesting sub-model based on logging studies.
These sub-models effectively summarize a mass of research and monitoring
data and make it available for use by others (cf. Fig. 1.1, p. 2). The
construction of these models is examined in detail in this book, but many
users with only a general understanding of the models use them to examine
the silvicultural alternatives. The model is generally used in conjunction
with a forest resource database (comprising geographic information and
static inventory data) to explore management options and examine short-
and long-term simulations of future timber harvests (cf. Fig. 1.2, p. 3).
Most applications rely on simulations at the management unit (or
homogeneous sub-unit) level, and inventory data are required for each of
these management sub-units. By repeatedly simulating the growth and
harvesting of each individual plot and aggregating these results for each
unit, future yields can be estimated for part of all of the forest resource.

Table 1.2 (overleaf) illustrates some of the forecasts possible from this
model, including details of future harvests and an indication of the impact
on the residual forest. The regional average stand basal area and
merchantable volumes fluctuate and fall to a minimum (36 m ha  and 182 !1

m ha  respectively) after about 100 years, but later stabilize at levels near3 !1

the present values. This indicates that the simulated harvest does not
deplete forest reserves, but may be sustainable. Several statistics
concerning the simulated harvests further support the contention that the
harvest is sustainable. The harvested volume declines to critical levels (13
m ha  is near the limit for commercial viability) after 100 years, but3 !1

subsequently recovers. The average stem size of harvested trees remains
relatively constant (2.7–3.0 m ), but the proportion (by volume) contributed3

by trees over 100 cm diameter falls to 1%, while the bulk of the volume
derives from trees 60–100 cm in diameter. The harvest continues to be
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Period
beginning

Regional average Average characteristics of simulated harvest

Basal
area

m ha2 !1

Merch.
volume
m ha3 !1

Harvest
volume
m ha3 !1

Stem
size
m3

Size dist.
–60–100–

cm dbh

Main species†
in harvest %

1990
2037
2077
2119
2166
2201
2231
2253
2290

40
38
37
36
36
37
38
39
40

24
20
25
29
23
18
19
21
26

18.9
18.0
18.8
17.5
14.7
13.4
13.3
14.4
17.3

2.9
2.8
3.0
3.0
2.8
2.7
2.7
2.8
2.8

10:75:14
10:87: 3
 8:90: 2
 8:90: 2
11:86: 3
13:84: 2
13:85: 1
13:86: 1
14:86: 1

Y 21, M 13
S 22, M 14
S 21, M 16
S 20, M 17
M 17, N 17
M 21, N 16
M 22, Q 21
Q 22, M 19
Q 23, M 19

† M: maple silkwood (Flindersia pimenteliana), N: northern silky oak
(Cardwellia sublimis), Q: Queensland maple (F. brayleyana), S: silver ash
(F. bourjotiana), Y: yellow walnut (Beilschmiedia bancroftii).

Table 1.2. Predictions by the NORM model of future timber harvests from a a
Queensland rainforest, illustrating one application and some
capabilities of growth models (from Vanclay and Preston 1989).

dominated by Cardwellia sublimis and Flindersia species, which have
traditionally been an important component of the timber harvest in this
area.

Table 1.2 is a condensed summary of simulation outputs, but indicates
the nature and utility of information available from growth models. Such
analyses require sophisticated computer systems, but useful forecasts also
can be made with more simplistic approaches (e.g. Mendoza and Gumpal
1987).

Growth models offer forest managers a powerful analytical tool to
investigate quickly and efficiently, the response of the forest to various
management regimes. They allow foresters to determine a regime that
should maximize volume or value production, or maximize the production
of a particular product. It also enables them to determine the effect of a
revised harvest programme to exploit a change in demand. They can
investigate effects of many constraints on forest operations, and their effect
on yields. But the most powerful feature is the ability of the model to assist
managers to make reliable long-term forecasts, so that they can make long-
term commitments to the capital intensive wood processing industry, secure
in the knowledge that the forest will not be over-exploited.
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In the next few chapters, we will survey the different growth modelling
approaches applicable to uneven-aged mixed-species stands, and consider
their merits, before we move on to examine how to construct a suitable
model.

Exercises

1.1. List people or groups (at least 5) in your organization who could use
a growth model. State how they might use it and how it could help them to
work more effectively. What special needs would these potential users
have, and how might you ask a modeller to customize a model to satisfy
their needs. What impacts would this have on forest management practices
(Think about improved silviculture, efficiency, cost savings)? Does your
organization have a growth model; if so, does it meet these needs? Do you
think these potential benefits justify the development of a growth model (or
a better one if one already exists)?

1.2. Clutter (1980) suggested that many people have little basis for their
choice of growth model or modelling methodology. He suggested several
common fallacies that are wrongly used as selection criteria:

1. Among the models existing at any point in time for a particular forest type,
there is one, and only one, best model and all other models are inferior to it.
2. Complexity is desirable for its own sake.
3. Model quality is directly proportional to the amount of computer time
required to run the model.
4. Nonlinear models are inherently superior to linear models.
5. Models written in APL are superior to . . . models written in Fortran, which
are, in turn, superior to models written in Basic.
6. Models which do not require a computer for their implementation are the
most inferior of all and are unworthy of discussion.
7. Stochastic models are intellectually preferable to and aesthetically superior
to deterministic models.

Discuss why these fallacies do not provide a suitable basis for model
selection. Give seven criteria that do form a good basis for choosing a
model.
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Chapter Two

Whole Stand Models

We begin our survey of growth modelling approaches by looking at the
traditional yield table, one of the oldest ways to predict forest growth and
yield. We continue our survey through other whole stand approaches of
increasing complexity and sophistication, and in subsequent chapters will
look at size class, single-tree and other ways to model a forest stand in
more detail.

Whole stand models are those growth and yield models in which the
basic units of modelling are stand parameters such as basal area, stocking,
stand volume and parameters characterizing the diameter distribution. They
require relatively little information to simulate the growth of a stand, but
consequently yield rather general information about the future stand. This
chapter examines several such modelling approaches ranging from simple
yield tables to sophisticated methods for predicting future diameter
distributions.

Growth and Yield Tables

Yield tables are summaries of expected yields tabulated by stand age, site
index, etc. (e.g. Fig. 1.3, p. 5). Growth tables are a variation more suited to
uneven-aged stands, and tabulate expected growth according to various
stand characteristics. Although these techniques are infrequently used in
natural forests, they continue to be important in plantation management. It
is appropriate to begin with a brief overview of yield tables, as they
provided the foundations for forest growth modelling and demonstrate
several important concepts.
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Yield Tables

A yield table presents the anticipated yields from an even-aged stand at
various ages, and is one of the oldest approaches to yield estimation. The
concept was apparently first applied in the Chinese "Lung Ch'uan codes"
some 350 years ago (Vuokila 1965). The technique as we know it today
was devised in Europe in the eighteenth century. The first yield tables were
published in Germany in 1787, and within a hundred years over a thousand
yield tables had been published. Modern yield tables often include not only
yield, but also stand height, mean diameter, number of stems, stand basal
area and current and mean annual volume increments. Two classes of yield
tables are distinguished, normal and variable density yield tables. In reality,
these do not form discrete classes, but rather reflect a continuum from
normal yield tables, through variable density yield tables and other
approaches, to single-tree growth models (e.g. Leary 1991).

Normal yield tables provide estimates of expected yields tabulated by
stand age and site index for ideal, fully stocked or "normal" forest stands.
These were usually based on data derived from stem analyses and
temporary plots, analyzed using graphical techniques. Vuokila (1965) and
Spurr (1952) discussed the various approaches used in Europe and North
America for the construction of yield tables. Yields were generally
tabulated by age and site index, but could also be presented as alignment
charts (e.g. Reineke 1927, Hamilton 1988). Normal yield tables may
provide reliable estimates of potential yields for even-aged stands similar
in character to those used in developing the table, but may be less
satisfactory for natural stands where age may vary considerably within
stands.

More sophisticated calculation and analytical techniques enabled
additional variables to be included in yield calculations. Stand density was
an obvious choice for a third variable as it enables data from partially
stocked plots to be used and means that the yield table can be applied to
any stand. Many variable density yield tables have been published, and
recent examples include Edwards and Christie's (1981) tables for
plantations in Britain. These tables give height, stems per hectare, mean
diameter, stand basal area, mean stem volume, volume per hectare, mean
annual and cumulative volume production at five year intervals for many
species-site-management regime combinations.

The approach has also been applied to mixed stands, especially for
selection forests in central Europe. There are several ways to build compact
tables for natural forests. The basal area of the dominant species may be
expressed as a percentage of total stand basal area in mixed forests (e.g.
MacKinney et al. 1937), and a "main stand" may be identified in uneven-
aged forests (e.g. Duerr and Gevorkiantz 1938).
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Growth Tables and Percentages

Yield tables usually require some estimate of stand age, and thus cannot
easily be applied to uneven-aged stands. Growth tables attempt to overcome
this limitation by tabulating growth under various stand conditions.
Variables other than age used to characterize stands for growth prediction
include volume, density, height, average diameter and crown class. These
variables were often used in conjunction with estimates of site productivity
and time since logging.

Expected growth can be tabulated more compactly if expressed as a
percentage rather than in absolute terms, and several formulae for growth
percentages have been proposed. Formulae indicating percentage growth
of tree diameters and stand basal areas have been used for many years to
estimate growth in pure even-aged stands (e.g. Schneider 1853). Growth
percentages can also be applied directly to estimates of stand volume to
predict volume increment per hectare. Other formulae exist for predicting
sustainable yields from normal forests.

The simplicity of these formulae is attractive, but is also a limitation.
Some formulae may not account for mortality, especially if applied to
individual trees. There are many alternative formulae, all with different
assumptions and limitations, but the compound interest formula may be the
most satisfactory for general growth predictions (e.g. Rudolf 1930).
However, the method is unreliable and may be very deceptive (e.g.
Wahlenberg 1941). Although some of these formulae may give reasonable
estimates of short-term increment in stands for which they were derived,
it is inevitable that percentages must decline in the longer term.

All these methods (including growth and yield tables) suffer inherent
weaknesses including subjective bias and inability to extrapolate for long
periods or to other stands. Whilst these methods may give a rough
indication of growth where data and computing resources are limited, better
methods are available and should be used where resources permit.

Growth and Yield Equations

Conceptually, the distinction between tables and equations is unimportant
as equations can be evaluated and presented as tables. However, the
converse does not hold, and equations are a concise and convenient way to
express growth and yield relationships.

Growth and yield equations may be developed from data that do not
identify the individual trees. Thus growth may be determined as the
difference in total plot volume (or basal area) at two remeasurements, and
not directly from individual tree data. Such estimates may be satisfactory
where all trees are present at both measures, but where there is recruitment
or mortality it may be difficult to reconcile successive remeasures.
Calculations usually assume that trees do not change rank (i.e. the 2nd

largest tree always remains 2  largest, etc.). This assumption is rarelynd
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satisfactory, and it is always preferable to use data in which the individual
trees are identified.

It is useful to begin with some definitions to clarify some concepts of
1 2growth (e.g. Husch et al. 1982). Define V  and V  as the live stand volume

m cat measurements 1 and 2 respectively, V  as mortality volume, V  as
iharvested (cut) volume and V  as ingrowth volume. Growth may be defined

n 2 1 c as net growth )V = V !V +V , or as net growth of initial volume
ni n i )V = )V !V . If the threshold for recruitment is sufficiently small, the

difference between net growth and net growth or initial volume will be
i ni n negligible (i.e. V 6 0 and )V . )V ). Gross growth is obtained by adding

m n ni mortality (V ) to net growth ()V  or )V ). Survivor growth is the growth
on those trees that were alive at both measures. Gross growth may also be
called accretion, and equals survivor growth plus the growth on trees that
died between the two measures, plus recruitment. These definitions also
apply to stand basal area and other stand parameters. Note that survivor
growth is not the same as net growth of initial volume, because it does not
deduct the volume lost through mortality.

The distinction between survivor growth and accretion is important in
whole stand models because it affects the modelling of mortality. If the
growth model predicts accretion then mortality must be predicted
explicitly, whereas if the model predicts survivor growth then mortality has
been already taken into account.

Empirical Yield Equations

MacKinney and Chaiken (1939) published one of the first yield equations
fitted by linear regression. Their equation was based on the hypothesis that
relative growth rate varies inversely with age (MV/V % t ), thus that!2 

0 1 0lnV = $ !$ t . This equation contains two parameters, one ($ ) which!1

defines the upper asymptote (i.e. volume at end of the rotation), and one
1($ ) which determines the rate of growth. They assumed that these

parameters were simple linear functions of site index and stand density.
The equation was subsequently used in many other models. Desirable
features of this model include (Clutter 1963):

1. The mathematical form of the variates implies relationships which agree with
biological concepts of even-aged stand development (Schumacher 1939).
2. The use of ln V as the response variable rather than V will generally be more
compatible with the statistical assumptions customarily made in linear regression
analysis (linearity, normality, additivity and homogeneity of variance).
3. The use of ln V  as the response variable is a convenient way to express
mathematically the interactions of the explanatory variables in their effect on V.
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Fig. 2.1. Yield predictions for logged dipterocarp forest, with site quality
25 m (drawn from Equation 2.1).

Such equations have not been used much in mixed forests, but Mendoza
and Gumpal (1987) predicted yield of dipterocarps in the Philippines with
an empirical function of initial basal area, site quality and time since
logging (Fig. 2.1):

(2.1)

twhere V  is timber yield (m ha , 15+ cm dbh), t years after logging (t > 0),3 !1

0G  is residual basal area (m ha ) of dipterocarps (15+ cm dbh) after2 !1

hlogging, and S  is site quality (m) estimated as the average total height of
residual dipterocarp trees (50–80 cm diameter). Whilst this equation cannot
be extrapolated for long periods (or for t 6 0) or to other situations, it was
useful for estimating the time to and volume yield of the next harvest, given
the residual stand after the previous harvest.

Empirical Growth Equations

Yield equations have a limitation that assume a prescribed management
regime throughout the period of projection. Growth equations have an
advantage that harvesting or any other silvicultural treatment may be
simulated at any time during the projection.
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Buell (1945) estimated growth of uneven-aged mixed stands by
classifying stands according to species composition and silvicultural
history, and combining species into four groups according to their potential
growth rate and stem form. He assumed that volume increment of a single
tree could be expressed as a quadratic equation in diameter,

and that the volume increment of the stand was the sum of the individual
increments

where N is stems per hectare, and d is tree diameter.
Nelson (1963) argued that stand basal area increment ()G ) of even-

aged stands decreased asymptotically with age (t), increased with site index
h,t (S , the height at a nominated index age) and decreased as the stand basal

area (G ) diverged from the optimum. This led him to propose a quadratic
function in basal area which also included site index and age. The
statistically significant terms were:

Another equation with a similar shape was used by Vanclay (1988a) for
uneven-aged cypress pine (Callitris spp.) stands in Queensland:

(2.2)

where )G is stand basal area increment (m ha y ), G is stand basal area2 !1 !1

h,d(m ha ) and S  is site form (m), an estimate of site productivity based on2 !1

the height–diameter relationship. This equation was deliberately formulated
to provide sensible predictions for extreme values of stand basal area
(Fig. 2.2).

Many other stand growth equations have been published, and no
attempt is made to review them all. These three have been selected to
illustrate some aspects involved in formulating robust equations that
extrapolate safely.

Compatible Growth and Yield Equations

Some analyses fail to exploit the relationship existing between growth and
yield and this may lead to instances where estimates of yield (e.g. from
yield tables) differ from successive summations of growth estimates based
on the same data. Buckman (1962) and Clutter (1963) are usually credited
as the first to publish forest growth and yield equations explicitly
formulated to give consistent estimates of growth and yield, but many
researchers have been aware of this relationship for a long time (e.g.
Bertalanffy 1941, 1949).
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Fig. 2.2. Basal area increment curves for Callitris stands in south-eastern
Queensland (drawn from Equation 2.2).

Clutter (1963) adapted the equation proposed by Schumacher (1939):

where V and G are stand volume and basal area at age t years respectively,
h,tand S  is site index. This equation can be differentiated to give the growth

equation (assuming that site index is constant):

Clutter expressed basal area as a differentiable yield function in age and
site index, so that basal area increment (dG/dt) could be estimated from
stand basal area, age and site index. This led to five compatible equations
which could be used to derive estimates of present standing volume, basal
area increment, volume growth, predicted future basal area and predicted
volume yield. Sullivan and Clutter (1972) refined this equation to provide
numerically consistent estimates of growth and yield from initial stand age,
basal area, site index and future age. Burkhart and Sprinz (1984) presented
a method for simultaneously estimating the parameters in the Sullivan-
Clutter approach.
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The Schumacher-Clutter equation has been dealt with in some detail
because it is an important example illustrating some concepts of model
formulation. By thinking about growth processes, formulating an
hypothesis, and constructing an equation on this basis, Schumacher (1939)
devised a growth and yield model that has proved to be useful, reliable and
widely used for many pure even-aged stands. Fifty years of research and
development resulted in better ways to estimate the parameters in the
equation, but the basic equation remains unaltered, indicating the quality
of the original work. This approach of "think, hypothesize and formulate
accordingly" is the way that all growth models should be constructed.

Theoretical Equations

The Bertalanffy (also known as the Chapman-Richards equation, see
Chapter 6) and several similar equations (see e.g. Zeide 1989, 1993) can be
expressed as growth or yield equations in the same manner as the
compatible growth and yield equations discussed above. However, they are
sometimes thought to be superior to empirical equations as they are
supposedly biologically based. The supposed biological basis is doubtful
(see Chapter 6), but these equations have other merits.

Many models incorporating these equations have been published, and
we examine just one study in an uneven-aged stand. Moser and Hall (1969)

0described stand volume as an allometric function of basal area (V = $ G ),1  $

predicted basal area increment from stand basal area using the Bertalanffy
2 4equation ()G = $ G !$ G ), and thus could estimate volume increment as:3 $

Yield estimates may be obtained by integrating the basal area increment
function, and substituting for volume. Thus the cumulative volume growth
over any specified period of time can be estimated. This approach leads to
compatible growth and yield equations for both basal area and volume.
Although it takes no account of site, this equation has been used in many
growth and yield studies in uneven-aged stands (e.g. Murphy and Farrar
1982, with Pinus taeda–P. echinata stands).

Systems of Equations

A better understanding of growth in uneven-aged stands may be obtained
if components of growth are individually identified and expressed
collectively as a system of equations to predict stand growth.

Furnival and Wilson (1971) developed a growth and yield model as a
system of equations and solved all the coefficients using simultaneous
estimation. They formulated their yield model for white pine stands as the
following system:

(2.3)

(2.4)
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(2.5)

(2.6)

(2.7)

(2.8)

where V is volume (m ha ), &h  is mean tree height (m), t is average main3 !1

gstand age at breast height, G is basal area (m ha ), d  is the diameter (cm2 !1

dbh) of the tree of mean basal area, N is number of trees (ha ), f is the form!1

factor, and k is a constant (B/40 000). Equation 2.4 is Reineke's (1933)
stand density equation, and Equation 2.7 is the identity defining stand basal
area.

Equations 2.3–2.5 were differenced to obtain the growth formulation.
Of three estimation techniques considered (direct, 2-stage and 3-stage least
squares), three stage least squares used in conjunction with the growth
formulation gave the smallest overall standard errors of estimation. This
"systems formulation" allows a variance-covariance matrix to be produced
and can be used to estimate standard errors of predicted growth and yields.

This example has some limitations. Equation 2.7 is an identity, and 2.8
is effectively exact, but Equations 2.3 to 2.6 are approximations that are not
entirely realistic. For example, Equation 2.4 accommodates only mortality
due to limiting competition, and does not account for other sources of
mortality. However, it remains one of the few examples of the simultaneous
estimation of a system of equations for a whole stand model. Some other
examples were discussed by Borders (1989).

More Detailed Whole Stand Approaches

Some of the models discussed above provide rather limited information
about the forest stand (in some cases only stand volume) but effective
management and planning also require information about sizes and species
contributing to this stand volume. An early solution to this problem was to
include stand or stock tables in published yield tables. Some yield tables
were presented as alignment charts and included additional axes indicating
average and minimum stem sizes as well as other information regarding the
dimensions of the crop. A remarkable example of this is Reineke's (1927)
"composite chart" which concisely expresses relationships between age,
dominant height, average dbh, basal area, stocking and total volume under
bark for three stand fractions (dominant trees, trees over 10 cm dbh, and
trees over 17 cm dbh). The same concept may be applied in computer-based
models, and here we consider three types of whole stand model which
estimate the size distribution and other details of trees in the stand.
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Whole-stand Distribution Models

Instead of simply predicting volume or stand basal area, a growth model
may reveal some aspects of stand structure by estimating the diameter
distribution. Many probability density functions (p.d.f.s) can be used to
describe the stand diameter distribution; the Gram-Charlier (e.g. Meyer
1930), Beta (e.g. Prodan 1953), Weibull (e.g. Bailey and Dell 1973) and

BJohnson's S  (e.g. Hafley and Schreuder 1977) distributions have all proved
Buseful in this regard. The Weibull and S  distributions seem to be the most

appropriate for even-aged forest stands (Gadow 1984).
Bailey and Dell (1973) and Schreuder and Swank (1974) demonstrated

that diameter distributions in many even-aged forest stands can be
quantified by the Weibull (1951) distribution (Fig. 2.3, overleaf):

(2.9)

Since height and volume can be expressed as an allometric function of
diameter, they are distributed according to the Weibull distribution whose
parameters are given by a simple transformation of the parameters
describing the diameter distribution (Stacey and Mihram 1965).

There are two ways that these distributions can be estimated within in
a whole stand model:

1. The parameters of future size distributions (e.g. the values of ", $ and
( in Equation 2.9 above) may be predicted from existing parameters and
other stand variables. This is known as the parameter prediction approach,
because the parameters of the p.d.f. are predicted directly. Future values of
stand parameters such as basal areas and volumes can be estimated from the
predicted p.d.f. by integration.
2. The parameters of the size distribution at any time t may be estimated
in terms of stand variables (e.g. stem number, mean diameter, basal area)
at time t, and forecasts can be made by estimating future values of these
stand variables. This is known as the parameter recovery approach because
the parameters of the p.d.f. are recovered by matching the moments of the
p.d.f. to estimated stand level variables. The parameter recovery approach
has been found to give better results than the parameter prediction method
(Reynolds et al. 1988).

Hyink and Moser (1979) used the Weibull distribution and the parameter
prediction approach to model the yield of an uneven-aged forest. They
noted that given the total number of trees, a diameter distribution, and some
function g(x) of diameter, the definite integral of the product of the function
g(x) and the distribution could predict stand characteristics corresponding
to the function g(x) for any component of the stand. Thus the diameter
distribution could provide estimates of top height, mean height, total
volume and merchantable volume removed in harvesting. They assumed
that the distribution could be adequately represented by the three parameter
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Fig. 2.3. Possible diameter distributions generated by the Weibull p.d.f.
(Eqn 2.9), showing the influence of each parameter (Table 2.1) on
the shape of the distribution.

Weibull distribution, and that growth of the stand could be accommodated
by changing these parameters. Of these three parameters, Hyink and Moser
(1979) assumed that the location parameter (() was a constant 17 cm dbh,
the lower limit of measurement; leaving the scale (") and shape ($)
parameters, and the number of trees to be determined. They predicted these
with empirical functions:

i mwhere N is stems per hectare, N  is recruitment at 17 cm dbh, N  is
<21mortality, Ed is the sum of diameters, Ed  is the sum of diameters less

than 21 cm, and " and $ are the scale and shape parameters of the Weibull
distribution respectively. The method may be adapted for mixed stands by
using several sets of equations, one set for each species (e.g. Lynch and
Moser 1986, Bowling et al. 1989).
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Example
Parameters of the Weibull function

" $ (

a
b
c
d
e
f

 4
 4
 4
 4
 8
18

0.95
1.6
3.6
3.6
3.6

18.0

0
0
0
8
4
0

Table 2.1. Coefficients for Weibull distributions in Fig. 2.3.

The approach makes more sense if the reader realizes that the parameter
" is approximately equal to the stand median diameter, and $ indicates the
skewness of the diameter distribution. When $ = 3.6, the distribution is
approximately normal and symmetrical. As $ 6 1, the distribution becomes
skewed, with the mode (i.e. the highest point) moving left and a long tail
forming on the right (Fig. 2.3). Similarly, as $ increases (and $ > 3.6), the
distribution mode moves right and a long tail forms on the left. When $
becomes very large or small, the variance of the distribution decreases.

The parameter recovery approach may offer a more robust alternative.
The parameters of the distribution are predicted indirectly by matching the
moments of the distribution to predicted stand attributes such as stand basal
area and mean diameter. This approach is an efficient way to estimate the
parameters of the Weibull distribution (e.g. Reynolds et al. 1988), but
computational difficulties may be intractable with other distributions such

Bas Johnson's S .
The utility of both methods depends on the ability of the Weibull

distribution to characterize the diameter distribution adequately. Although
the Weibull distribution can describe a great variety of shapes (e.g. Krug
et al. 1984, Rennolls et al. 1985; Fig. 2.3), it is always uni-modal, and thus
may not be suitable for all stands irrespective of species composition and

Bsilvicultural regime. The S  distribution is more flexible and can represent
some bi-modal distributions, but cannot readily be fitted using the
parameter recovery approach. Multi-modal stands could possibly be
accommodated by using a series of distribution functions, but this becomes
rather complex and it may be better to adopt a size class or tree list
approach for such stands.

Users should not expect a whole-stand diameter-distribution model
always to give reliable information at the individual tree level. A model
which gives satisfactory predictions at the stand level, may give unreliable
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predictions for some individual trees, especially for the largest or smallest
individuals in the stand. When successive diameter distributions are
estimated, they normally imply reasonable growth for most of the trees
comprising the stand, but there may be some exceptions, and users should
be warned that precision deteriorates if they disaggregate estimates to
individual trees or size classes over short periods.

State Space Models

García (1984, 1994) used a state space approach to model plantations. The
stand is represented by a few state variables, usually stand basal area,
number of trees per hectare and top height. It is assumed that these state
variables summarize the historical events affecting the future development
of the stand, and thus that future states can be determined by the current
state and future actions, and that other variables of interest, such as volume,
can be derived from these state variables. This assumption is critical to this
and several other modelling approaches and requires that two conditions be
satisfied. The state variables must adequately describe the composition and
structure of a forest stand, and should reflect all past silvicultural events,
so that growth predictions do not need estimates of stand age, time since
thinning, etc. These assumptions imply that growth predictions can be
made simply by updating these few state variables.

These assumptions allow the system to be described by the specified
state variables and a few simple transition functions (García 1994). Let the
state at time t be specified by a list of n state variables represented as an
n-dimensional state vector x(t). The inputs and outputs are also finite-
dimensional vectors u(t) and y(t) respectively. Then the behaviour of the
system is described by a transition function

(2.10)

and an output function

(2.11)

Equation 2.10 gives the state at any time t as a function of the state at some
0 other time t , of the inputs denoted by U, and of the elapsed time between

0t  and t. The output function (2.11) estimates outputs as a function of the
current state (e.g. it might predict volume from number of trees, stand basal
area and top height).

A transition function must possess three properties:

1. There should be no change for zero elapsed time:

  for all t, x(t), U.
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0 1 12. The result of projecting the state first from t  to t , and then from t  to
2 0 2t , must be the same as that of the one-step projection from t  to t :

0 1 2   for any t # t # t .

3. A change of state can be caused only by inputs within the relevant time
interval, and not events at other times:

0 1 1 2  if u (t) = u (t), for t # t # t .

Transition functions generated by integration or differential equations
automatically satisfy these conditions, so that the model can be stated:

(2.12)

The state-space approach avoids the need to model directly the complex
relationship over time between inputs and outputs, by describing the state
of the system at a point in time and modelling the rate of change of state
(Equation 2.12)

García (1984) used a multi-variate generalization of the Bertalanffy
function in his state-space model for Pinus radiata plantations. The uni-
variate Bertalanffy equation can be expressed as a linear differential
equation with a power transformation of the state variable. For example, for
site index curves,

Twhere h  is the state variable top height and ", $ and ( are parameters to be
estimated. The multi-variate generalization can be expressed:

with x  defined as x = e , where x is an n-dimensional state vector and( ( (  ln x    

", ( and $ are n-dimensional matrices and vectors of parameters. García
(1984) found that ( was independent of site index, and that " and $
changed by a constant factor with site index. Thus site index acted like a
change in the time scale (i.e. growth is faster, but follows the same pattern),
and could be accommodated in the model by putting J = 0t in place of t.
However, this response with site index may not apply to all localities.

Although this approach gave good predictions and provided an
effective framework for a series of plantation growth models, it offers less
utility for mixed forests. Adapting the approach for mixed forests may be
complex, as it is unrealistic to assume that mixed forests could be described
adequately with only three state variables.
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Fig. 2.4. Vector field illustrating a 2-dimensional state-space model. Line
segments show annual growth for each stand condition. Trajectories
trace development of 4 stands with different thinning regimes (after
García 1994).

García (1994) offered a nice example of a two-dimensional state-space
model, based on basal area increment and height–age equations of Clutter
(1963) and Clutter and Lenhart (1968) respectively. Reformatted (and
converted to metric units) as transition functions of current state, these
equations become:

(2.13)

(2.14)

Twhere h  is top height (m) and G is stand basal area (m ha ). These2 !1

functions are illustrated as a vector field in Fig. 2.4. Line segments
illustrate one year's growth for each stand condition (but note that those in
the top left of the figure are unattainable). Without intervention, a stand
will develop in the direction indicated by these line segments. The
trajectories illustrate the predicted development of a stand which is 2.5 m
high with 2 m ha  basal area at age 5. Trajectory (a) illustrates the2 !1

undisturbed development, while (b – d) are thinned to half the initial basal
area after 5, 10 and 25 years respectively. The ticks (+) on the trajectories
mark annual intervals.
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Fig. 2.5. Markov chain representation of a model based on Equations 2.13
and 2.14. Arrows indicate transition probabilities.

Whole-stand Transition Matrices

Markov chains provide a concise way to summarize the behaviour of a
system, and may be used to model forest growth. We are concerned here
with the whole-stand implementation, not the size class approach which is
discussed in the next chapter. Here, states of the chain typically reflect
stand density or species composition of the whole stand.

1 2 n Consider a hypothetical system S, with n distinct states S , S , . . ., S .

i If the system starts in state S , then in a single time interval, it has

ij j ijprobability P  of moving to state S . Provided that these P  depend only on

ithe current state S  and not on any historic events, these probabilities can be
expressed in a square matrix, termed the transition probability matrix or
stationary Markov chain. This is a very concise way to summarize the
behaviour of a system, but does little to help understand it. The basic
assumptions are similar to those of the state-space approach, but the method

1 2 n uses a finite number of discrete classes (S , S , . . ., S ) rather than several
continuous variables to indicate the state of the system. Instead of transition
functions, this approach uses transition probabilities. Two nice features of
these matrices are (i) that it is easy to determine the future state of the
system by multiplying by the matrix (but only for multiples of the time
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Matrix corresponding to Markov chain in Fig. 2.5:

0.745 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0†

0.114 0.884 0.0  0.0  0.0  0.0  0.0  0.0  0.0 

0.0  0.053 0.980 0.0  0.0  0.0  0.0  0.0  0.0 

0.122 0.0  0.0  0.736 0.0  0.0  0.0  0.0  0.0 

0.019 0.059 0.0  0.113 0.882 0.0  0.0  0.0  0.0 

0.0  0.004 0.020 0.0  0.053 0.980 0.0  0.0  0.0 

0.0  0.0  0.0  0.131 0.0  0.0  0.867 0.0  0.0 

0.0  0.0  0.0  0.020 0.061 0.0  0.133 0.943 0.0 

0.0  0.0  0.0  0.0  0.004 0.020 0.0  0.057 1.0†

Steady state derived after exchanging the two entries marked (†):

0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066

0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065

0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176

0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030

0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073

0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384

0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030

0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159 0.159

0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017

Fig. 2.6. Markov matrix representation of the Markov chain in Fig. 2.5, and
its steady state.

interval), and (ii) that the steady state (i.e. the long-term equilibrium) of the
system can may be determined by repeatedly squaring the matrix.

Figure 2.5 illustrates a simple 9-state Markov chain derived from
Equations 2.13 and 2.14 (cf. Fig. 2.4). The comparatively low transition

1–5probabilities on the diagonals (e.g. P ) are due to the simplistic
assumption that within any state, a stand is equally likely to have any of
properties (i.e. basal area and height) defining the state. Figure 2.6 presents
the same data as a Markov matrix. Note that the entries represent the
probability of moving from column to row. Thus the entry 0.114 represents
the probability of moving from state 1 (column 1) to state 2 (row 2; cf.
Fig. 2.5). Notice that state 9 is an absorbing state, and that there is no
movement out of this state. Since state 9 is the only absorbing state, the
steady state will indicate state 9 with probability 1.0 (try it, by repeatedly
squaring the matrix). Swapping the two entries labelled † in Fig. 2.6,
assumes that stands are clearfelled and replanted after reaching state 9
(h $ 20 m, G $ 30 m ha ). The steady state then indicates that 38% of the2 !1

forest will be in state 6, and that 1.7% will be clearfelled and replanted each
year. Notice that the present condition of the forest has no bearing on the
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steady state; after sufficient cycles the same steady state will be reached
from any starting point.

Hool (1966) used this approach to predict the behaviour of an even-
aged mixed forest under certain management regimes. He defined

ksilvicultural activities A  (e.g. thinning), which take the system from the

i j ij k state S  to state S  with probability P A . With each activity induced

ij k itransition there is an associated revenue R A , and each state S  has an

i associated value V . By valuing each state and activity, Hool (1966) could
determine optimum thinning schedules. He used a two year transition
interval, and identified 36 states based on silvicultural history
(thinned/unthinned), standing volume (6 volume classes each 40 m ha )3 !1

and stocking (3 classes each 170 stems ha ). He considered three activities,!1

undisturbed growth (over the two year transition interval), thinning and
harvesting. Hool did not explain the development of these matrices, but was
concerned with applications of the approach, and with recommendations
for management of forests in Indiana (USA). He showed that the mean
transition time in any state was 2.4 to 3.8 years, depending on the state, and
that if left undisturbed, the woodlands would remain in one of three states
with about 200 m ha  in 180 stems ha  with probability 0.86.3 !1 !1

Binkley (1980) used whole-stand transition matrices to examine
succession in forest stands. The states of his matrix indicated the dominant
species on each plot. His analysis suggested that assumptions inherent in
the method were untenable (see next chapter), and that transition matrices
were not a reliable way to predict forest stand dynamics. These assumptions
and other limitations mean that Markov chains should be used only with
caution, especially for examining ecological problems (e.g. Jeffers 1978).

Synthesis

Whole stand models have been very useful for modelling plantations, but
they appear of limited utility for mixed forests, where the number of
species and the potential for multi-modal size distributions creates
difficulties in characterizing the stand with few stand-level variables.

Although this class of models does not appear particularly useful for
modelling mixed forests, many of the concepts are important and applicable
more widely. In particular, the transition function which forms the basis of
the state-space modelling approach (p. 26), is an important concept that
recurs in many alternative approaches more suited to mixed forests.
Similarly, the concepts of the Markov chain (p. 29) will recur in the next
chapter.

You should have noticed that the many alternative modelling
approaches form a continuum rather than discrete classes, and that the
classification of models under various headings is an arbitrary one for the
purposes of discussion. In reality, possible modelling approaches merge
seamlessly from one to another.
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     Solutions to selected exercises are given on p. 2851

In the next chapter, we examine models which provide more detail by
partitioning the stand into several size classes.

Exercises 1

2.1. Which of the models, if any, reviewed in this chapter would suit the
needs of your organization? List the strengths and weaknesses of the
modelling approach most suited to your needs. What data and analyses
would you need to build such a model? Does your organization have
sufficient suitable data to construct such a model?

2.2. You are involved in the analysis of some permanent plots in which
all trees were measured on two occasions. Write formulae to calculate
survivor growth and accretion from these individual tree data. Assume that
s trees are alive on both occasions, d trees died between remeasures, and r
trees were recruited at the second measure. Hint: Check the definitions
given on page 17.

2.3. Demonstrate that the vector field (e.g. Fig. 2.4, p. 28) of a state-
space model is equivalent to traditional graphs of growth and yield versus
age, by using Equations 2.13 and 2.14 to plot trajectories (a–d) against
time.

2.4. The Markov chain/matrix approach requires discrete classes, so it
better suited situations where these are found naturally. Test your
understanding of the method by drawing a Markov chain for the gambling
game "two-up". A person, the "spinner" tosses two coins; if they are both
tails, he retires, and if they are both heads, he continues (one head and one
tail is considered a "no throw", and he tosses again). Spectators wagering
with the spinner collect if he throws tails; the spinner collects only if he has
thrown three pairs of heads. Draw the Markov chain for the game, compile
the matrix, and calculate the chance that the spinner collects his takings. Is
there a forestry application where such discrete states occur naturally?

2.5. Leech (1993) suggested that past trends could be used to predict
future land use changes. Use the data given below to calculate anticipated
plantation areas in 10 years time. What will be the eventual area of each
land use type when equilibrium is finally reached?
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Use 5 years ago Current land use and area (ha)

Land use Area (ha) Native
forest

Plantatio
n

Agricultur
e

Other
uses

Native forest
Plantation
Agriculture
Other uses

14400
 3350
21600
 2400

10900
    0
    0
    0

1200
3200
 600
   0

 1800
   90

20000
  100

 500
  60

1000
2300

2.6. Successional changes observed in swamp vegetation are given
below (from Jeffers 1978; the time step is 20 years). What proportions of
each community would you expect at equilibrium?

Starting state Probability of transition to end-state

Bog Calluna Woodland Grazed

Bog
Calluna
Woodland
Grazed

0.65
0.30
0.00
0.00

0.29
0.33
0.28
0.40

0.06
0.30
0.69
0.20

0.00
0.07
0.03
0.40
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Chapter Three

Size Class Models

Size class models employ a class of trees as the basic unit for modelling.
The term "size class" is used for convenience, as size is the most common
criterion for forming classes. However, other criteria may also be used to
form classes (e.g. species, age, etc.).

The size class approach is a compromise between whole stand models
and single-tree models. Whole stand models may be considered size class
models in which a single class encompasses the whole stand. Similarly,
single-tree models effectively have a single class for each individual tree.
Thus the size class approach encompasses those models which divide the
stand into two or more size classes, but with fewer classes than the total
number of trees.

Several size class models originate from the classical method of stand
table projection, which divides the forest stand into several size classes of
equal size based on tree diameters. However, the stand does not need to be
partitioned into standard classes: it may be formed into cohorts or groups
of trees with similar characteristics (e.g. species and size). Some
applications require equal numbers of trees in each cohort, but the method
offers considerable flexibility to construct cohorts in many ways. Diameter
is not the only size criterion that may be used; height classes are also
commonly used.

Stand Table Approaches

A stand table is a tabular summary showing the number of trees in each of
several size classes. In mixed stands, there may be rows for each species or
species group. Size classes are usually diameter classes of equal width (e.g.
10–19, 20–29, . . ., 100+ cm dbh). These tables are commonly used to
summarize inventory data, and provide the basis for several popular growth
models for mixed forests.
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Time of Passage

A simple "rule of thumb" approach for calculating yields is based on the
time of passage, the time for a tree to grow through a diameter class. This
method has been used to determine cutting cycles in natural forests,
especially where minimal inventory data are available. The method can be
used with data comprising only the "leading desirables" (i.e. vigorous trees
subjectively assessed to form the next harvest, Dawkins 1958), which can
otherwise be very difficult to analyze.

The calculations are rather simple (e.g. Osmaston 1956, Dawkins 1958,
Alder 1992). Average increments are estimated for several species groups
and size classes, and times of passage are estimated by dividing the class
width by the average increment within each class. The length of the cutting
cycle can be estimated from the time of passage and the cutting limits
(Dawkins 1958).

This approach may not always give reliable estimates of yield or
duration. Because of the variability and high serial correlation of diameter
increments, the method may reflect the average performance of the stand,
but the harvested component may perform substantially better than this
(e.g. Mervart 1972). Thus time of passage calculations based on stand mean
increments may underestimate yields and overstate the length of the cutting
cycle. However, leading desirables comprise the faster growing component
of the stand and are likely to form the bulk of the final crop. Thus time of
passage calculations based on leading desirables may be more reliable, as
the errors may compensate. However, selection of the leading desirables is
subjective and the intensity of selection may influence results.

Stand Table Projection

Stand table projection is one of the oldest techniques used to determine the
future composition of uneven-aged forests. The method predicts the future
stand table from the present stand table by adjusting each entry in the table
with the estimated diameter increment (and mortality). Diameter increment
estimates may be obtained from several sources, ranging from guesses and
simple tabular summaries to regression analyses, depending on the nature
of the data available. The method dates from times when data were few and
computations difficult, and several researchers offered simple formulae for
estimating upgrowth (i.e. stem number advancing to the next class) from
summarized plot data (e.g. Herrick 1938, Chapman 1942). Now that
computers have eased the burden of computation, stand tables may be
updated with increment equations prepared using regression analyses, but
the "educated guess" remains a standby where data are deficient.

Three methods can be used to forecast the future stand. The first
assumes that all trees in each diameter class are located at the class
midpoint, and that all trees will grow at the same average rate, irrespective
of their present size and vigour (e.g. Husch et al. 1982). This essentially
involves projecting the class boundaries so that future classes contain the
same trees (if there is no mortality), but may have different class
boundaries (and widths), which may be inconvenient for some applications.
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Fig. 3.1. Stand table projection with movement ratio 0.25, so that 25% of
each class moves up to the next class.

It also takes no account of the variable nature of diameter increment, so that
the forecasted stand will span the same number of size classes as did the
initial stand.

The second alternative assumes that trees in each diameter class are
uniformly distributed through the class and that each tree grows at the
average rate (Fig. 3.1). For each class, a "movement ratio" is determined
from the class width and average increment, and this indicates the number
of trees moving to the next class (upgrowth). Projections involving stands
with only a few trees require a decision regarding rounding fractions of
trees (e.g. Carron 1968). In projections for large forest areas where
fractions may be considered acceptable, the method may lead to bias in
predicted growth of the largest trees, as the distribution of stems in the
largest classes is rarely uniform. Both these methods ignore dispersion of
individual increments.

The third option (Wahlenberg 1941) attempts to account for the
variation in growth rate within any diameter class. This is achieved by
using the actual movement of trees rather than movement ratios. An
example given by Husch et al. (1982) illustrates one instance where the
movement ratio approach predicts that 94 percent of trees will move one
class and 6 percent remain, whilst Wahlenberg's method predicts that 20
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Projection method Size class (cm dbh)
(lower limit of class)

Mean dbh
(cm)

10 20 30 40 50

Initial stand 40 30 20 22.8

Stand after 1 projection cycle

Class boundary method† 40 30 20 31.8

Movement ratio
(90% grow 1 class)  4 39 29 18 31.8

Wahlenberg method
(20% grow 2 classes,
 50% grow 1 class)

12 29 29 16  4 31.8

Table 3.1. Three approaches to Stand Table Projection.

percent will move two classes, 50 percent will move one class, and 30
percent remains in the same class. These differences accumulate and can
become substantial over several cycles. While the average growth for the
whole stand may be the same in the two approaches (Table 3.1), the growth
of the larger fraction will be greater with Wahlenberg's method. This may
lead to considerable differences in predicted harvests, especially for
selection harvesting systems where a few of the largest trees are harvested
each cycle. Thus Wahlenberg's method should provide more reliable
estimates of timber yields from uneven-aged stands.

One problem with the last two approaches to stand table projection is
the proliferation of classes with fractional numbers of stems. This difficulty
is avoided by the first approach. A related problem is the ability of some
stems to move n classes in n projection periods, which may introduce bias.
The first option (updating class boundaries rather than moving stems
between classes) does not have these problems because it allows no
variability in increments in the projected stand, but this may underestimate
future yields for the harvested component of the stand. There are three
ways that the proliferation of fractions can be controlled:

1. Use a longer projection interval or narrower size classes. The optimal
approach is to choose the smallest class width and longest time step
(consistent with user requirements) that allow upgrowth to progress only
one class in any single step.
2. Allow a non-uniform distribution of stems within each class by
smoothing the stand table with a single curve (e.g. Weibull function) or
with a series of curves (e.g. splines).
3. Accumulate small probabilities of upgrowth until some stems can be
projected, either by
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(a) specifically nominating the probability or stem number required to
initiate a new class, or by
(b) explicitly modelling the growth of the largest tree in the stand, and
initiating a new class only when a tree attains that size.

Smoothed Stand Table Models

Campbell's (1981) model for pine plantations in Western Australia used
sixteen 8 cm diameter classes. For computational efficiency, the size
classes and time step were chosen so that no tree could advance more than
one class in a single growth period. A series of quadratic splines were fitted
to the size distribution at each time step. The splines used a quadratic
equation for each diameter class, with the explicit constraints that the
resulting curve must

1. be smooth and continuous,
2. encompass the appropriate number of trees in each class,
3. be positive through its range, and must
4. reach zero at the lower limit of the smallest class and the upper limit of
the largest class.

The integral of these splines provides estimates of mean diameters and total
basal area within each class. It also allows the computation of numbers of
trees, basal area or volume between any specified diameter limits. Unlike
the Weibull distributions often used for whole stand models, the spline
curve approach (Smith 1979) can accommodate stands which are not uni-
modal. In effect, the method is rather similar to that of the parameter
recovery approach (p. 25), but is more flexible and can accommodate a
wider range of size distributions.

Campbell's (1981) model predicts the increment of the mean tree in
each class, and assumes a near-normal distribution of increment within
each class (using a Weibull approximation to the normal distribution, so
that all increments $ 0). Upgrowth from each class is estimated from the
within-class distribution of trees and the predicted distribution of
increments. Thus the heteroscedastic nature of growth is preserved in the
model. Upgrowth from the largest class is restricted by specifying the
minimum proportion of the total stocking required before a new class can
be initiated. If the projected upgrowth is less than this critical proportion,
the upgrowth remains in the existing largest class. The same critical
proportion is used to absorb the smallest class into the next class, when
upgrowth reduces the proportion remaining in the smallest class to a sub-
critical amount. Campbell assumed that in a well managed plantation,
mortality and recruitment would be negligible. The model is an integral
part of the management information system for Western Australia's pine
plantations (mainly Pinus pinaster).
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Fig. 3.2. Smoothing an uneven-aged stand table results in smaller estimates of
upgrowth for a given movement ratio. Dotted lines are reproduced
from Fig. 3.1 for comparison.

In 1898, the French forester de Liocourt observed that the size
distribution of stems in an uneven-aged natural forest tended to form a
reverse-J curve or negative exponential distribution, in which the ratio of
stem numbers in adjacent size classes remains constant, provided the size

1 2 2 3 3 4 classes are the same width: n /n = n /n = n /n = . . . (see e.g. Philip
1994). This ratio is known as de Liocourt's quotient, q. In his stand table
projection model for dipterocarp forests in Malaysia, Korsgaard (1989a,b)
smoothed the stand table using such a J-curve. He found that quotients
ranged from 1.3 to 1.6, and remained relatively constant over time and
across stands. The J-distribution of stem sizes is more realistic than a
uniform distribution within diameter classes, and when used in stand table
projection, results in smaller estimates of growth (Fig. 3.2). For instance,
for a given diameter increment, a uniform distribution within classes may
imply that half the stems in a class would move up to the next class, whilst
a J-distribution with quotient 1.5 would imply that only 0.4 of the stems
move.

Smoothing the stand table affects estimates of upgrowth, and thus it is
important that the method of estimating the movement ratio is compatible
with smoothing, or biased estimates will be obtained. If movement ratios
are determined from diameter increment estimates, then it is appropriate to
smooth the stand table. However, if movement ratios are estimated from
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direct observations of trees advancing to the next class (i.e. Wahlenberg's
method), then smoothing is unnecessary.

Korsgaard (1989a,b) also explicitly modelled the growth of the largest
tree in the stand table, so that a new size class was initiated only when the
largest tree attained that size. Because he was dealing with mixed tropical
forests, Korsgaard modelled several stand tables, each representing
different parts of stand. One implementation complied stand tables based
on crown illumination classes (e.g. trees with full overhead light grow
faster than those partially or fully shaded), while others use broad species
groups (e.g. meranti, other dipterocarp, non-dipterocarp). Chai and Sia
(1989) described the application of this model to mixed swamp forests in
Sarawak.

Stand table projection was originally devised as a simple and efficient
method that would allow a calculation to be completed on a sheet of paper.
Computers enable several enhancements, and a typical implementation
would take the stand table and the movement ratios (or a table of diameter
increments) as input, and automatically update the table through the
required number of steps. Thus the movement ratios normally reflect the
average growth over the whole period of projection, disregarding the fact
that these might decrease as stand density increases. Some implementations
become quite complex, employing several tables of movement ratios for
different species groups and stand densities, with additional tables for
mortality and recruitment. But this sophistication seems wasted on this
basically simple method, and it is appropriate to improve the methodology
commensurately.

Empirical Equations

Some of the limitations of stand table projection can be overcome by using
equations directly, without the intermediate step of compiling a table of
movement ratios. One advantage of this is that it allows predicted
increments to be adjusted for different sites, species and stand conditions.
An equation also provides a more parsimonious summary of data than
several tables of movement ratios.

One of the simplest applications of such equations is that of Grimes and
Pegg (1979) who used only three classes (20–30, 30–40, 40+ cm dbh).
They recorded basal areas and numbers in each class, and predicted the
change due to growth, recruitment and mortality in these classes by simple
empirical equations. Despite the crude nature of the model, it produced
acceptable results in short term simulations.

Leak and Graber (1976) represented an uneven-aged beech-birch-maple
stand with eleven diameter classes of different widths. They predicted
diameter increment from diameter and stand basal area, and converted
these to movement ratios for updating the stand table. Equations were also
used to predict recruitment into the smallest class, and to predict mortality
in the smaller classes. Mortality in the larger classes was assumed to be
constant at about one percent. Howard and Valerio (1992) reported a
similar study for mixed tropical forest in Costa Rica.
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Canopy layer Height
(m)

Diameter (cm
dbh)

Movement
ratio

Seedlings
Saplings
Poles
Main canopy
Emergents

<1.3
1.3–15 
15–25
25–36

>36

<1
 1–10
10–25
25–45

>45

0.10
0.08
0.05
0.02

Table 3.2. Characteristics of size classes defined in the FORMIX model.

Process-oriented Stand Table Models

The stand table framework can also support more detailed modelling
approaches. The FORMIX model (Bossel and Krieger 1991) for Malaysian
lowland dipterocarp forest uses five size classes, nominally defined as
canopy layers (Table 3.2). Tree numbers and biomass in each class are
modelled using process-oriented equations driven by solar radiation.
Predictions are based on class means, and no species differences are
accommodated. Temperature, water and nutrients are assumed to be
constant and non-limiting.

Photosynthesis is modelled using a simple asymptotic saturation curve
dependent on the light intercepted, adjusted for attenuation by the canopy
layers above. Respiration is assumed to be a constant proportion (6%) of
biomass. The model allows one of two possible mortality rates in each
class, a high rate (10–50%) if the canopy layer is closed (10 000 m ha ),2 !1

and a lower rate (½–10%) otherwise. The change in biomass is computed
from photosynthesis minus respiration, minus mortality (number of dead

i trees times mean tree biomass in the class). The mean tree diameter ( &d )
in each class is then computed as

i where 0.7 converts tree biomass ( &b ) to stem biomass, and in turn, 0.65
converts this to stem volume (v). This equation is derived from the familiar
relationship

where f is a form factor (0.38–0.5, depending on tree biomass), g is tree
dbasal area, h is tree height, d is tree diameter, and h  (40–140, depending

on tree biomass) converts a diameter to a height. The form factor and
height–diameter conversions are read from a look-up table based on mean
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tree biomass. If the mean diameter within a size class exceeds the threshold
diameter (Table 3.2), then the movement ratio is invoked to advance some
trees to the next class. Thus the physiological basis effectively turns on or
off the movement ratio in the familiar stand table approach.

The upgrowth biomass is the upgrowth number times the class mean
biomass, ignoring the likelihood that the largest trees rather than mean trees
advance to the next class. A look-up table was used to estimate seed
production by emergent and main canopy trees, and this in turn provided
estimates of recruitment into the smallest class.

Some of the parameters used in the FORMIX model have biological or
physical meaning, and were obtained from published literature or estimated
from empirical observations. The model requires 13 global parameters (8
of these are general parameters obtained from the literature), 4 parameters
for each of the 5 canopy layers, and look-up tables for height–diameter
ratios, form factors and seed production. The model seems rather
insensitive to many of these parameters, and the three critical parameters
are the crown diameter ratio, photosynthetic efficiency, and the biomass
maintenance cost (i.e. 25, 0.5, and 0.06 y  respectively, Assmann 1961).!1

These parameters influence the frequency of natural cycles in simulations
of undisturbed development, but do not affect the general nature of the
response.

FORMIX does not distinguish species, since Bossel and Krieger (1991)
felt that this would add unnecessary complexity without a significant
change in overall forest dynamics. However, they recognized that
enhancement of the model to recognize different physiognomic groups
(pioneer, shade tolerant, etc.) would be desirable. They formulated a single-
gap variant of this model which modelled spatial gap dynamics. They felt
that the general model gave an adequate representation of stand
development during 200 years following disturbance (e.g. harvesting), but
that the spatial variant was necessary when there was a significant amount
of natural mortality amongst mature trees.

Simulations of undisturbed development did not gradually approach a
stable stand condition, but revealed cycles with a frequency of 100 and 200
years for main canopy and emergent trees respectively. A simulation study
of the Malaysian selective management system suggested that its 35 year
cycle was out-of-step with these natural cycles and could not provide a
sustainable harvest.

The data required to fit this model only partially correspond to
conventional dynamic inventory. Efficient calibration of, and
enhancements to FORMIX require data on light attenuation for various
canopy structures, light response curves and tree geometry data for
different physiognomic guilds, assimilate partitioning coefficients for
different guilds and stages of development, and respiration rates for tree
components as a function of temperature, etc. This emphasizes the
interrelationship between model design and data requirements (Chapter 5).
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Transition Matrices

Transition matrices are a logical and formalized extension of the method of
stand table projection. They allow movement ratios and other details to be
summarized in a matrix, so that growth projections can be made with a
single matrix multiplication. For example, the stand table projection
illustrated in Fig. 3.1 can be expressed:

(3.1)

i j ij jThe matrix and vector are multiplied by computing vN  = E m v  (e.g. for the
second row, 0.25×4.0 + 0.75×2.0 + 0×1.0 + 0×0.0 = 2.5). Notice that the
columns sum to 1.0, so that the total of the numbers in the vector remains
unchanged. Mortality can be modelled by reducing the numbers in the
matrix (e.g. for 1% mortality, replace 0.75 with 0.74, and 1.0 with 0.99 in
the matrix of Eqn 3.1). Figure 3.2 could be summarized in the same way,
but the transition probabilities would be 0.2 and 0.8 instead of 0.25 and
0.75.

Three variations of this approach exist, and differ in their underlying
assumptions: Markov chains, Usher matrices and their generalizations.

Markov Chains

The construction of a Markov chain requires that
(a) at any time a system can be in any one of a finite number of states,

and
 (b) during the next time interval, has a known probability of moving to

any other state.
The probability of movement must depend only upon the current state, and
not on historic events in the system. We have already considered how a
Markov chain can provide a basis for a whole stand model (p. 29). An
alternative is to define the states of the system in terms of the sizes of
individual trees, rather than in terms of whole stand condition.

Consider a tree in one of the diameter classes of a stand table. During
the next period, it must either remain in the class, grow into another class,
get harvested, or die. This allows us to draw a Markov chain for the
updating of a stand table (Fig. 3.3). By definition, stand tables involve
discrete states, and thus the size class implementation of the Markov chain
avoids the weakness seen in the whole-stand version, where discrete states
were a poor approximation to the continuum of possible stand conditions.

The stand table implementation leads to the apparent contradiction that
although a Markov chain represents a stochastic process, it is generally used
as a deterministic yield model. A Markov chain could be used as a
stochastic model if random numbers were drawn to decide if the whole class
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Fig. 3.3. Markov chain representation of Fig. 3.1 and Equation 3.1.
Probability of remaining in a state is one minus the probability of
moving. A growth model could also include states for death and
harvesting.

(or members of the class) move to a new state, but the usual implementation
is to move a proportion of the stems in any class to obtain a deterministic
result. Some stochastic implementations of Markov chains are considered
in the next chapter.

A Markov chain contains two types of states, transient and absorbing.
Transient states are those in which the system spends a finite duration: it
must eventually leave these states. In Fig. 3.3, states 1–3 are transient states,
because there is an arrow with a non-zero probability of leaving these states.
The size classes in a growth model are transient states, as every tree must
eventually grow into the next class, get harvested, or die. Absorbing states
are those from which the system can never leave. In our case, death and
harvesting represent absorbing states.

The probabilities of movement are generally expressed as a matrix (M),
and can be used to predict change during a single time interval:

or over several time intervals:

where M represents the Markov matrix containing the probabilities of
0 nmovement, and V  and V  are vectors describing the initial and final states

0respectively. In forestry, V  is generally a list representing the initial
numbers of trees in each diameter class (i.e. the stand table).

In order for these expressions to hold, two assumptions must be made.
The first, called the Markov assumption, requires that the probability of any
event depends only on the initial state, and not on any previous state (i.e. a
tree's history is not required). Thus the probability that a tree grows into the
next class must depend only upon the class that the tree is presently in, and
not upon the characteristics of that tree (except those that define the class),
upon any other tree, or upon the total number of trees in any class (or in the
stand as a whole). We have already seen this assumption in conjunction
with the whole-stand state-space (p. 26) and Markov-matrix models (p. 29).
The second assumption, the stationary assumption, requires that these
probabilities do not change over time. We have already made this
assumption in determining the steady state of the matrix in Fig. 2.6 (p. 30).
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The Markov and stationary assumptions may be quite restrictive in
forestry applications. The Markov assumption makes it difficult to account
for competition and suppression, since the probability of upgrowth should
not depend on other trees or on the stand basal area. The stationary
assumption means that the matrix parameters should not change over time,
and this makes it difficult to reduce growth rates during a projection as the
predicted stand basal area (or other estimate of competition) increases.
Theoretical (e.g. Hulst 1979) and empirical (e.g. Binkley 1980, Roberts and
Hruska 1986) studies suggest that these assumptions are untenable when
modelling forest dynamics.

Despite these restrictive assumptions associated with Markov chains,
many researchers have attempted to use the method for forest growth
forecasting. Bruner and Moser (1973) discussed a study which used 25
states: 23 dbh classes (8–30+ inches, 20–75+ cm by 2.5 cm), and one class
each for mortality and harvesting. They post-multiplied the state vector, so
their matrices represent the transpose of matrices in the more common pre-
multiplication approach. Their model had only one absorbing state each for
harvesting and mortality, so it predicted only the numbers, but not the sizes
of dead and harvested trees. The sizes of harvested trees can be recorded
simply by allowing more states, one for each dead or harvest size class
required (e.g. Peden et al. 1973, Rorres 1978). In models for mixed forests,
species groups can be represented by using more states, or by compiling
additional matrices and modelling each species group independently (e.g.
Cassell and Moser 1974 used six matrices for different shade tolerance
classes).

Predictions become unreliable if stand conditions (e.g. stand basal area)
depart greatly from those conditions prevailing in the data from which the
matrix was developed. This violates the stationary assumption. Provided
that stand conditions remain within a narrow range similar to the
development data, the stationary assumption may not be compromised, and
predictions may be satisfactory. Thus the method may perform best with
stands that are maintained within a narrow range of conditions (e.g.
undisturbed near-climax stands, or stands that are regularly thinned to a
specified basal area).

Projections can only be made in multiples of the measurement interval
1for the plots. However, a one-year matrix (M ) may be estimated from an

1 nnn-year matrix (M ) such that M .M  (Harrison and Michie 1985). An exactn

solution cannot be found. The one-year matrix must have entries on at least
two diagonals (i.e. bi-diagonal or Usher matrix) or no growth can occur, and
this enables some stems to move n classes in n years, even though the

noriginal matrix (M ) may predict less movement.
A further disadvantage of Markov matrices is the number of parameters

required and the implications this has for the likely precision of each
parameter estimate. Moser's 25-state matrix involves 625 constants.
Fortunately, many of these are zero, but at least 100 entries (4 each for most
classes: probabilities of remaining, growing one class, death or harvest) may
be non-zero and must be estimated. There are also difficulties in
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accommodating different site and stand conditions, and these are best
overcome by customizing the matrix for each stand to be projected.

Leslie and Usher Matrices

Usher matrices attempt to reduce the large number of parameters required
to form a Markov matrix. Choosing the time interval and class width so that
no tree can grow more than one class during the period (for convenience,
called the Usher assumption) allows a substantial reduction in the number
of parameters to be estimated. Unlike some ways of obtaining movement
ratios for stand table projection, the Usher assumption does not introduce
bias because it requires that a single time-step must be sufficiently short that
a tree cannot grow more than one class.

A true Markov matrix contains only probabilities, but by relaxing this
restriction, recruitment can be predicted by employing non-zero values in
the top line of the matrix. These values are not probabilities, but reflect
fecundity, the number of offspring for each individual in the corresponding
cell of the state vector. Fecundity values in the matrix allow the amount of
recruitment appearing to vary according to the presence of trees in various
classes. Thus the matrix may be reduced to four vectors: one each for
growth (either a tree moves into the next class, or it does not), fecundity
(recruitment), harvesting and mortality. Typical applications may contain
20–25 states and require the estimation of 80–100 parameters, more than is
required in many equation approaches.

Leslie (1945, 1948) pioneered the use of these matrices for animal
populations where the classes represented ages. The technique was adapted
for stages of insect development by Lefkovitch (1965), and for forestry
(diameter classes) by Usher (1966). A rare application of a Leslie matrix to
forest stands was Bosch's (1971) study of redwoods, which used age classes
and in which regeneration appeared only on the death of another tree. Most
studies utilize the diameter class matrix advocated by Usher (1966), but are
still commonly termed Leslie matrices. However, there is an important
distinction between Leslie and Usher matrices. With a Leslie matrix of age
classes, all surviving individuals progress ("age") to the next class each
cycle. With an Usher matrix, only some of the surviving trees grow into the
next class, whilst those with little or no growth remain in the same class.

Usher matrices, perhaps because of the efficiencies inherent in the
Usher assumption, have been used more widely than Markov matrices.
Usher (1976) used these matrices to estimate optimum yield and rotation
length for P. sylvestris plantations in Britain. Rorres (1978) continued this
analysis to prove that the optimal sustained yield harvesting regime is a
cutting limit regime which removes all the stems in only one class, removes
a proportion of the stems in several smaller classes, and leaves all the
remaining smallest classes untouched. This is consistent with some
selection harvesting guidelines but at odds with harvesting practices in
many countries.
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Square matrices have eigenvalues and eigenvectors which satisfy the
relationship

M V = 8 V

where M is a square matrix, V is a column vector, and 8 is a scalar. In
general, if M is n × n, there will be n eigenvalues 8, each with an associated
eigenvector V. The eigenvalues may reveal some interesting insights into
the system governed by the matrix. For example, if 8 = 2, the population V
will double every time step of the model, but the proportion in each class
will remain the same. Recall the whole-stand transition matrices discussed
in the previous chapter. Some were Markov matrices (every column
summed to 1.0) with no absorbing states, for which we determined steady
states (e.g. Fig. 2.6, Exercises 2.3 and 2.4). These matrices have an
eigenvalue 8 = 1.0, and the corresponding eigenvector is the steady state.
Because Usher matrices incorporate fecundity, the eigenvalues are more
interesting. Usher (1966) argued that the largest positive eigenvalue of an
Usher matrix indicates the maximum exploitation, and that its eigenvector
indicates the stable stand structure.

Plant demographers also attach some importance to the eigenvalue, as
it should indicate whether the population is increasing or decreasing in
number. In theory, pioneer and light demanding plants in undisturbed forest
should have eigenvalues less than unity, whilst shade tolerant plants should
have values greater than 1.0. Values greater than one for pioneer species
would indicate continuing disturbance. Hartshorn (1975) obtained a value
of 1.002 for the shade tolerant climax species Pentaclethra macroloba in
Central America. In Papua New Guinea, Enright and Ogden (1979)
observed values of 1.02–1.01 for the shade tolerant Araucaria
cunninghamii, and 0.99–1.09 for the shade intolerant mid-successional
A. huntsteinii. Unfortunately, it is not clear whether the eigenvalues are a
characteristic of the species, a characteristic of the present state of the
forest, or an artifact of the method. Eigenvalues assume an exponential
increase in the number of trees in each size class. Thus the eigenvector may
indicate optimal stand structure, but not optimal stand density. The problem
of determining the optimum level of growing stock cannot be resolved with
eigenvalues.

Numerous studies have investigated the sensitivity of the eigenvalues
and vectors to noise in the matrix. Usher (1966) found that small variations
in the fecundity terms of the matrix had very little influence on the
eigenvalues and vectors, and that estimates of growth were the most
important determinants of eigenvalues and vectors.

Generalized Matrices

The Markov assumption (that the transition probability depends only on the
initial state) is a severe restriction to impose. If this assumption is avoided,
it is possible to construct a matrix model in which recruitment is density
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dependent, or which accounts for suppression of smaller trees by
introducing negative values in the upper right triangle of the matrix.

Buongiorno and Michie (1980) constructed a model for a mixed
hardwood forest, using the stationary and Usher assumptions, but not the
Markov assumption. Their matrix was essentially a bi-diagonal matrix with
probabilities of movement, plus a vector and a scalar for predicting
regeneration. Their model took the form (Fig. 3.4):

(3.2)

i iwhere V  is the stand table at time i, H  is the number of trees harvested from
each class at time i, M is a standard bi-diagonal Usher matrix, and N and C
predict recruitment. The entries in the top row of the sparse matrix N are

i i igiven by r = 0.27 ! 9.65 g  where g  is the basal area of a tree at the midpoint
of class i (all other entries are zero). The vector C is all zero, except for the
first element which contains the value 109. These parameters used to model
recruitment were estimated by linear regression:

rwhere N  is the total amount of recruitment (stems ha y ), N is the total!1 !1

stocking (stems ha ) and G is the stand basal area (m ha ).!1 2 !1

Buongiorno and Michie (1980) used a separate matrix to represent the
harvest, so that they could efficiently examine alternatives. They found that
fixed proportion harvesting would lead to the removal of about 15 square
metres of basal area every 35 years, and that simple cutting limit regimes
(i.e. harvesting all trees above a given size) were economically optimal.

A similar model for Indonesian forests (Mendoza and Setyarso 1986)
indicated that selection logging (i.e. harvesting a proportion of trees in each
merchantable size class) would sustain higher yields than simple cutting
limit based on diameter. This model also revealed that harvesting practices
in Indonesia could not be sustained, as residual stockings were too low to
enable the next anticipated harvest in 35 years.

One limitation of transition matrix models is the difficulty of predicting
recruitment reliably. Mendoza and Setyarso (1986) assumed a constant
amount of regeneration in each time step. Buongiorno and Michie (1980)
predicted ingrowth from the number and basal area of trees in each size
class, but negative values are possible and the stand table must be inspected
at every step to intercept these. Bosch (1971) predicted regeneration only
on the death of another tree. Each of these alternatives has limitations that
can only be overcome by more explicit methods of modelling regeneration
and recruitment (see Chapter 10).

Two major weaknesses of the matrix approaches are the stationary and
Markov assumptions. These may be overcome by estimating a new matrix
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Fig. 3.4. Single projection with a matrix model (after Buongiorno and Michie
1980). The top row is fecundity, the main diagonal indicates trees
remaining in a class, and the second diagonal shows upgrowth. See
Equation 3.2.

for each projection interval (to account for new basal area, etc.) either
directly from a subset of the database (e.g. Higgins 1977) or indirectly using
equations (e.g. Solomon et al. 1986), but that eliminates some of the
attractions of the approach.

Estimating Matrices

Michie and Buongiorno (1984) discussed four ways to compute the
coefficients of a matrix. They concluded that the best method was the
simple expedient of tabulating individual tree data in a matrix (i.e. size class
at time t versus size class at time t+1) and determining upgrowth for each
class directly.

This is a robust approach, but fails to utilize the fact that the growth
pattern of trees is such that the movement probabilities for adjacent cells of
the matrix should be similar. Thus the probability of moving from class i!1
to class i should be similar to that for moving from class i to class i+1. If
not, it is likely that insufficient data were used. This fact can be exploited
to estimate entries with greater precision and/or fewer data, by using logistic
regression (e.g. Lowell and Mitchell 1987, Vanclay 1991d, see Chapter 9).

Where individual trees are not identified, several methods exist for
extracting the necessary probabilities of movement (e.g. Carron 1968).
However, none of these methods is entirely satisfactory as all assume that
the ranking of trees does not change over time, which is an untenable
assumption (e.g. Weck 1955; Fig. 3.5, overleaf). It is preferable to estimate
matrices from data in which each individual tree is identified, so that the
fate of each individual can be unambiguously determined.
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Fig. 3.5. Changes in tree rank in a pine stand aged 69 in 1934 with 820 stems
ha  and mean height 15 m (redrawn from Weck 1955).!1

Cohort Models

The distinction made here between stand table and cohort models is based
on the assignment of trees to size classes. Stand table and matrix models
generally use "metric" size classes of equal and predetermined size. Cohort
models allow more flexibility, so that empty classes can be eliminated, and
that cohorts can be formed so that each cohort has approximately equal
importance in the model. Some plantation growth models require equal
stem numbers in each cohort (e.g. Alder 1979 used deciles, each with 10%
of the trees by number), but most implementations do not have such
constraints, and form cohorts from trees that are similar in some sense (e.g.
species and size). 

Various assumptions can be made about the size distribution of trees
within a cohort. Some models assume that all members of a cohort are
identical, some assume a uniform distribution, and fit a distribution function
across several cohorts. The effect of these assumptions on predicted
outcomes depends on the number of cohorts allowed by the model, and may
be inconsequential if many cohorts are allowed.

Cohort models are rather logical in many respects, and eliminate many
limitations inherent in alternative modelling strategies. Three main
components of growth are modelled (cf. Fig. 1.4, p. 9):

1. diameter increment is modelled by incrementing the size of the
representative trees;
2. mortality is simulated by reducing the expansion factor (the number of
trees represented by each cohort); and
3. recruitment is accommodated by initiating new cohorts from time to
time.
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Percentile-based Models for Plantations

Clutter and Allison's (1974) model for P. radiata plantations in New
Zealand divides the stand into 25 cohorts, each initially with an equal
number of trees. The median diameter for each cohort is derived by fitting
a Weibull function to the diameter distribution of the whole stand, and
computing the diameters corresponding to the second, sixth, . . ., 98th
percentiles. Growth estimates are based on this hypothetical median tree for
each cohort. The model assumes that there is no mortality, and that trees do
not change ranking, so that median trees continue to represent their cohort
throughout the projection, unless thinning is simulated. The size distribution
for the stand can be reconstructed at any time during simulations by fitting
a Weibull distribution to the 25 hypothetical trees.

Alder's (1979) model for coniferous plantations in east Africa uses
deciles, and models the development of the ten median trees corresponding
to the fifth, 15th, . . ., 95th percentiles of the cumulative tree size
distribution. The initial size distribution is estimated using a Weibull
distribution, when the stand attains a dominant height of seven metres. The
model is concerned primarily with growth after this height has been
attained. Diameter increment is predicted from estimates of height
increment derived from height–age curves. It is assumed that there is no
mortality, so that no record of trees in each cohort is maintained: it remains
constant at ten percent of the total stand stocking. All trees in each cohort
are assumed to be identical to the median tree, and no attempt is made to
reconstruct a diameter distribution.

Both these models have been used operationally in making predictions
for commercial plantation management. These methods may be efficient for
even-aged stands, but care is needed in choosing the representative trees. In
uneven-aged stands, most of the trees may have small diameters, but the
few large trees may be of considerable importance in terms of stand
dynamics and commercial value. In such stands, it seems inefficient to form
cohorts with equal numbers of trees, and alternatives should be considered.

Cohort Models for Mixed Stands

In mixed stands, the formation of cohorts may be determined by species and
other attributes, instead of computational niceties such as equal numbers of
trees. Many attributes may be used to form cohorts. Species, size, vigour
(e.g. crown illumination) and commercial characteristics (e.g. stem
straightness) are all obvious candidates for forest management models, but
other factors may also be accommodated. Reed's (1980) succession model
forms cohorts from trees of the same species with similar age, height,
diameter, leaf biomass, etc. Trees remain in their initial cohort throughout
simulation, unless damaged by browsing which initiates a new cohort for
the damaged stems.
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Fig. 3.6. Tree record in cohort model represented by species, size (d) and
expansion factor (n). Records may be split to model variation in
growth. New records should maintain mean increments and stem
numbers.

Leary's (1979) model allowed varying levels of resolution. At the lowest
level of resolution, it uses a single cohort for each species. At the
intermediate level, it simulates three cohorts for each species. At its highest
level of resolution, each cohort represents an individual tree and the model
becomes a tree list model (see Chapter 4). Thus the user can select a level
of resolution appropriate to his requirements and budget. The model
predicts the sum of diameter increments for each cohort, by estimating the
potential diameter increment of the mean tree in each cohort (Hahn and
Leary 1979), adjusting this for stand density and competition (Leary and
Holdaway 1979), and multiplying by the number of trees in the cohort. The
list of individual diameters input to the model is not discarded, but is
retained and at the end of the simulation each tree is updated by its share of
the accumulated increment in its cohort (Leary et al. 1979b). This allows
better estimates of final tree sizes.

Vanclay (1989a) described a cohort model which was an early prototype
of the NORM model. For efficient simulation, species were grouped
according to growth habit, size at maturity and harvesting guidelines
(Preston and Vanclay 1988). Species groups were coded so that the
appropriate growth (5 groups) and harvesting group (9 groups) could be
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Field
record†

Group
 identity‡ 

Cohort list as projected

Year 0 Year 1 Year 2

N/ha  Dbh N/ha  Dbh N/ha  Dbh 

NSO 41 322 7.39 41.5 1.85
5.54

41.97
41.83

1.85
1.38
4.15

42.30
42.26
42.13

BLA 49 374 5.20 49.5 1.29
3.88

49.92
49.79

1.29
3.86

50.22
50.09

NSO 26
  defect

492 18.13 26.5 18.10 26.80 18.07 27.08

BRC 68
  defect

495 2.71 68.5 2.69 68.85 2.67 69.18

MCB 42
MCB 36

495
495

7.05
9.56

42.5
36.5

6.99
9.48

42.82
36.81

6.94
9.41

43.13
37.09

MIS 24
MIS 16

495 21.21 24.5 21.04 24.76 20.87 24.99

MIS 16
MIS 16

495 140.3 16.5 139.1 16.71 138.0 16.90

† Tree species and size (cm dbh) of all trees recorded on a single point sample
defined with a 10 m ha  angle gauge. Species codes are: BLA: blush alder2 !1

(Sloanea australis); BRC: Brown cudgerie (Canarium baileyanum); MCB:
Macintyre's boxwood (Xanthophyllum octandrum); MIS: various species
without specific codes; NSO: northern silky oak (Cardwellia sublimis).

‡ The 3-digit code indicates the volume equation (4 = no commercial volume),
the logging prescription (9 = not harvested), and the growth equations to be
used for this species group during simulations.

Table 3.3. Example of a tree list model showing record doubling and merging.

identified easily. Each cohort was characterized by its species group code,
diameter, and expansion factor. The model admitted a maximum of 200
cohorts for each stand simulated, and the actual number of cohorts was
maintained near this limit by allowing record doubling (e.g. Fig. 3.6, and
Table 3.3, first record, years 1 and 2) and merging (e.g. Table 3.3, last
record, year 0). When records are doubled, one part gets a bigger-than-
average increment, the other a less-than-average increment, but the
proportions and increments are determined to preserve the total number of
trees and the mean increment (Fig. 3.6). Similarly, when records are
merged, the expansion factors are summed and the new mean tree size is a
weighted average. Cohorts of small trees may contain many trees; as they
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attained a size of some economic importance they could split into new
cohorts reflecting the actual increment distributions observed in the
permanent plot data. Cohorts of overmature trees were merged as their
expansion factors reduced through mortality and harvesting. Recruitment
was modelled by forming additional cohorts. The model was subsequently
enhanced so that each species retained its individual identity.

Process-based Cohort Models

The cohort framework has also been used for process-based models. One
such model for even-aged stands of red pine in the USA, used ten cohorts
and modelled tree growth in terms of diameter at one-fifth of tree height

0.2(d ), tree height, and height to crown base. Sievänen and Burk (1993)
examined ways to fit the model using dynamic inventory data, and how to
calibrate it for various site conditions.

The model estimates photosynthesis at the tree level by assuming a
linear interpolation between open growth (cf. Newnham's 1964 assumptions

0.2on p. 62) and the tree's share of closed-stand photosynthesis. Change in d
was estimated from a rather complicated equation which adjusted the
balance between photosynthesis, respiration and shedding (of leaves,
branches and fine roots through senescence) for the effect of tree size (e.g.
bigger trees allocate more photosynthates to the non-productive stem,
branches and coarse roots so that diameter increment is less for a given
amount of photosynthesis).

The relative height growth within a class assumed a linear relationship
with relative crown length, to account for the fact that trees with short
crowns tend to have proportionally higher height growth. The crown was
assumed to recede at a constant rate, determined by stand basal area at the
crown base, for all trees in the stand. Mortality was predicted from the
diameter increment.

The model required 15 parameters to be estimated, but these could not
all be estimated empirically from the available data. This was partly due to
the structure of the model (i.e. it was over-parameterized) and partly due to
limitations of the data available. The most sensitive parameters were the
maximum photosynthesis rate, foliage respiration, and the rate at which the
crown base rises. Poor estimates for the first two of these could result in
substantial bias, but suitable estimates may be obtained from other sources.

Sievänen and Burk (1993) identified several inadequate components in
the model, including height growth, crown recession and tree survival. The
assumption that all trees in a cohort are identical was unrealistic, especially
when only ten cohorts are used. Local variations in stand density need to be
accounted for if the model is to provide realistic predictions in the longer
term.

The model could not be calibrated adequately from diameter
measurements alone, and Sievänen and Burk (1993) observed that reliable
calibration required remeasurements of numbers, diameters, heights, and
crown length for individual trees on permanent plots.
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Synthesis

Size class models have been used extensively to model growth and yield in
many forest types ranging from pure even-aged plantations to tropical
rainforests. This approach offers several advantages: it is relatively simple,
computationally efficient, and provides information in sufficient detail for
many forest management applications. Classical stand table projection
continues to be useful where stand data are available only in summarized
form and where computer resources are limited. However, the many species
and wide range of stem sizes encountered in some mixed forests may
require many classes, and this creates some limitations.

Matrix methods are easily implemented on computer, and produce good
results where stand densities and silvicultural practices are maintained
within a narrow range, but suffer from assumptions which become
untenable for long projections and for wider ranges of stand conditions.

Cohort models offer great flexibility, enable projections under a wide
range of conditions and provide diverse information for reporting. They
offer great potential, and are likely to be used more widely in modelling
mixed forests.

In the next chapter, we examine single-tree and tree list models. The
latter are analogous to cohort models with a single tree in each cohort.

Exercises

3.1. The data below summarize from two measures of a permanent plot,
five years apart. Using these data, predict the stand structure in 25 years
time (assume that there is no mortality and no recruitment). Try at least
three different methods (including stand table projection), and explain why
they differ. Which is the best estimate? Why, and what are its limitations?

0 5 0 5 0 5 0 5d d d d d d d d

14.8
14.9
15.2
15.7
16.0

18.0
18.5
19.8
18.7
19.3

16.1
16.3
16.5
18.5
19.5

20.3
20.2
20.3
22.9
24.2

20.5
23.1
23.6
26.3
29.7

24.8
28.8
28.9
30.5
35.2

31.1
32.6
37.6
41.9
42.0
47.5

35.6
38.2
41.2
46.4
45.5
50.9

3.2. Does the model in Fig. 3.4 behave in a biologically realistic way?
Project the model through 100 cycles, and discuss the trends you see. Do
long term predictions depend on the initial state vector? Do they converge
to a stable stand structure? Summarize its strengths and weaknesses. Is it a
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good model? How does it compare with other approaches discussed in this
chapter?

3.3. Osho (1991) used an Usher matrix to model the growth of Nigerian
rainforests (below, the stand table related to a single plot 1.47 ha in area).
Is it a good model? Project the stand for 400 years (the matrix represents a
18 year time step): what do you notice? Suggest a sustainable harvesting
strategy for this forest.

Size class
(cm dbh)

1974
Stand
table

Diameter classes (cm dbh) of Usher matrix

4.8–9 10–19 20–29 30–39 40–49 50+

4.8–9
10–19
20–29
30–39
40–49
50+

914
494
158
 76
 19
 26

0.42
0.06
0.0 
0.0 
0.0 
0.0 

0.00
0.62
0.05
0.0 
0.0 
0.0 

0.73
0.0 
0.66
0.14
0.0 
0.0 

2.24
0.0 
0.0 
0.79
0.20
0.0 

5.04
0.0 
0.0 
0.0 
0.62
0.21

7.42
0.0 
0.0 
0.0 
0.0 
0.89

3.4. Of the models discussed in this chapter, which do you think would
be most suitable for your situation? Why? Summarize its strengths and
weaknesses, and contrast it with other alternatives. What resources would
you need to build (and use) this model?

3.5. Does the process-oriented basis of the FORMIX model (p. 41)
provide a firmer foundation for extrapolation and inference than is provided
by the other empirical models discussed in this chapter? Discuss.

3.6. Several size class models (e.g. FORMIX p. 41, Fig. 3.4 on p. 49) do
not converge to a semi-stable state, but cycle (e.g. see solution 3.2). Do you
think that this accurately reflects forest dynamics, or is it possible that the
resolution of the models is too coarse so that natural feedback mechanisms
overcorrect and cause this cycling? Discuss. How could you test this?
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Chapter Four

Single-tree and Tree List Models

As the class width becomes smaller and the number of trees per cohort
approaches one, the distinction between size class approaches and single-
tree models becomes blurred, especially for tree list or cohort models. The
distinction between single-tree models and tree list models is based on the
use of an expansion factor which indicates the number of stems (per ha or
per plot) represented by each tree record. Single-tree models are defined as
those models which simulate each individual tree for a given plot (i.e.
implicit expansion factor is always exactly 1.0), whereas tree list approaches
may simulate any number of trees in a cohort (i.e. explicit expansion factor
can be any real number > 0). This distinction has significant implications for
the processing of inventory data obtained from point samples (sampling
with probability proportional to size which may imply fractional expansion
factors), and for the modelling of mortality. Many single-tree models
simulate mortality stochastically to maintain expansion factors of exactly
one per plot, whereas tree list approaches may deterministically reduce
expansion factors so that they represent less than one tree per plot.

This chapter will focus on three classes of model:

1. Single-tree spatial models which simulate individual trees or their
component parts (crowns, branches, etc.) using spatial data (e.g. stem maps)
indicating their position in the stand. The requirement for spatial data
usually restricts these models to simulations of relatively small plots. These
models are also known as distance-independent models, but the term
"spatial" is preferable as they may require three-dimensional spatial data,
not just the distance to neighbours.
2. Single-tree non-spatial models which also model individual trees, but
which do not require any spatial data. These may model stand development
on a per-hectare or a per-plot basis (e.g. the JABOWA model, with 10 × 10
m plots).
3. Tree list models which model cohorts or small "groups" of trees. A
cohort may constitute any number of trees within any area (i.e. expansion
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factor may be any real number), and is usually based on similarity in some
sense (e.g. species, size, etc.) rather than on number of trees. The distinction
between tree list models and the cohort models discussed in the Chapter 3
is one of convenience, and is based on the number of cohorts and the
average number of trees in a cohort. A tree list model would normally allow
more than 25 cohorts (cf. Clutter and Allison 1974, p. 51) and more than
five species groups where many species are present (cf. Vanclay 1989a,
p. 52).

Single-tree Spatial Models

Spatial models use information about the position and size of neighbouring
trees to simulate the development of each individual tree in a stand (or plot).
The development and practical use of these models have been hampered by
a lack of suitable data, but they offer considerable potential. Development
of these models has helped to formulate some important concepts of
competition, and we survey some of these competition indices, before
examining some examples of single-tree spatial models for pure and mixed
stands.

Competition Indices

Current thinking about competition between trees in forest stands may be
summarized in five axioms (Ford and Sorrensen 1992):

1. Plants modify their environment as they grow, reducing the resources
available for other plants (competition).
2. The primary mechanism of competition is spatial interaction.
3. Plant death due to competition is a delayed reaction to the growth
reduction following resource depletion.
4. Plants adjust to environmental change, responding to competition and
altering the nature of the competition.
5. There are species differences in the competition process.

Many modellers have attempted to quantify these concepts concisely in an
index of competition, but there is no single index that satisfactorily
embodies these concepts and performs well in empirical trials. Most
competition indices that have been proposed can be classified into four
broad categories:

1. competitive influence zone,
2. area potentially available,
3. size–distance (including horizontal and vertical variants), and
4. sky-view and light-interception approaches.
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Fig. 4.1. Competition indices include the competitive influence zone (CIZ),
area potentially available (APA), horizontal or vertical size–distance
(SDh & SDv), sky view (SV) and light interception (LI) approaches.

The competitive influence zone (or area-overlap; Fig. 4.1, CIZ) approaches
are based on the assumptions that

(a) each tree has an influence zone determined by the size of the tree,
and that
(b) the competition experienced by each tree can be gauged by the
potential overlap of the influence zones.

The competition index may represent the area of the potential "overlap"
(e.g. m ) or it may be scaled as a relative area (e.g. ratio between 0 and 1),2

and may be weighted by tree size or other factors (e.g. Ek and Monserud
1974). A non-spatial variant of this index is crown competition factor
(Krajicek et al. 1961), which expresses the potential open-grown crown
area of all trees as a percentage, so that 100% occurs about the time of
crown closure and higher values indicate more competition.

The area potentially available (e.g. Moore et al. 1973; Fig. 4.1, APA)
to each tree is usually calculated by sharing the total (simulated) plot area
among the trees according to their size and position. This may be done by
bisecting perpendicularly the distance between each tree and its neighbours,
often using a weight according to tree size. Mixed stands may require that
weights are adjusted for each species (see e.g. Tham 1989, Pretzsch 1992a).



60 Modelling Forest Growth and Yield

In practice, it may be quite complex to ensure that the polygons do not
overlap and that no unrealistic gaps remain, especially when size-weighted
indices are computed for uneven-aged stands, but standard algorithms are
available (e.g. Nance et al. 1988). Comparisons with open-grown trees are
necessary to constrain the area potentially available in stands with low
stocking. Three-dimensional analogues (e.g. volume potentially available
to the tree crown) also exist (e.g. Pelz 1978). Empirical studies (e.g. Daniels
et al. 1986, in Pinus taeda plantations) suggest that the area potentially
available, weighted by tree size, is one of the better competition indices
available for predicting basal area growth in plantation monocultures.

Size–distance approaches (e.g. Lemmon and Schumacher 1962, Spurr
1962a; Fig. 4.1, SDh and SDv) compute an index of competition based on
the size of and distance to each potential competitor. The index may be
based on the sum of the angles subtended by potential competitors at the
subject tree (e.g. Ford and Diggle 1981), may include a threshold (i.e.
competitor only if the angle is exceeded), and may be weighted for the size
of competitors. Several characteristics (e.g. crown cross-sectional area,
crown volume) of competitors have been incorporated in competition
indices, with or without weighting for distance and relative size (e.g. Biging
and Dobbertin 1992). The index may be computed in the horizontal (e.g.
based on stem or crown diameters of neighbouring trees) or the vertical
plane (e.g. based on heights of neighbouring trees). In either case, the
reference height may be varied to obtain more meaningful estimates (e.g.
breast height, crown base of subject tree, top of subject tree, etc.). To limit
edge-effects and computation time, it is necessary to specify a search-radius,
within which competition is appraised, and the selection of a suitable radius
may be assisted by data from open-grown trees.

Ford and Diggle (1981) selected competitors as those individuals taller
than a 45° angle from the top of the subject plant, and based their index on
the angle subtended by competitors, but many others choose in include
other characteristics in the index. For example, one index evaluated by
Biging and Dobbertin (1992) defined competitors as trees within a given
search radius for which the angle from the subject's crown base to the
competitor's tip exceeds a specified threshold (e.g. Fig. 4.1, SDv), and based
the competition index on the sum for each competitor, of crown cross-
sectional areas divided by distance.

Sky-view approaches determine the proportion of the sky "seen" by each
tree, sometimes weighting parts of the sky differently (e.g. more weight for
the sky overhead, less for the horizons). The reference point does not need
to be the top of the tree, but may be the centroid of the crown (e.g. Fig. 4.1,
SV), or may involve an adjustment to account for the greater photosynthetic
activity of newer foliage, so that the reference point may vary according to
recent crown development of the subject tree. The most complex variant of
this approach involves computing the interception of sunlight by each tree,
adjusted for time of day and season of year (e.g. Fig. 4.1, LI). This may be
a complex undertaking, and a simplification is to use the noon sun position,



61Single-tree and Tree List Models

which may give a result similar to a more conventional weighted sky-view
method, especially in the tropics.

Empirical studies (e.g. Opie 1968, Lorimer 1983, Martin and Ek 1984,
Barclay and Layton 1990) suggest that competition indices rarely provide
better estimates of increment than simple measures of stand basal area, and
that the expense of determining individual tree positions in the stand is
rarely warranted for the purposes of yield forecasts. This does not imply that
there is no place for spatial models. On the contrary, they have offered
important insights into competition and how to model it, and have been
useful in researching aspects of plantation silviculture.

Some limitations are evident in most studies of competition in forest
stands, and these may contribute to our present inability to define a general
competition index. Some deficiencies include:

1. The performance of competition indices is intimately linked to the
growth functions with which they are used, especially where it is used as a
multiplier to modify a potential growth function (see Chapter 8). An inferior
potential growth function may make the performance of a competition index
look better if it is of the right general shape, but explains only some of the
variability. Conversely, if the potential growth function is of the wrong
"shape", it may understate the performance of competition indices.
2. Results may be influenced by the plot size used, and by the assumptions
used in estimating the competition experienced by trees near the edge of the
plot. Monserud and Ek (1974) and Martin et al. (1977) reviewed ways to
reduce this "plot edge" bias.
3. Most studies draw on data from pure even-aged stands and do not
include thinnings, and these do not provide the best test of a competition
index (notable exceptions include Lorimer 1983, Tham 1989, Biging and
Dobbertin 1992). Where there is no thinning, future conditions will be
more-or-less like past conditions, and since present tree size (diameter,
height, crown ratio, etc.) is determined by past conditions, it may be the best
indicator of future growth. The only fair test of a competition index is to
disrupt the correlation between tree size and growth conditions, e.g. by
thinning from above, by pruning the green crown, and perhaps by removing
the tops of some trees. Mixed stands may provide a good test, since a faster-
growing species may become dominant and shade a formerly-dominant tree
(this could be examined experimentally in pure stands by using a large
umbrella to shade a dominant tree). It is unlikely that a single time interval
would be sufficient to appraise a competition index properly following such
experimental disturbance. Simple indices may not adequately predict
recovery from competition when a competitor is removed (e.g. by thinning),
and it may be necessary to include crown parameters to ensure a reasonable
response.
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One of only few studies in mixed stands (Biging and Dobbertin 1992) found
several spatial competition indices that did perform better than stand basal
area, and reported that these indices performed better for shade tolerant (e.g.
white fir) than for light demanding species (e.g. ponderosa pine, in
California, USA). Distance-weighted measures of crown cross-sectional
area were amongst the best indices for use in predicting both height and
diameter increment, especially when competitors were selected by height
(i.e. a vertical size–distance approach, Fig. 4.1). Unlike many other studies,
they found that increasing the search radius did not improve estimates, and
that a relatively small number of competitors provided an adequate estimate.
Biging and Dobbertin's (1992) analysis offered some interesting results, but
some questions remain. Their data represented a single five-year growth
period reconstructed using stems analysis, and did not specifically include
thinning. Their potential growth function was based on site index, initial
tree size and crown ratio only, and they did not compare the performance
of non-spatial measures such as relative tree size, when used in conjunction
with stand basal area. It is not clear if a more comprehensive basic growth
function would eliminate the effect of the spatial data, or if the results
would be changed by thinning.

In their present stage of development, competition indices are of limited
use for management-oriented models of mixed forests. However, there
remains considerable scope for further research in this area.

Models for Pure Stands

Several single-tree models have been developed for pure even-aged stands,
and range in complexity from tree-level to process-based models. Here we
examine just one prominent example from each class, and consider some
possible implications for modelling mixed stands.

Tree-level Models

Newnham's (1964, Newnham and Smith 1964) model for even-aged stands
of Douglas-fir contained three important assumptions which have provided
the basis for many similar models:

1. a tree free of competition has the diameter growth rate of an open grown
tree of equal diameter,
2. a tree subject to competition has its increment reduced by an amount
proportional to the level of competition, and
3. mortality occurs when diameter growth falls below a threshold level.

For computational ease, Newnham assumed that competition extended only
as far as eight times the initial spacing, and this led to bias in estimates of
yield from closely spaced stands. Generally, Newnham's model gave
reasonable results, and many other models have been based on this
approach. However, Larocque and Marshall (1988) argued that whilst the
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overall performance of Newnham's model has been demonstrated to be
satisfactory, the three basic assumptions have never been tested
independently, and remain unconfirmed. Although these three assumptions
are clear simple statements, they are difficult to test because competition
cannot be measured directly. The third assumption regarding mortality
remains controversial (see Chapter 9).

While competition indices and single-tree models allow explicit and testable
hypotheses of many aspects of tree growth, they also pose several problems
in accommodating unexplainable variation in growth. Ignoring this
variability by using general trends may produce untenable results (e.g. a
plantation at clearfall age may comprise trees all of identical size). One way
to overcome these problems is to simulate some components stochastically.

Crown-level Models

Mitchell (1969) was one of the first to accommodate unexplained variation
explicitly by simulating growth in a stochastic way in a single-tree spatial
model. He assumed that, for even-aged stands of white spruce in Canada:

1. height of any tree can be predicted from its relative crown width
(compared with open-grown trees) and the height of dominant trees,
2. longitudinal growth of the main axis of all branches is related to
concurrent height growth, regardless of suppression, and thus that the radial
growth of tree crowns can be predicted from height growth subject to space
limitations imposed by competing trees,
3. tree diameter (dbh) and bole volume can be predicted from tree height
and crown width,
4. suppression and mortality can also be predicted from relative crown
width, and that
5. stochastic modelling of branch length propagates through other model
components and accounts sufficiently for all natural variation in the stand.

Mitchell's model is driven by height growth. Branch length was predicted

i i i ias l = $ h  where l  is the length (m) of the i  branch, h  is the distance th0.75

(m) from the base of the i  branch to the top of the tree, and $ is normally th

distributed with mean 0.548 and standard deviation 0.093. This variation
influences crown width, and thus propagates through subsequent height
growth predictions and all other components of the model. Although this
approach appears to work well for even-aged stands of white spruce
(Mitchell 1969) and Douglas-fir (Mitchell 1975), it has limited utility for
modelling the yield of natural forests since height growth is not a feasible
driving variable in many of these forests, and stem maps are impractical in
most operational inventories.
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Branch-level Models

Mitchell's (1969, 1975, 1980) ideas have influenced several other models.
For example, the PLATIPUS (Plantation Timber Production and Utilization
System) simulation model for coniferous plantations in Queensland was
designed to simulate:

1. growth of stands under a wide range of environmental and silvicultural
conditions, enabling analysis of forest management options;
2. effects of most silvicultural options (site preparation, spacing fertilizing,
weed control, pruning, thinning and fire) on growth and on wood
characteristics; and
3. conversion of trees and logs into various products (veneer, sawnwood,
chips, pulp, etc.) and determine their intrinsic value.

The PLATIPUS model simulates branch and crown dynamics in greater
detail than the models of Mitchell (1969, 1975, 1980), so that knot
characteristics could be inferred. Height increment was derived from
standard site index (height–age) curves. Potential stem volume increment
was predicted from light interception, crown area and competition (Vanclay
1988b):

(4.1)

u swhere )v  is stem volume increment (m y , under bark), l  is a simple light3 !1

aindex based on the sky-view method, c  is the horizontal projection of

lcrown area (m ), c  is crown length (m) and G is stand basal area (m ha ).2 2 !1

The light index is a simple measure of the relative area of sky "seen" by the
tree, determined as the mean of the cosines of the angles from the effective
centre of the crown (empirically determined as tree height minus 0.24 times
crown length) to the tips of the nearest neighbour in each of four cardinal
directions (note that in Queensland, the sun is effectively overhead at noon
during the growing season). This potential increment is modified to account
for site and silviculture (e.g. fertilizing), and partitioning rules are used to
determine the diameter increment at various points along the stem. Equation
4.1 is regarded as preliminary, as it was fitted with very few data. However,
the data were drawn from a thinning and pruning trial which provided a
reasonable range of data for each of the explanatory variables. Despite the
limited database, the equation seems to give adequate predictions over a
wide range of stand conditions.

Branch elongation is predicted from the stem diameter increment at the
base of the branch, the number of branches in the whorl and the relative
position of the whorl in the tree, but elongation ceases when a branch
touches another branch. Branch diameter at base is predicted from branch



65Single-tree and Tree List Models

Fig. 4.2. Outputs from the PLATIPUS prototype included stem and branch
profiles, and ring and knot patterns (redrawn from Bragg 1988).
Notice that where pruning is not flush with the stem, dead knots
may result.

length. Most functions in the model are stochastic, and the variance-
covariance matrix is used to ensure appropriate correlation between
stochastic components. The computational cost is minimized by modelling
a three-dimensional matrix of cells, and assigning "ownership" of a cell to
the tree that first occupies it (i.e. when a branch first enters a cell).
Preliminary trials with a prototype version containing several subjectively-
determined relationships indicated reasonable results (Nielsen 1989). The
prototype (Bragg 1988) provided detailed information on each tree
simulated, and could produce graphical output illustrating tree profiles and
branch, knot and ring patterns for any tree in the stand (Fig. 4.2).

Mechanistic Models

West (1987) devised a framework for a spatial, process-based model for
trees in pure stands. His model is an extension of the general stand-level
mechanistic model of McMurtrie and Wolf (1983). West modelled stem
biomass, and leaf and root biomass by annual classes, assuming that they
would live for three and two years respectively. Gross photosynthesis of an
individual tree is predicted from the site's potential gross photosynthetic
production (per unit area), multiplied by the leaf area of the tree and an
empirical modifier to account for shade within and between trees.
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Respiration (a constant times leaf biomass) is subtracted from this to give
net photosynthesis, available for maintenance and growth of other tree parts.
The model assumes that trees die when net photosynthesis falls to zero.

The modifier is estimated from the relative leaf weight of trees within
the "locality" of the subject tree, compared with leaf weights at canopy
closure, and is thus analogous to the common empirical measure of crown
competition factor but also takes into account crown density. The locality
is defined as a circle with radius equal to the distance to the sixth nearest
neighbour, consistent with the proposition that competition is restricted to
a few neighbours of each tree (Cannell et al. 1984). Trees within this
locality and with a stem biomass at least 70% of that of the subject tree are
assumed to be competitors. This is consistent with the proposition that
competition is one-sided (i.e. larger plants shade smaller plants, but not
vice-versa), but recognizes that since tree crowns are three-dimensional,
partial shading of a subject tree crown may be caused by a neighbour not
quite as large as that of the subject tree. Many of the parameters required for
the model were obtained from the literature, whilst others were subjectively
determined. Trials with the model provided reasonable predictions during
a 50-year simulation commencing with a simulated seedling stand. The
model predicted realistic responses to different thinning and spacing
regimes.

One of the more empirical aspects of many process-based models has
been the partitioning of photosynthates between leaves, roots and stems. For
example, West (1987) assumed that 20% of net photosynthates would be
used for new leaves, 20% for stem and branch development, and 60% for
root growth. West (1993) developed the model further to examine more
realistic ways to model photosynthate partitioning in response to functional
relationships between tree parts. He assumed that the general growth
strategy of trees is to maximize leaf production subject to a few constraints.
The constraints he examined included:

1. Stem diameter and height are related by the need for the stem to
maintain structural stability and to support the crown. West assumed an
allometric relationship:

c s twhere d is stem diameter, and b , b  and b  are the biomass of crown (leaves
plus branches), stem and in total (above ground). He also assumed a similar
relationship between height and biomass components.
2. Sapwood area must maintain water supply to the leaves in accordance
with the "pipe-model" theory, so that
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l s swhere b  is leaf biomass, g  is the sapwood area, and c  is sapwood
conductivity.
3. Leaf area within a tree cannot exceed a given maximum density (i.e. the
size of the crown dictates the maximum biomass of leaves).
4. Branches must support the weight of leaves they bear, so that

b lwhere b  and b  are branch and leaf biomass respectively.
5. Height growth cannot exceed that defined by site index curves.
Simulations without this constraint would allow excessive height growth in
some trees that would become emergents (this strategy is exploited by some
species in mixed stands, e.g. Araucaria, but is unrealistic in a pure stand).

West (1993) used linear programming to maximize leaf production subject
to these constraints. Partitioning coefficients were about 0.8, 0.1 and 0.05
for stems, leaves and branches, but varied with tree status. These
coefficients are not directly comparable to those used in other studies,
because the model did not include roots. The model required several other
assumptions, including

(a) a maximum crown radius,
(b) a maximum attainable increment in crown volume,
(c) a light threshold below which leaves could not survive, and
(d) that the horizontal crown radius could not exceed the vertical radius.

The model provided reasonable predictions for an even-aged Eucalyptus
regnans plantation in Victoria (Australia). The general principles adopted
in the model appear well founded and warrant further development.

Models for Mixed Stands

Fewer single-tree spatial models have been proposed for mixed stands. Ek
and Monserud's (1974) model was one of the first spatial models for mixed
forests. Like Mitchell's model, their model used height rather than diameter,
as the key variable. Potential height increment of any tree was assumed
equal to that of a dominant tree, and potential diameter increment was the
corresponding diameter increment of an open grown tree of the same height.
These potential increments were reduced for individual trees according to
their crown ratio and competition experienced. Stochastic variation
introduced into both functions was assumed to be normally distributed,
without heteroscedasticity or serial correlation. Mortality was modelled
using a threshold increment dependent on tree size. Regeneration was
modelled from seed in a sub-model and recruited to the main model when
it reached breast height.

Pretzsch (1992a) used the cellular matrix approach (p. 65) to model
mixed beech-spruce stands in Germany. He modelled height growth, crown
development (width and length), diameter increment and survival of all
trees on a 5×30 m plot. Estimates are based on potential height growth (i.e.
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site index curves) and the corresponding open-grown crown width, adjusted
for competition and tree status. Crowns are assumed to take a standard
conical (spruce) or dome shape (beech). The principal variables in
predicting the modifiers are the lateral crown restriction (a competitive
influence zone index based on crown width), and shading by each of the
two species in the model. Crown surface area and volume are also used in
calculating diameter increment and tree survival. The height increment
function for spruce (unthinned) is (Pretzsch 1992a):

max rwhere )h is height increment, )h  is the potential height growth, c  is

izcrown ratio, c  is an influence-zone competition index based on crown

s bwidth, and l  and l  are shading due to spruce and beech respectively. The
shading is calculated using a sky-view (or cone-of-light) approach. An
additional modifier is included following thinning to account for changes
in competition and shading.

At their present stage of development, single-tree spatial models may
not be well suited to modelling natural forests, but they are interesting in
that they represent the state-of-the-art of growth model development, at
least for empirical models, and so may indicate future directions if certain
limitations (e.g. availability of spatial tree data) can be overcome. In planted
stands, it is often possible to overcome the absence of spatial data by using
the nominal initial spacing or stochastically generating tree co-ordinates, but
this option is not viable in mixed forests. Unfortunately, the requirement for
spatial data will not be easily overcome, and this may be why many
physiological modellers have chosen size class models, rather than single-
tree models, as a point of departure from empirical modelling. Nonetheless,
this approach may be poised for further development, especially as
computing and remote sensing developments overcome the limitations of
this strategy.

Single-tree Non-spatial Models

Spatial growth models offer potential for detailed investigations of
silvicultural alternatives in intensively managed plantations, including
aspects not possible in other modelling approaches. However, there are
some limitations restricting the utility of the approach for mixed forests:

1. permanent plot data rarely contain the detailed measurements necessary
for formulating such models;
2. the cost of obtaining such detailed data restricts the application of such
models to research applications rather than yield predictions and other
practical applications; and
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3. competition indices which provide the basis for most of these models
rarely perform better than stand level measures of competition such as stand
basal area.

In short, the expense of such a detailed methodology may not be warranted,
and non-spatial methods offer a feasible alternative for the provision of
growth forecasts and other information for forest management.

Deterministic Models

Opie's (1972) model for even-aged Eucalyptus regnans is an example of a
deterministic single-tree model, which comprised two parts. The first fifteen
years were modelled using a whole stand approach, after which individual
tree diameters were estimated and subsequently modelled using a single-
tree approach. The annual cycle of diameter increment (allowing for
heteroscedasticity and serial correlation), tree death, and optional thinning
was implemented through seven key functions. These included a tree
height–age function, a basal area increment function, an increment
allocation rule, a height–diameter function, and a stocking guide (Reineke's
line). The model was subsequently enhanced (Campbell et al. 1979), and
continues to form the basis of forest management models in Victoria and
elsewhere in Australia (Rayner and Turner 1990). Other applications of this
approach have been confined largely to even-aged stands.

Stochastic Models

The concept of the mean and its variance are well established in experiment
methodology, and few researchers would formulate policy
recommendations based solely on the mean experimental result. Most
decisions are based not only on the mean but also on the variability of
estimates. Decisions may also be based on appraisals of risk and of
economic criteria. However, in growth modelling for timber yield
prediction, this appraisal of variability and risk is generally lacking. Most
modelling methodologies developed for timber yield prediction are
deterministic. The few models that are stochastic seem to have been
developed because the modeller was unable to resolve some function
satisfactorily, and not primarily to evaluate variation in estimates of timber
yield. This seems naive on the part of modellers and resource managers,
particularly when it is not uncommon for forest owners to make long term
commitments for timber supply, and where a failure to meet this
commitment may be embarrassing to both parties.

Many models use a single stochastic function in one component of the
model, most commonly the mortality function (e.g. Moser 1972, Shifley et
al. 1982). Others use a stochastic diameter increment function. Stage (1973)
assumed that the only significant stochastic effect was on the diameter
increment; he felt that this would have sufficient repercussions on all other
functions in the model. The one stochastic component in the JABOWA



70 Modelling Forest Growth and Yield

model (Botkin et al. 1972, Botkin 1993) was the number and species of
trees recruited each year. Alder et al. (1977) and Vanclay (1991d) suggested
models in which all relationships derived from regression analyses contain
a stochastic component. The difficulty with these approaches is that care
must be taken to preserve the appropriate correlation between stochastic
elements. For example, it is likely that the random variation in diameter
increment is correlated in time, and with other components that may be
modelled (e.g. height increment). However, Meldahl (1979) found that
varying the correlation between predicted height and diameter increment
errors had little effect on simulated stand means and distributions.

The JABOWA model (Botkin et al. 1972, Botkin 1993) was one of the
first stochastic non-spatial single-tree models. It is not concerned with
accurate estimates of timber yield, but with evaluating the modelling
concept and providing reasonable predictions of species succession.
JABOWA models forest stands on 10×10 metre plots, so that all trees on
the plot are competitors, avoiding the need to use tree co-ordinates.
Simulating a plot size approximately the same dimensions as the crown of
a mature tree, allows the model to reproduce the gap dynamics that occur
after a large tree dies, especially the establishment of seedlings in the "gap"
created where the tree was. The growth function is entirely deterministic
(and rather subjective), but mortality and regeneration are stochastic.
Growth estimates are based on a "fundamental growth equation" for the
change in volume of an individual tree:

max maxwhere d and h are tree diameter and height, d  and h  are the maximum

leafdiameter and height attained by that species, and a  is the leaf area of the
tree. Two assumptions, that a simple quadratic relationship exists between
tree height and diameter, and that a tree attains two-thirds of its maximum
size at half its maximum age, allow this equation to be expressed:

(4.2)

0 max max max 1 b 2 max b max where the $s are $  = 5h )d /d ,  $  = 2h ,  $  = !6(h !h )/d , and2

3 max b max max$  = 4(h !h )/d . Note that )d  is the maximum diameter increment2

battained by the species, and h  is breast height. This means that the
fundamental growth equation can be formed from estimates of maximum
diameter increment, diameter and height attained by each species, and that
no other data are required. This fundamental equation was further modified
by a specific light response, a soil fertility index, and other site factors.

Mortality predictions were based on two functions, one for suppression
and one for random deaths. Both functions predicted the probability of an
individual tree's death, and a pseudo-random number generator determined
whether the tree actually died in that year. Random numbers were also used



71Single-tree and Tree List Models

to decide both the number and species of trees recruited each year. The
expected outcome of the model was based on the mean of 100 simulation
experiments.

The JABOWA model was originally devised for mixed hardwoods in
the New England region of the USA, but has been adapted for many other
forest ecosystems (Botkin 1993). Two applications are relevant to tropical
moist forests, the Kiambram model (Shugart et al. 1980) for sub-tropical
rainforest in Australia, and Doyle's (1981) model for central America.

Alder et al. (1977) proposed a stochastic non-spatial model (GROPE)
which could be used to model any forest for which plot measurements on
at least two occasions exist. The approach assumed that all functions used
in the model could be transformed and expressed as simple linear equations
with normal error distributions. It was hoped that the cycle of model fitting,
testing and application could be automated, so that the naive user could
obtain forecasts based on any collection of permanent plot data. It is not
surprising that this model has not yet come to fruition, because several
aspects of model fitting remain as much an art as a science (see Chapter 6),
and may be difficult to automate reliably.

Deterministic models will not be replaced by stochastic models; the
efficiency and usefulness of deterministic models in providing information
for forest management have been demonstrated and cannot be matched by
stochastic models. Deterministic models are more efficient at predicting the
mean response, and can be used to determine the optimum management
strategies for forest stands in a way not possible with stochastic models.
Deterministic and stochastic models are complementary, and used in
concert, may both prove useful in forest management. Alternatively,
variance approximation may be used to estimate the variance of predictions
in a deterministic way (e.g. Mowrer and Frayer 1986, Gertner 1987a).

The use of single-tree models for forest management applications other
than in even-aged forests has been limited by the difficulty of modelling
mortality efficiently. Tree list models, which are in some senses a hybrid
between single-tree and size class approaches, offer a sensible compromise,
so it is important to reconsider their capabilities when implemented near the
resolution of single trees.

Tree List Models

Although tree list approaches (e.g. Stage 1972, Leary 1979) may be
considered size class approaches, in many respects the tree list approach
when employed with suitable resolution, may be considered an
enhancement of the non-spatial single-tree approach. In effect, the single-
tree model maintains a list of attributes (species, dbh, etc.) for each
individual tree. The tree list approach does all this, but also simulates the
number of trees per hectare represented by each tree record. This simplifies
the deterministic prediction of mortality, as fractions (i.e. expansion factors
< 1.0/plot) can be accommodated (Fig. 4.3).
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Fig. 4.3. Tree records representing a forest stand. Growth is modelled by
incrementing the diameters in each record (d+)) and mortality is
accommodated by reducing expansion factors (p×n).

Brand's (1981) implementation of Leary's (1979) tree list model allowed
the user to specify if the mortality should be implemented in a deterministic
or stochastic way. When the number of trees in a cohort falls to one (per
plot) or less, mortality is always stochastic. Deterministic mortality
prediction reduces the expansion factor by the predicted probability of
mortality. With stochastic simulation of mortality, a random number is
drawn, and if it is less than the computed probability of mortality, all the
trees in the cohort "die" (i.e. the expansion factor is set to zero, and the tree
record is removed from the tree list).

Stage (1973) assumed that the stochastic diameter increment function
in the Prognosis model would account for sufficient variation in the stand
so that the remaining functions in the Prognosis model could be
deterministic. Furthermore, he assumed that provided there were sufficient
trees in the stand, the effect of the stochastic single-tree function would not
influence the stand total, and that predictions could be assumed to be
deterministic. Where there were fewer trees, a "record tripling" procedure
was used to simulate heteroscedastic growth. This "swindle" (Simon 1976)
enables the model to make a deterministic prediction which emulates the
average of many stochastic replications, without actually making the
replications. In tripling (Table 4.1) each tree record becomes three records
with 15, 60 and 25 percent of the original expansion factor and representing
an increment of : ! 1.549 F, : ! 0.1423 F and : + 1.271 F respectively. This
apportioning of increment derives from the normal N (:, F ) distribution 2

(Fig. 4.4), but the proportions 15:60:25 were subjective and other modellers
have used different ratios (see e.g. Vanclay 1991d ).
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Tree list in year t Tree list in year t+1

Stem size
(cm dbh)

Expansion
factor

(stems ha )!1

Stem size
(cm dbh)

Expansion
factor

(stems ha )!1

10 100 10.3
10.9
12.6

15
60
25

20 30 20.8
21.8
24.2

 3
12
 5

Table 4.1. Example of record tripling in the Prognosis model, assuming :=0.1d
and F=0.125:.

Fig. 4.4. Record tripling in the Prognosis model based on the normal
distribution. Increments are predicted as ln()g), and show unequal
variance when converted to diameter increment (Table 4.1).
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Stage and Wykoff (1993) discussed how to estimate and incorporate serial
correlation and stochastic effects in the model. When the number of tree
records becomes very large, the most similar records are merged to maintain
computational efficiency (Stage et al. 1993). The Prognosis model has been
progressively refined (e.g. Wykoff et al. 1982, Wykoff 1986) and is used
extensively to provide information for the management of natural forests in
the Rocky Mountains region of the USA.

Natural forests, especially those in the tropics, may have many species.
One way to construct a parsimonious model is to amalgamate these species
into a few species groups and to simulate just these groups, but this
excludes the possibility of reporting species composition. Another
alternative is to retain the identity of individual species groups (where
known) throughout the simulation, while using prediction equations based
on species groups. This can easily be done using look-up tables to determine
the equations and coefficients to be used for each species (Fig. 4.5). One
advantage of this approach is that species may be grouped differently for the
prediction of growth, mortality and recruitment. The same form of equation
may be used for all species, but the coefficients employed in these equations
may be specific to each species group.

Multi-resolution Models

Ideally, users should be able to choose the resolution level used in a model.
They may require the efficiency of whole stand models for long-term
planning, the precision of tree list approaches for short-term planning, and
the additional information from stochastic models for risk assessment. The
information provided at all these levels should be compatible. This multi-
functionality is feasible, and has been implemented in several models (e.g.
Leary 1979, Daniels and Burkhart 1988).

The cohort or tree list approach enables growth models to be formulated
so that they can operate at any of several levels of resolution, to provide
whole stand, size class or single-tree predictions according to the user's
requirements. The STEMS model (Leary 1979) could be used at various
levels of resolution. In the simplest case, one equation could be used for
whole stand-growth estimates for stands of single species composition.
Mixed stands were modelled using two or more equations of the same form.
The system was designed so that it could also function as a tree list model
or as a single-tree model.

Daniels and Burkhart (1988) described a model framework for pure
stands which should enable compatible estimates at four levels of
resolution: spatial and non-spatial single-tree levels, the size class and
whole stand levels. Careful choice of variables enabled equations to be
collapsed as resolution decreased. For example, area potentially available
(Moore et al. 1973) was used at the spatial level whilst the inverse of
stocking was used at the non-spatial levels. At the size class level, class
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Fig. 4.5. Look-up tables can be used to find the coefficients to be used for a
given species in equations to predict growth, mortality, recruitment,
etc.

mean values of tree size are used in place of the individual tree values.
Stand mean values could also be used, in which case size distributions could
be estimated from the normal probability density function. The system
relied on a common mathematical structure for models at different levels of
resolution, which should ensure compatible predictions at all levels.
Unfortunately, the framework as outlined by Daniels and Burkhart (1988)
was specific to pure even-aged plantations, and the approach is more
difficult to implement in mixed forests.

Compatible stochastic and deterministic forecasts can be obtained from
tree list models by using probabilistic functions to predict diameter
increment, mortality and recruitment (e.g. Vanclay 1991d). In stochastic
mode, the predicted probabilities are compared with one or more random
numbers (depending on the expansion factor of the cohort), and the fate of
the entire cohort is determined accordingly. In deterministic mode, the
predicted probability determines the proportion of the cohort which is
incremented by one centimetre, unless the expansion factor is small, in
which case probabilities are accumulated and the whole cohort is
incremented when the accumulated probability reaches or exceeds unity.
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Empirical Comparisons

Few empirical comparisons between various types of single-tree models, or
with other types of models have been published. Clutter et al. (1983) drew
the distinction between explicit and implicit prediction of yields. Explicit
prediction systems are those which include equations to predict volume per
unit area directly (i.e. some whole stand models), whilst implicit systems
predict basic information on stand structure and stand volume is obtained
indirectly (e.g. from tree or class mean diameters in single-tree and size
class models respectively). Lenhart (1988) compared explicit and implicit
(Weibull distribution) approaches for modelling coniferous plantations, and
concluded that the explicit formulation provided the more accurate
estimates of total timber yields. However, implicit approaches may offer
more detailed information about stand structure.

Daniels et al. (1979) compared the predictive ability of two whole stand
models and a single-tree model. The most accurate yield estimates (in terms
of minimum mean square error) yield estimates were provided by the
whole-stand distribution model. However, all three models provided
estimates of sufficient accuracy for most plantation management uses. The
relative costs of the predictions were 1:25:1400 for the whole-stand yield
model, the whole-stand distribution model and the single-tree model
respectively. Although the single-tree approach appears sub-optimal in both
respects (accuracy and cost), it still may have a place in providing more
detailed information than is available from the alternatives. The suitability
of a model depends on user requirements, and whether a model can satisfy
those requirements (see Chapter 11).

Ek and Monserud (1979) compared a deterministic size class model
(with 5 cm dbh classes) and a stochastic single-tree spatial model (taking
the average of 4 predictions), using independent data from a range of stand
densities and management histories. Both models showed close agreement
with reality for short term predictions (5–26 years). The single-tree model
appeared to be slightly but consistently more reliable. Tests suggested that
the single-tree model was not significantly different from reality, and that
the size class model differed significantly from both reality and the single-
tree model. Both models gave comparable predictions for long term (120
year) predictions, but no data were available to confirm the reliability of
these predictions.

Mowrer (1989) demonstrated that computational efficiency is but one
cost of complex models, and that complex models may propagate greater
variances than more simple whole stand models. This means that any error
in the inventory of initial stand condition may be magnified by methods
such as single-tree models, whereas they may remain comparatively
unaltered by less complex models such as whole stand models. The
implication is that models should not be unnecessarily complex, but should
be designed to provide specific information needs.
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Synthesis

Compared to the large variety of modelling methodologies following whole
stand and size class approaches, the single-tree and tree list modelling
approaches are characterized by few variations in the general approaches
(but many variations in the details e.g. competition indices). Seemingly, as
the approach becomes more mechanistic, the logical way to implement the
model becomes more apparent, and fewer alternatives are pursued. Thus the
emphasis has been on adapting existing models to more forests rather than
making more models. For instance, the Prognosis model (p. 72) is now in
its fifth version (Wykoff 1986) and regional variants have been
implemented for about two-thirds of the USA and for parts of Canada
(Stage and Wykoff 1993). Several variants of the STEMS model (p. 74)
also exist (e.g. Belcher et al. 1982, Goodwin 1988, Hilt and Teck 1988,
Miner et al. 1988, Swain and Turner 1988).

The tree list approach has been demonstrated and widely used for
uneven-aged mixed forests in temperate and tropical climates, and appears
to offer the greatest versatility of the alternatives reviewed. It is likely to
form the basis of many mixed-forest models, and this general model
formulation will be assumed in our examination of model components and
their estimation (Chapters 6–10).

This completes our survey of modelling techniques, and we now turn
our attention to the collection and analysis of data for modelling. You
should now have a good idea of the type of model most suited to your
particular needs, and some idea of the data required to construct such a
model. In the next chapter, we will examine ways to collect data suitable for
model construction.

Exercises

4.1. Discuss the strengths and weaknesses of four categories of spatial
competition indices (p. 58). Suggest non-spatial analogues in each category
and contrast the utility of the spatial and non-spatial forms. These have
mainly been used in pure stands. What enhancements may be required for
use in mixed forests? Design an experiment to test these competition
indices.

4.2. Discuss the strengths and weaknesses of Equation 4.1 (p. 64). What
happens with predictions from this equation when the stand is thinned or
trees are pruned? Is there any evidence of thinning or pruning in Fig. 4.2 (p.
65)? Hint: Remember that thinning affects the sky-view as well as basal

sarea, and that pruning affects the crown centre (for computing l ) and crown
area, as well as crown length.

4.3. Criticize Equation 4.2 (p. 70), stating its strengths and weaknesses.
max max maxCan reasonable estimates of )d , d  and h  be obtained for all forest
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tree species in your locality? Estimate Equation 4.2 for these species and
contrast the resulting relationships with other increment functions available
for these species.

4.4. Write an outline for a tree list model for mixed forest. Write
computer code or pseudo-code if you can, otherwise write clear explicit
instructions in a form suitable for your computer programmer. Give special
attention to the way you might deal with the many species that you expect
to find. Hint: Study Figs 4.3 and 4.5 again.

4.5. Re-consider your answer to Exercise 1.1 (p. 13). Have you thought
of any additional needs that potential model users might have? What type
of model would be best suited to meet these needs? State any special
adaptations to the basic approach that might be required. What data are
needed to calibrate the model?
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Chapter Five

Data Requirements

Models and data are like chickens and eggs; it is not obvious which comes
first. Ideally, modelling and the definition and collection of data should
form an iterative process, commencing with the model formulation. The
model design should dictate the data requirements, so that field work can
provide necessary and sufficient data efficiently. However, it may take
several years to obtain the necessary data from permanent plots, and few of
us can wait that long. Most modelling efforts commence with any data
available, and the modelling approach often may be dictated by limitations
of the data. Many models owe much of their success to the foresight and
dedication of our forebears who established permanent plots and maintained
both plots and measurement records carefully.

The life cycle of a datum spans its definition, collection, validation,
storage, analysis and synthesis. All stages are equally important, and an
efficient data management system requires a healthy balance between them.
The first step is to define information needs and devise data collection
procedures to satisfy those needs.

Fortunately, the data requirements of many modelling approaches are
similar and allow a set of minimum data requirements to be defined and
standard procedures to be established. The procedures discussed here relate
to the requirements for developing growth and yield models for forest
management. Additional details may be necessary if plots also are to serve
ecological studies and other uses. The following is a discussion of
principles, and readers seeking a manual for permanent plots in mixed
forests should refer to Alder and Synnott (1992). Hutchinson's (1982)
manual may be useful for researchers dealing with tropical moist forest, as
it gives detailed guidelines for measuring stems which are broken, fallen,
coppice, parasitic, etc.

Stem analyses do not provide reliable growth data for many tree species
in tropical moist forests, so data must be obtained from remeasurements on
permanent sample plots. Many anomalies may be found in the growth rings
of tropical tree species (e.g. Mariaux 1981). Some evergreen trees (e.g.
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Swietenia spp.) may form rings while deciduous trees (e.g. some Ficus spp.)
may not. Some species (e.g. Hevea braziliensis) may form several growth
rings each year, while other species (e.g. Shorea robusta) may form only
one ring but not necessarily in the same month each year.

Permanent plots can never be completely replaced by temporary plots
even for species amenable to stem analysis, because only permanent plots
(i) allow satisfactory statistical comparisons within and between plots to
check the adequacy of models, and (ii) provide reliable and consistent data
on mortality, crown dynamics and stand level variables.

Differing Data Needs

Inventory serves many purposes, but different procedures are required to
satisfy various needs of different data users in an efficient way. Some
typical information requirements and corresponding sample plot procedures
are summarized in Table 5.1, and include:

Resource Inventory ("What is the present nature and extent of the
resource?"): Typically many plots (or point samples) will be required to
achieve the desired precision. Precision can be gained by orienting plots
across environmental gradients to maximize within plot variation and thus
reduce between plot variance. Cost considerations usually dictate that
temporary inventory plots (or point samples) are most efficient for resource
inventory. Specialized techniques for timber cruising offer great efficiencies
(see e.g. Schreuder et al. 1993), but may not provide data suitable for input
to yield forecasting systems.

Continuous Forest Inventory for yield control: Some systems of yield
regulation monitor the forest growth and harvesting by remeasuring a series
of permanent plots, established systematically so that each plot represents
an equal area of forest (see e.g. Leuschner 1990). One such system is known
as continuous forest inventory (CFI). It is important that CFI plots are
representative and established in various forest types and stand conditions
in proportion to their area. As with resource inventory, precision is gained
by minimizing between plot variance. Plots should be marked so that they
can be relocated for remeasurement, but should remain inconspicuous so
that they receive unbiased management.

Growth Modelling: The need to provide reliable data for growth modelling
demands three qualities of permanent plots that are not necessary in CFI and
some other permanent plot systems:
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Plot
characteristic

s

Principal objective of permanent plot system

Resource
inventory

Continuous
forest

inventory

Growth
modelling

Site
monitoring

Permanence Temporary Permanent Permanent Permanent

Area Variable,
 % tree size

Fixed Fixed Fixed

Within-plot
 variance

Hetero-
 geneous

Homo-
 geneous

Homo-
 geneous

Homo-
 geneous

Placement Stratified
 random

Systematic Stratified
 random

Purposive or
 systematic

Sample unit Plot Plot Tree Plant parts

Table 5.1. Different applications require different sampling techniques.

(a) individual trees must be unambiguously identified,
(b) the plots should be homogeneous, and
(c) the plots should sample extremes of site and stand condition.

Trees should be identified using permanent marks and unique numbers.
This not only offers more options for modelling, but also is the only sure
way of detecting measurement errors. Growth modelling requires
homogeneous plots, and this means minimizing within plot variance: the
ability of the permanent plots to quantify the present resource is irrelevant.
Thus the same plot series cannot be efficiently used for both resource
inventory and growth model development. If the growth model is to be used
to investigate silvicultural and management alternatives, the database must
include experimental data with paired treatment and control plots, both with
adequate isolation. In contrast to continuous forest inventory plots, it is not
necessary for the permanent plots to be representative or numerically
proportional to forest type areas, but it is essential that they sample the full
range of stand conditions.

Long Term Monitoring of Environmental Change: Several researchers (e.g.
Adlard 1990, Dawkins and Field 1978, Watson and Nimmo 1992) have
described permanent plot systems designed to monitor subtle long term
changes in a forest. Whilst such studies are desirable, few organizations
have the resources or need to establish such detailed plots on the scale
required to provide suitable data for growth models for forest management.
Such detailed plots should be reserved for special studies. For growth
modelling, it is better to sample the full range with conventional permanent
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Fig. 5.1. Interpolation is safer than extrapolation.  Both these lines have an R²
better than 0.996, but provide no basis for making a prediction
outside the range of the data.

plots than to have a few very detailed plots. However, quantity is no
substitute for quality.

Permanent plots established to provide data for growth modelling should be
designed to satisfy this primary need, and should not be compromised in
order to satisfy secondary needs. They do not need to provide resource
inventory data efficiently, as alternative sampling procedures can fulfil that
need. This chapter focuses on permanent plots intended primarily to provide
data for developing and evaluating growth models.

Development, Evaluation and Use of Growth Models

Growth modellers need data to develop models, to test models, and to use
models, and each of these three activities may require data of a different
nature. The initial and most obvious requirement for data is during model
development when data are used to fit the basic functions comprising the
model, but it is equally important to set aside some data to allow through
testing of the model (see Chapter 11).
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Model Development: Interpolations are always safer than extrapolations
(Fig. 5.1), so permanent plot systems should be designed to sample the
widest possible range of site and stand conditions. Limited but reliable data
at each extreme and at the mean are more useful than copious data clustered
about the mean. Remeasurements are necessary to detect growth and
change, and must span a sufficient time period to incorporate climatic
variation. The measurement interval should be long enough to ensure that
growth patterns are not obscured by measurement error. Some statistical
difficulties may arise if there are many remeasures of each plot, unless the
number of plots should be large relative to the number of plot
remeasurements (see Chapter 6).

Model Evaluation: Testing of a model (Chapter 11) is an important part of
model construction, and should not be neglected. To provide a convincing
demonstration of the adequacy of the model, the data used to test a model
should not have been used to develop it, and may be drawn from a different
population. Independent data are not always available, and it is common to
partition the data into two subsets, one for development and the other for
testing. It is important that the subset used for model evaluation should
contain at least some data collected over very long periods to allow
detection of possible subtle but cumulative errors in the model. In this way,
plots with very many remeasures may be more useful for benchmarking
models, than for initial development.

Monitoring may be viewed as on-going evaluation of a model by
checking operational predictions. It involves comparing projected and
realized yields to identify any discrepancies. Such discrepancies may be due
to changes in management regime (especially harvesting practices), changes
in site productivity, inaccurate resource data, or corruption of the
parameters defining the model. Unlike the data required to develop and test
growth models, data for monitoring may be collected at any time, and often
may be drawn from operational resource inventories conducted as part of
routine forest management activities.

Applications: A growth model is of relatively little use on its own, and is
normally used in conjunction with other resource data obtained during
operational resource inventory (Fig. 1.1, p. 2). Such data should provide
area estimates for each forest unit, and details of its species composition,
stand condition, and site productivity. Resource data have been integrated
in this way since inventories began, but recently attempts have been made
to define principles and procedures for efficient integration (e.g. Lund
1986). Integration simply implies combining data obtained in different
places, for different reasons, by different agencies or at different times. This
may involve combining regional inventories to provide national or global
statistics, finding correlations between timber inventory and soil or fauna
survey data, or using growth models to extrapolate static inventory data and
estimate sustainable yields. Integration does not necessarily mean that you
have to measure everything in every inventory. On the contrary, it is better
to do a few things well than to do a lot inadequately. However, in designing
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Fig. 5.2. Efficient placement of ten samples to (A) estimate slope of a straight
line, (B) detect curvilinearity where variance % X, (C) calibrate an
optimum, (D) detect a threshold, and (E) fit a curved relationship.

a permanent plot system, it is necessary to be aware of the information
requirements of other researchers and other disciplines, and to consider how
these requirements can be efficiently accommodated in the design. It is not
necessary that all these requirements are satisfied immediately, but rather
that the design accommodates these needs so that they can be phased in as
required and when feasible.

Data for Modelling

One of the main principles in collecting data for growth modelling is to
sample the full range of site and stand conditions, so that model predictions
may be interpolations rather than extrapolations (at least in the sense of
stand conditions; all forecasts are an extrapolation in time). Further
optimization of sampling design depends on what you are sampling for, but
some guidelines can be explained for the simple case with a single
explanatory variable (Fig. 5.2). If you know that a simple straight-line
relationship exists (e.g. a volume tariff line), the optimal strategy is to
gather half the data from each extreme (A); this gives the best estimate of
slope. At the other extreme, if you are looking for a threshold (e.g. the onset
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of density-dependent mortality), the best strategy is to space samples
equally across the region of interest (D). In practice, it is rarely so simple.
Often, we may need to test for a curved relationship (e.g. quadratic or
asymptotic), and may have a situation where the variance increases with the
explanatory variable (e.g. stem volume). In such cases, it is helpful to
sample at several points through the range, with sampling intensity
increasing with the variance (B). Some optimum may be suspected (e.g.
growth curve), and increased sampling in the vicinity of the optimal may
improve the estimate (C). Studies with spline curves suggest that a useful
strategy in many situations is to sample the full range with intensity
increasing towards the extremes (case E with samples at
cos(Bi/n), i=0, 2, . . ., n).

These principles of sampling apply to the four factors that should be
considered in setting up and maintaining a permanent plot system for
growth modelling:

1. Temporal distribution: Growth varies from year to year, fluctuations can
be extreme, and mortality tends to be clustered in both time and space.
Short time periods may give rise to biased growth estimates, and longer
periods of observation offer a better basis for modelling. This requires a
long-term commitment of resources.

2. Spatial distribution: The uncertainty associated with extrapolations
(Fig. 5.1) applies equally to geography as to other aspects of the database.
Permanent plots should sample an adequate geographical range, including
latitude, longitude, elevation and other topographical features such as ridge
and valley locations. Although a systematic grid sample will provide a good
range of latitude and longitude, some form of stratified sampling may offer
a better way to incorporate other topographic aspects.

3. Site factors: Many factors that influence growth cannot easily be
manipulated experimentally (e.g. soil type and depth), and the sampling
system should ensure that the full range of these factors is included in the
permanent plot system.

4. Stand conditions: Growth is also influenced by stand structure and
composition, and these can, and should be manipulated experimentally to
provide the best database for modelling. This means that in some locations,
clusters of plots should be established, with some plots left undisturbed,
some managed routinely (i.e. usual forest management operations), and
some subject to a range of experimental treatments.
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Placement of Plots

Ideally, permanent plots should sample the geographic range over which the
growth model will be used, and encompass the full range of forest types,
site productivity and topography. A broad range of stand basal area and tree
sizes should be sampled for each tree species. This should be achieved by
some form of stratified random sampling, as subjective location of plots
may introduce bias. Strata may be based on standing volume, species
composition, soil type or any other objective means. Care with the
placement of the plot boundary is necessary to avoid bias when establishing
plots at the forest edge (see e.g. Fowler and Arvanitis 1979), but such
locations must also be sampled. The need for random location based on a
thoughtful stratification cannot be over-emphasized.

There is some evidence that gains in the precision of growth predictions
can be achieved by sampling more large trees (e.g. Gertner 1987b), and it
may be desirable to establish some plots around subjectively selected large
trees. Such subjective selection of plots may introduce bias, but this may be
an acceptable trade-off to reduce the variance associated with growth
predictions from large trees. To minimize bias, these plots should constitute
a small proportion of the total, and should be selected within strata based on
site productivity and stand density (e.g. stand basal area).

Data for growth modelling should span a range of site and stand
conditions at the stand level, and a range of tree size and competition at the
tree level. One way to appraise a growth modelling database is to compare
it with other resource data indicating conditions found in the population of
interest (the whole forest estate). Beetson et al. (1992) compared
scatterplots of site quality versus stand basal area, and of tree size versus
competition, arguing that these were the most significant variables for
growth modelling and prediction. The graph in Fig. 5.3 contrasts the range
of site quality and stand basal area in the permanent plot database (solid
lines) with those recorded during static inventory (dotted lines) within the
same climate-soil stratum. Ideally, the envelope (i.e. convex hull) enclosing
the permanent plot data should also enclose all the other resource data, so
that no extrapolation is necessary to make inferences about these data.
Beetson et al. (1992) found that their database fell short of this ideal, but
found that only four additional plots (chosen from temporary plots, marked
× in Fig. 5.3) would stretch the envelope to satisfy this need. The existing
permanent plot database included 25 plots within this stratum, but many of
these plots sampled similar stand conditions. Beetson et al. (1992)
suggested that if five new plots were established (×), then all but four of the
existing plots (+) could be abandoned, and resources could be redirected to
other less well sampled strata. No existing data would be discarded, and
measurement records (up to 50 years) from these discontinued plots could
still be used in growth modelling. The nine plots chosen to represent this
stratum were chosen not only on the basis of Fig. 5.3, but also on an
analogous scatterplot of tree diameter and competition (the basal area in

>dlarger trees, G , one of the best non-spatial predictors of tree growth; see
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Fig. 5.3. Database weaknesses revealed by comparing dynamic and static
inventory data. Five new PSPs (×) would improve the database for
modelling (Callitris forest in Queensland, redrawn from Beetson et
al. 1992).

Chapter 8). The addition of these new plots would mean that only negligible
extrapolation (not only in terms of stand basal area and site form as seen in
Fig. 5.3, but also in terms of tree diameter and competition) would be
required to make forecasts for all the Callitris forest in the region.
Computer programs also are available to aid the optimal design of sampling
schemes (e.g. Kennard and Stone 1969).

New permanent plot installations should be established only as part of
a carefully planned series designed to give reasonable coverage of some
defined range of site, geography, stand condition and treatment. The
primary objective should be to provide data for defining response surfaces,
thus studies should involve many locations with minimal replication at each
location. Satisfactory growth models are dependent upon the availability of
high-quality data from a wide range of stand conditions and treatments.
Some plots should be monitored without disturbance (i.e. no harvesting) for
long periods to enable the most exacting evaluation.
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Experiments

Both passive monitoring data (i.e. survey data from forest areas under
routine management) and treatment response data (i.e. from paired
treatment and control plots) from designed experiments are necessary. In a
designed experiment, all the variables are supposedly held constant except
those varied according to the design; hence all the variables are accounted
for. Data collected without the aid of an experimental design may be suspect
for a variety of reasons. The explanatory variables are often highly
correlated and frequently the region of interest is inadequately sampled.
Important variables may be omitted because their relevance was not
realized. These factors may limit the ability of the model to make reliable
predictions (see Chapter 6).

Although harvesting and other silvicultural treatments in passive
monitoring plots will influence stand density, other unknown factors may
also determine stand density and composition. Thus, there is a very real
danger that attempts to describe the behaviour of the stand as a function of
stand density, for instance, will be confounded by the effects of site, pest
and disease occurrence, and past history. To find out what happens to a
system when you interfere with it, you have to interfere with it, not just
passively observe it (Box 1966).

Snedecor and Cochran (1980) reported a survey which revealed the
unexpected result that the application of farmyard manure reduced the yield
of potatoes by half a tonne per hectare. In contrast, in controlled,
randomized experiments, manure increased the yield by three to six tonnes
per hectare. The discrepancy may arise because those who had manure were
livestock farmers with little interest in growing potatoes, and those who
were most skilful at growing potatoes had no manure. Can we be sure that
a similar problem in our data is not hampering our attempts to develop
growth models (e.g. stand density and site productivity interaction)?

Passive monitoring data may indicate greatest growth on the best sites
with high stand basal areas, and little growth on poorer sites with low basal
areas. A growth model constructed from such data could suggest that
greater increments accrue in stands with greater competition, since the
effects of site quality and stand density could be confounded. Thus a model
constructed from such passive monitoring data would predict a reduction in
diameter increments following thinning, whilst a model from experimental
data (e.g. thinning studies) would show an increase in diameter increment
after thinning.

Controlled experiments (i.e. with paired treatment and control plots)
thus provide a useful way to improve a database and to sample extremes of
stand condition. Consideration should be given to establishing a series of
plots in homogeneous tracts of each forest type. Some should be left at
maximum stocking to allow expression of density-dependent mortality and
natural basal area, some should be harvested and treated as a managed
stand, and others should be heavily thinned to allow expression of open-
grown development and regeneration. It does not matter that extreme
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treatments may never be applied in practice; they remain essential to
properly define the response surface for growth models.

Plots which are intended to remain untreated, for example to allow
expression of density-dependent mortality and natural basal area, should be
clearly marked and excluded from any harvesting operations. Such plots,
like all experimental plots, should have adequate buffers to eliminate edge
effects. The appropriate size of the buffer depends on potential tree size, but
generally should be wider than the mature tree height. Alder and Synnott
(1992) recommended a 100 m buffer for all logging and thinning
experiments. Other plots intended to receive routine management should be
marked in such a way as to be invisible to forest workers so as to ensure
representative treatment. A monitoring plot should be difficult to recognize
for those who do not know where it is, and easy to recognize for those who
do and are looking for it. Plots must have unambiguous addresses and this
requires precise grid references and detailed instructions for relocation of
each plot. In some areas, plots may suffer excessive trampling through high
visitation, and to overcome this problem, Dawkins and Field (1978) marked
their plot locations clearly, but 50 m away from the plot, and used buried
steel markers at all four plot corners.

Number of Plots

The number of plots may be dictated by the resources available. There is
little point establishing more plots than can be maintained. It is better to
have few plots providing reliable data, than many plots with inadequate
management. The number of plots will also be determined by the variability
of the forest estate, and the need to sample the full range of forest
conditions. Alder and Synnott (1992) suggested one permanent plot per
1000 ha of forest, subject to a minimum of 50 and a maximum of 1000
plots. This may serve as a guide, but the recommended number depends on
local conditions and resources. The quality of the plot is paramount, and if
resources are limiting, it is better to reduce the number of plots and maintain
standards, than to compromise data by attempting to do too much with
insufficient resources.

A database comprising a few plots each with many remeasurements
violates statistical assumptions of independence, and may require special
analyses (West et al. 1984, 1986, West 1994). This violation becomes
significant when the number of remeasures is large relative to the number
of plots. An alternative is to use partial replacement, abandoning plots after
several remeasures and establishing new ones (e.g. Tennent 1988).
However, some plots must be retained for long periods with many
remeasures to allow convincing tests of model performance.
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Size and Shape of Plots

A general guide to the choice of plot shape is to minimize the plot edge to
area ratio, and reduce the number of corners. This leads to the choice of
point samples, or circular, triangular, or four-sided plots according to the
emphasis attached to corners and edges. Triangular plots are rarely used
(outside Denmark), perhaps because of the high edge to area ratio, and four-
sided plots are generally rectangular (or square) to help relocate corners and
boundaries.

Point samples have an advantage in being defined by a single point and
an angle (often expressed as a basal area factor), but they are inconvenient
when dealing with recruitment, and create difficulties for some single-tree
models. Circular plots are also defined by a single point and a radius, but
the plot boundary becomes more difficult to define as the plot becomes
large, as unlike polygonal plots, sight lines cannot be established along
boundaries. As these plots are defined by a single marker (the centre), they
may be more difficult to relocate if the marker is damaged or removed.
Because of these and other limitations, circular plots and point samples
should not form the basis of a dynamic inventory system for growth
modelling in mixed forests.

Rectangular plots are more versatile. Plots marked by four corner pegs
may be less likely to be lost than circular plots marked by only one peg.
However, a more important reason for the choice of rectangular plots is
their straight edges, few corners, and convenience. Square plots have a
smaller edge to area ratio than other quadrilaterals, and are recommended
for dynamic inventories.

Ideally, the plot size should be sufficiently small that the plot is
homogeneous, at least with respect to forest type and site productivity, and
sufficiently large to provide a representative sample of the forest stand. If
a spatial model is contemplated, the plot should be large enough to allow
estimates of competition to be determined for several trees on the plot.
Larger plots offer greater flexibility, and plots of one hectare are
recommended for growth studies in mixed forests (e.g. Lanly 1981,
Campbell 1989, Alder and Synnott 1992). Some ecological studies may
warrant even larger plots. One way to appraise the adequacy of a sample is
to see if it approaches an asymptote on the species–area curve (McGuiness
1984, Campbell 1989). In Amazonian terra firme forest, the species–area
curve (for trees over 10 cm dbh) may approach an asymptote between two
and three hectares (Campbell et al. 1986).

Unless circular plots or point samples are adopted, the orientation of the
plots needs to be considered. This may be inconsequential for square plots,
but may be significant with elongated rectangular plots. Three possibilities
exist. The plots may be randomly oriented, may be oriented according to the
cardinal direction (e.g. long axis north–south), or may be oriented according
to topography or other environmental gradients. In view of the need for
plots which are homogeneous with regard to site productivity, the last of
these is likely to be preferable. If plots are elongated, they should, for
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Fig. 5.4. Recommended plot layout for permanent sample plots.

growth modelling purposes, be oriented with their long axis perpendicular
to the slope (i.e. parallel to contours), or any other perceived gradient of site
productivity to minimize within plot variation. In contrast, static inventory
with temporary inventory plots may attempt to maximize within plot
variation (to reduce the between plot variation and thus the sampling error)
by orienting elongated plots along environmental gradients. Dynamic
inventory for growth model development has a different goal, and thus
within plot variation should be minimized.

Data Collection

The following is a very brief review of data collection procedures. Readers
seeking more detailed information should refer to one of the standard
manuals (e.g. Hutchinson 1982, Curtis 1983, Alder and Synnott 1992).

Measurement Procedures

Data used for growth research must be of a higher quality than that
generally obtained in static inventory. For example, a diameter
measurement of 50 ± 0.5 cm may seem precise enough for many purposes,
but if a remeasure indicates 51 ± 0.5 cm, the growth estimate will be 1 ± 0.7
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cm, which is not sufficiently precise to distinguish growth from
measurement error. Diameters should be measured and recorded to the
millimetre, and conventions regarding rounding to the nearest or lower
millimetre should be maintained from one measure to the next. The same
principles apply to heights and all other parameters.

Providing that plots continue to provide useful information, existing
standards and procedures should be maintained to ensure uniformity. The
continuity of standards is critical, and any changes to standards should be
considered carefully to ensure compatibility. If compatibility cannot be
ensured, dual procedures should be continued for at least one
remeasurement cycle.

When new plots are established or procedures for existing plots are
revised, the following requirements should be accommodated (Whitmore
1989):

1. Divide each plot into subplots of maximum size 20 × 20 m. Mark
corners permanently. Brightly coloured plastic pipe is durable, visible and
easy to transport, but may be stolen or destroyed by elephants or primates.
Locally made wooden posts are often used, but must be made from durable
wood of suitable dimensions to resist decay and simplify plot relocation. A
good precaution is to dig trenches in case posts are lost, but to minimize
disturbance, these should be dug only outside the plot at the four external
corners (× in Fig. 5.4). Since logging can completely destroy all plot marks,
buried steel markers may be used in conjunction with these.

2. Trees must be numbered and permanently marked so that no confusion
regarding identity can occur. Never use the same number twice. Do not re-
use the number of a tree which dies but give ingrowth trees new numbers.
Paint numbers on trees, or use an embossed aluminium tag fastened with an
aluminium nail. Numbers may also be scribed (cut) onto trees, but care must
be taken to avoid callus growth. Nails should be long enough to be firmly
secured in the wood of the tree, while leaving sufficient room for growth.
Plastic tags should not be used as they may deteriorate rapidly under
tropical conditions. The nails may need renewing about once every five
years. Nails should be below the merchantable section, and should always
be on the same side of the tree (e.g. northern or uphill) for ease of
relocation. If theft of nails or tags occurs, use paint or nail the tag near
ground level and cover it with litter.

3. Make a map to show the position of every tree to the nearest 1 m or
better. Work one subplot at a time. A maximum subplot size of 20 × 20 m
makes mapping easy. Without a map, confusions always occur because of
death, ingrowth or lost number tags. Place measuring tapes along two
adjacent sides of the subplot, and estimate the coordinates of each tree.
Other alternatives include pentaprisms (e.g. Reed et al. 1989) and laser
rangefinders. It is important to make a sketch map as well as a record of
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coordinates, so that any errors may be detected and rectified while the
measure crew is still in the forest.
4. Specify the minimum girth for the smallest tree to be included. This
becomes important later when ingrowth occurs. For the sake of clarity, note
when surveys originally using imperial measure have been converted to
metric measure. For example, 12 inches girth = 9.7 cm diameter, but the
metric minimum is commonly 10 cm.
5. Since girth can be measured sufficiently accurately only if always done
at the same place, it is best to mark (paint) the point of measure on each
tree. Paint marks need renewing every 3–4 years. In wet weather emulsion
(acrylic) paint is easier to apply than oil-based paint. Some paints
(especially oil-based paints) may cause abnormal bark shed and callus
growth (e.g. on Eucalyptus maculata and Flindersia pimenteliana), so
paints should be tested before general use. A less accurate alternative for
species that shed their bark, is to measure girth a fixed distance above the
number-tag nail; at least 20 cm away because some species develop swollen
callus tissue around the nail. Make sure the girth measurement point is well
above all buttresses, for these may grow upwards. Take care that blazes
made to identify the tree are not too close to the point of measurement.
6. The measuring tape must be of metal or fibreglass because cloth tapes
stretch when wet. All measuring tapes should be checked periodically
against a reliable standard.
7. Since errors occur in recording girths, measure every tree twice
independently. If the second reading differs, make a third one. Loose bark
(except on species with corky or flaky bark), epiphytes and climbers must
be removed from the line of measurement. The booker should always repeat
the measurement for the measurer to confirm. Make sure that your helpers
can read and can use all instruments (e.g. tapes, callipers, hypsometers, etc.)
correctly.
8. If, despite precautions at initial survey, a buttress grows up into the
point of measurement, the point will need to be moved further up the bole.
This alters the measurement base for that tree, so measure at both the old
and new heights, and record that a change in measurement height has
occurred.
9. Trees with more than one trunk at the height of measurement should be
given separate tree number and girth records. Hutchinson (1982) gave
detailed guidelines for the measurement of broken, fallen and coppice
stems, and these may be useful to researchers working in the tropics.

What to Measure

Plot location should be described and its coordinates (e.g. grid coordinates
of the SW corner) and orientation (e.g. direction of long axis) should be
recorded. Topographic features (altitude, slope, aspect, distance to ridge),
climate (rainfall amount and distribution), indicator plants, and soil physical
characteristics (depth, texture) should be documented. Uniformity of the site
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should be assessed. These variables need only be recorded at plot
establishment, and at occasional remeasures.

Factors which may cause fluctuations in the observed growth include
drought, heavy seed crops, pest populations, disease outbreaks and fire
damage. Such information may guide the interpretation of outliers in
regression analysis. Thus the occurrence of such events should be recorded
on the plot measure record.

It is impossible to measure all individuals of all sizes and species, and
is irrelevant to measure all seedlings and saplings since most will die. All
trees (of all species including useless and dead stems) exceeding 10 cm dbh
should be measured (e.g. Prance 1984, Campbell 1989, Alder and Synnott
1992). This is necessary to enable estimates of stand basal area, an
important variable in predicting tree growth and stand dynamics. Limits as
small as 3 cm have been adopted in natural coniferous forests (e.g. Arney
1985, Vanclay 1988a), but may be impractical elsewhere. Reliable ingrowth
data require that the measurement limit is less than the desired ingrowth
size (e.g. for recruitment at 10 cm dbh, measure all trees exceeding 8 cm).
Subplots within the main plot may be used to record data on stems smaller
than this measurement limit.

Voucher specimens should be collected for each tree, even if sterile, and
entered into a permanent herbarium collection (Campbell 1989), unless it
is very common in the locality and you are certain of its identity. Voucher
specimens should, if possible, include several leaves joined to a branchlet,
and any fertile material (buds, flowers and fruits), and any other distinctive
parts (e.g. bark). These should be pressed, dried and mounted on paper, or
should be preserved in alcohol. All parts should be clearly labelled with tree
and plot numbers, location, date and collector.

Tree diameter and status (alive/dead/felled and erect/leaning/fallen with
cause if evident) should be recorded at every measure. Diameters should be
measured at 1.3 metres (from the ground on the uphill side of the tree) or
above any buttress, and should be measured perpendicular to the axis of the
tree (e.g. Avery and Burkhart 1994, Philip 1994). Every tree present at the
previous measure should be accounted for. Natural mortality should be
discriminated clearly from harvesting, treatment and other removals. Trees
which appear lost should be recorded as such, and should not be attributed
to death unless there is evidence to support this assumption.

Height, crown parameters and estimated defect should be recorded at
establishment, and periodically at remeasurements. The vantage point for
height measurement should be carefully chosen to allow good visibility and
a sighting angle of around 45 degrees (Romesburg and Mohai 1990). The
Dawkins (1958) system of classification (emergent, full overhead light,
some overhead light, some side light, no direct light) is a simple, proven
system which may be a good predictor of increment (e.g. Wyatt-Smith and
Vincent 1962, Alder and Synnott 1992, Silva et al. 1994), and should be
recorded for all trees on permanent plots.
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In summary, the following variables should be measured:

1. At the initial enumeration (and occasionally remeasured as new
technology improves the precision that can be attained):

(a) plot location, dimensions, orientation and area,
(b) species and coordinates of all trees on the plot,
(c) topographic details, including altitude, aspect, slope, position on
slope,
(d) forest type and floristic attributes,
(e) physical soil characteristics (depth, texture, colour, parent material),
and
(f) uniformity of the site;

2. At the first measure, immediately after any harvest, and periodically
(e.g. every second or third measure):

(a) sufficient tree heights for the determination of site productivity (or
data necessary for alternative estimates of site productivity),
(b) merchantable heights and defect assessments of all stems (including
non-commercial species, as utilization standards may change with time),
and
(c) crown characteristics (position, length, width, form, etc.);

3. At every measure, assess all stems (including non-commercial; every
stem from the previous measure must be reconciled) for:

(a) diameter (over bark, breast high or above buttress), height to
measure point, and validity (to indicate defects at measure point and
anomalous but correct increments),
(b) status (alive, dead, harvested, treated) and stance (erect, leaning,
fallen, broken), and
(c) tree coordinates (recruits only);

4. As necessary, record the occurrence of:
(a) logging, treatment and other activities, and the prescription used,
(b) scars and other damage which may affect measurements or growth,
(c) meteorological phenomena (drought, flood, etc.),
(d) mast years (heavy seed crops),
(e) pests, diseases, fire, or any other aspect which may affect growth.

The measure crew must check doubtful items and make sure that the current
measurements are correct. They should record that such checks have been
made. Decrements and other anomalies in the data should not be altered
once the measure crew has departed the plot. Although these data may at
times look unrealistic, editing the database to alter these data may cause
significant loss of information. At best, this practice may result in
unrealistically low estimates of standard error associated with any functions
developed. At worst, it may exclude the opportunity to investigate some
originally unsuspected event (e.g. weather patterns and climate change) or
unforeseen topic. There may be good reasons to edit or omit data from some
specific analysis, but the main database should never be altered.
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The quality and cost of data available for analysis may be improved
substantially through the use of electronic data recorders (e.g. Fins and Rust
1987, Wood 1990). Electronic hand-held devices enable basic checks of the
input data to eliminate simple errors (e.g. transposition) at their source,
comparisons with previous measures, and speedy transfer of data to a
central database. They can ensure that the measurer does not progress to the
next tree or plot until all necessary variables have been recorded.

When to Remeasure

Theoretically, the frequency with which plots should be remeasured is
influenced by two factors: ease of re-locating and identifying trees, and the
rate of growth or change relative to the measurement error. The increment
should be substantially greater than the error associated with measurement
if the remeasure is to be useful; shorter intervals lead to excessive variance
in regression functions. If the precision of measurement is low relative to
the standard deviation of the fitted model (i.e. */F>0.1) (Aitkin et al. 1989)
inflated estimates of variance may be obtained, unless this is allowed for
explicitly in the model. To provide sufficiently precise diameter increment
measurements, trees on permanent plots should be measured to the nearest
millimetre, and the remeasurement intervals should be sufficiently long to
allow at least one centimetre of increment to accrue. One theoretical study
in Nordic forests indicated that longer intervals gave more reliable estimates
of volume increment, and concluded that it was reasonable to measure once
every five years (Ranneby and Rovainen 1994).

Remeasurements must be sufficiently frequent to ensure that the
location of the plot and/or identities of stems are not lost; in some forest
types this may be as frequent as every two years. Conversely, cost
efficiencies demand that remeasurements should not be unnecessarily
frequent. In the tropics, an interval of two to five years may be appropriate
for the plot remeasurements.

As annual increments are generally required, measurements should be
taken on the anniversary of the previous measure whenever possible,
especially for annual or biennial measurements. Always try to measure
during the same season, as trees in the seasonal tropics may exhibit marked
seasonal fluctuations in girth due to changes in xylem water tension (e.g.
Leigh et al. 1982, Lieberman 1982). Remeasurements should avoid periods
of rapid change (e.g. bark shed, rapid growth), should aim to measure
during dormancy where it occurs, and should try to replicate environmental
conditions at the previous measure (e.g. avoid remeasuring immediately
after rain if the previous measure was after a drought).

Remeasurements should also be taken at the time of (preferably both
before and after) harvesting (or silvicultural treatment), and as soon as
possible after wildfire, cyclone or other disturbance. Knowledge of
impending harvesting or treatment is required, particularly if plot
boundaries are concealed, so that the necessary measures can be arranged.
This requires good cooperation with land owners and forest managers. It
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may be desirable to mark plots with buried steel pegs prior to harvesting to
insure against the loss of plot markers.

Administration

Administrative and office procedures associated with maintaining
measurement records are often neglected and can be a major cause of loss
of information. Aspects to consider include the design of field forms,
copying and storing the completed forms, and transferring the data to
computer.

Forms should be designed specifically for plot measurements, and every
column should be clearly marked with the data to be recorded (Fig. 5.5).
The form should have no redundant fields, and staff should become
accustomed to completing every field. Every form should indicate plot
identity, date, page number (e.g. page 1 of 3) and the name of the assessing
officer, and should be completed before departing the plot. If you create a
new form, make a mock-up and test it thoroughly in the field before you
commence normal plot measurements. Forms should be completed clearly
and legibly (use a sharp dark pencil), and no alterations should be made
after departing the plot. Forms should not be transcribed, as this invites
transposition and other errors. Any duplicate copies required should be
photocopied (where photocopiers are not available, transcriptions should be
clearly marked as such, and should be carefully checked by a third person).
Forms should be filed securely and unambiguously, preferably with one plot
per folder, with the forms arranged in chronological order. It is a wise
precaution to have a copy of the data stored in a remote location (e.g.
district and head office).

Details from the previous measure should be available during plot
remeasures. New remeasure forms can be printed by computer and may
include printed details of previous measurements. Alternatively, parts of the
previous measure record can be photocopied to form the new measure sheet,
or the previous data can be downloaded into an electronic data recorder.

As the process of data entry may detect many illegible characters, errors
and omissions, data should be entered onto computer as soon as practicable
after collection, while the measure crew still recall some details of the plot.
Data should be verified (i.e. re-entered independently and compared) by a
different operator to detect any errors in data entry. Electronic data
recorders offer several advantages, including partial validation at the point
of data collection where checks can be made. When data entry is completed,
further validation should screen the data for errors and omissions, and
summary reports should be produced for the information of assessing
officers and forest managers. Copies of the data should be made and stored
in secure remote locations.

Obvious errors and omissions in the computer data file should be
amended, if possible, but the temptation to manipulate the data so that it all
looks consistent must be avoided. The data on the computer must accurately
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Plot No ..... Subplot ..... Page ... of ...

Subplot Dimensions ...... x ...... Date ../../....

Orientation ..... Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assessing Officer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tree number
Coordinates

Family
Genus
Species
Common name

DBH
Point of measure
Valid/approx

Alive/dead/cut/missing
Erect/leaning/fallen
Broken/injury

Tree height
Bole height
Crown position
Crown form
Crown diameter

Merchantable length
Stem straightness
Stem defects

Notes:
Flower/fruiting
Pests/disease

Fig. 5.5. Example of a field form for measuring PSPs.
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reflect the field measurements. An anomalous measurement may or may not
be due to measurement error in the field, and the database administrator's
adjustment remains a guess rather than a fact. Any alteration inserted by the
database administrator should be clearly indicated as such (in the validity
field), and these alterations should be kept to a minimum. It is much safer
to let users edit their own copy of the data as necessary for their own
analyses, than to alter the master copy.

Data can be stored on computer in many ways ranging from simple text
files to proprietary database management systems. No system is superior in
all situations, and the appropriate system should be flexible (can you still
access your data if the software fails?) and understood by the database
administrator and by database users. Byrne and Sweet (1992) contrasted the
database systems of 36 USA-based organizations and found that none
satisfied all qualities that they deemed essential to a good system for a
permanent plot database.

An effective system requires a considerable commitment in staff and
resources to initiate and maintain the permanent plots, and this commitment
must be on-going. The quality of the data is critical. Competent, well
motivated and supervised staff are needed for measurement and for data
management. Sufficient resources and trained staff are essential, or the
quality and utility of data will deteriorate.

Reappraisal

Periodic reappraisal of data collection policy and practice is necessary to
ensure that the data being collected are fulfilling current and perceived
future needs. Reappraisals should address specifically two questions
concerning data quality: "Is the specified quality adequate for current and
perceived future needs?" and "Is the specified quality being attained?".

The need to sample extremes of forest condition has already been
discussed. However, the concept of what is extreme changes over time.
Thus it is necessary to consider if the extremes being sampled are sufficient,
and if not, new plots should be established. The cost of data collection and
handling is high, so plots should be abandoned when no longer useful. The
decision to terminate a plot with a long measurement history should not be
taken lightly, as these plots may be the most valuable for benchmarking
model performance (see Chapter 11). However, it is inevitable that natural
(and human) perturbations (e.g. lightning strike, landslip, insect or fungal
attack, unauthorized felling) will extensively modify some plots. Such plots
may no longer provide useful tree growth data, but may provide useful
regeneration and other ecological data.

Perception of future requirements will change over time, so the data
collection policy should be periodically amended to conform with these
perceived needs. These amendments may require the termination of some
plots, establishment of others, addition of new variables to be measured, or
the deletion of others. However, changes in measurement procedures
(especially deletion of variables) should not be undertaken lightly; stable,
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consistent measurement procedures are essential for growth research. There
should be substantial and continued resistance to changing the plot
measurement system.

Dynamic inventories should satisfy the data requirements for growth
models for decades ahead. In order to provide for this next generation of
growth models, it is appropriate to critically appraise the utility of the
present dynamic inventory, and to establish new plots specifically directed
at collecting data for such future growth models. Such a series of elite plots
should sample the range of forest conditions (and include thinning studies),
but should be established in limited numbers so that appropriate care and
attention can be given to detail and accuracy. The emphasis with these plots
must be quality, not quantity.

Existing Data

The greatest problem facing many agencies is that the data necessary for
growth model development are not available. Plots may not have been
established, may have been neglected or abandoned, and measure records
may have been lost. As there is little that can be done to salvage such lost
data, it is imperative that care and attention are devoted to existing plots and
their measure records. Other problems which severely restrict the utility of
data include unreliable measurements, changes to procedures, and mistaken
or undetermined species identities.

Data for the development of growth models may derive from plots
which were established for purposes other than growth modelling. Such
plots may sample a restricted range of stand conditions, omitting very poor
and exceptionally productive sites, and avoiding extremes of stocking. Thus
these data may not provide an efficient means to estimate response surfaces
by regression equations to predict the behaviour of the forest under various
conditions. Records concerning the establishment of many plots are sketchy
or unavailable, and the reasons for the placement of these plots are
frequently not clear. Some plots may have been randomly or haphazardly
located in defined strata, but others may have been subjectively located.
Any departure from a stratified random approach in establishing these plots
requires some soul-searching on the part of the modeller, in considering the
possible effects of personal bias in choosing plot locations, particularly
where site quality cannot be reliably quantified.

Permanent plots should receive representative management (harvesting,
silvicultural treatment, etc.), except for experiments which sample extreme
stand conditions. This may be assured where plots are marked with
subterranean or other invisible markers, but intentional or unintentional bias
in logging, treatment and other management may become significant when
the plot is visible. Such management bias may not be a problem where it is
reflected in the stand structure (e.g. removal of trees), but the effects of
differences in logging damage and climber cutting may be more insidious.
Differential management should be reflected in stand structure, but tests of
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some permanent plots established for 50 years in Queensland failed to
detect differences between permanent and temporary plots established
adjacent to them.

Growth in the tropics is often highly variable, and this variation may be
attributed, at least in part, to factors such as weather, seed years, pest
populations, disease outbreaks, fire damage, etc. Such information may be
useful for interpreting apparently anomalous data detected during analyses,
but is infrequently recorded and rarely transferred to the database.
Evaluation of site productivity is a major obstacle in predicting yields in
mixed forests, and development of a method for reliable site evaluation, and
acquisition of the necessary data should be a priority.

How serious are these deficiencies so often present in data available for
growth modelling? It is impossible to predict what difficulties these and
other deficiencies may introduce, until the data are actually used in earnest.
No data set can be perfect, but many will be found to contain deficiencies
that will frustrate future analyses. Although plot remeasurement may appear
to the measure crew to be unrewarding, collection and management of
dynamic inventory data is vital to the informed forest management.

Synthesis

Permanent plots provide the basis for growth modelling, yield prediction
and sustained yield management, and the reliability of these data is crucial
to these and many other aspects of forest management. It is appropriate that
this chapter appears near the middle of this book; data collection is central
to model construction. To obtain reliable data, it is necessary to:

1. ensure consistent standards,
2. sample a wide range of stand and site conditions,
3. provide both passive monitoring and experimental plots,
4. number, mark and map all trees on all plots,
5. remeasure frequently enough to enable relocation of plots, but allow
enough time for growth to exceed measurement errors, and
6. check that measurement records are unambiguous and secure.

In the next chapter, we assume that suitable data are available, and move on
to consider how a growth model should be constructed.
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Exercises

5.1. Design a form to record field measurements during the initial
enumeration of a permanent plot in a forest near you. Take it to the field and
try it ! Enter the data from the form into a text or spreadsheet file on a
computer. What problems did you detect in the field and during data entry,
and how would you improve your form next time? Would you use the same
form when the plot was re-measured; if not, what changes would you make?
How could you include some of the data from the initial measure on the
remeasure form, so that field crews could cross-check these details?

5.2. Document ways that the data collected as part of Exercise 5.1 could
be validated on the computer. What additional checks could you make when
remeasured data become available? What errors might remain undetected
by these procedures? Could these procedures be implemented on an
electronic data recorder so that these checks could be made automatically
in the field during plot remeasurement?

5.3. How do your field form and validation procedures compare to those
in use by your organization (or by your local forest service or research
institute)?

5.4. You are a research officer at a field station and have funds to
investigate growth response of Callitris to different stand basal areas. Your
data will contribute to a larger growth modelling project. You have a large
area of homogeneous Callitris forest with 17 m ha  stand basal area and2 !1

17 m site form (see Fig. 2.2, p. 20), and funds for five plots (one control and
four treatments). How would you manage your project? Are five plots
enough, or would you prefer to have twice as many plots of half the area?
What area and dimensions should the plots be? How wide should the buffer
be? What complications would be introduced if your forest contained more
than one species, and how would you overcome them? Discuss. Hint: check
Fig. 5.2 (p. 84) again.

5.5. You are involved in a project to adapt the FORMIX model (p. 41)
to your region. Could you use the data collected in Exercise 5.1? What
additional data would you need, and how would you go about collecting it?
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Chapter Six

Constructing Growth Models

Constructing a growth model is not easy, even if suitable data are available.
Some guidelines can be given, but a universal step-by-step procedure is not
feasible because too much depends upon specific characteristics of each
case. There are many issues involved, and this chapter aims to provide a
general understanding rather than an intimate knowledge of how to deal
with the problems. But after reading this chapter you should realize where
problems are likely to occur, and be able to seek more detailed advice from
one of the standard texts indicated.

A good model does not simply happen; it is planned that way. You
cannot simply combine several haphazardly formulated relationships and
expect to get reliable predictions. Instead, you should give careful thought
to the design of the model at the outset of model construction. You should
consider

1. what the model will be used for,
2. what inputs will be provided,
3. what outputs are required,
4. the data available for fitting the model, and
5. the resources available to construct, test and use the model.

These important factors may vary from case to case, so few universal
guidelines can be given. However, two general principles apply:

1. Parsimony or Occam's razor: Entities should not be multiplied beyond
necessity. In other words, do not include unnecessary variables and
parameters in your model.
2. Keep it simple. Unnecessary complexity does not improve a model, and
may create many problems. Simplicity may be defined in many ways, but
a useful definition is ease of disproving (Oderwald 1991).



104 Modelling Forest Growth and Yield

Model Design

At this point, it is necessary to know the capabilities of the different
modelling approaches, and the requirements of the particular situation for
which the model is being constructed (see Chapters 2–4). The first step in
model construction is to prepare an outline of the model (cf. Exercise 4.1,
p. 77), formulate the functional relationships required, and fit the functions
to data. Here we consider some aspects of model formulation, including
what variables to include, what equation to use, and how to fit the equation
to the data.

Choice of Variables

Variables used in growth models should not be an arbitrary collection of
those correlated with growth or yield in a forest stand, but should be
carefully chosen to ensure biologically realistic predictions across the whole
range of possible conditions. To understand how to achieve in a model, we
need to begin by defining some types of variables that may be used in
modelling.

The response variable (Y variate) is the thing that we are attempting to
predict or explain, and is sometimes called the dependent variable. The
explanatory variables (X variates) are those used as the basis for the
prediction. These are sometimes called independent variables, but I avoid
this term because they are rarely independent in the statistical sense. Binary
variables take the value zero or one, and may be useful as a "switch" to alter
the response for particular situation (e.g. habitat or soil type). They can be
included in regression analyses just like any other explanatory variable. The
multi-dimensional analogue of the binary variable is the qualitative
variable, which may take a given range of integer values (i.e. 0, 1, . . ., n),
and is equivalent to a set of n binary variables. If a regression package does
not allow the use of qualitative variables, the same result can be obtained

i using n binary variables (Z) with Z = 1 when the qualitative factor (e.g. soil
type) is i, and zero otherwise.

There are several factors which may guide the selection of possible
explanatory variables. Most obvious is the need for reliable data. Obviously,
if a certain variable is not present in the data available for model
development, then that variable cannot be included in regression analyses
leading to the development of a growth model. Less obvious is the
availability of information at the time of application of a growth model.
Research plots may record numerous measurements concerning stem form,
crown size and shape, etc. However, if the principal use of a growth model
is to project operational inventory data in order to schedule timber harvests,
then only the variables which are (or can be) routinely measured in
inventory assessment should be included in the model as explanatory
variables.

As in any application, the results are only as reliable as the inputs. Thus
a growth model which employs a variable that cannot be accurately
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Fig. 6.1. Concepts of precision and bias. The target is a useful illustration, but
the true value is usually not known when sampling. Thus accuracy is
judged from precision, but care is needed to avoid bias.

determined (i.e. precisely and without bias, Fig. 6.1) is unlikely to provide
good estimates of growth and yield. This applies not only to development
data, but also to data used in applications. For example, internal stem defect
may be measured with painstaking accuracy in research data, but since it
cannot yet be determined with reasonable accuracy in the field, it should not
be used as an explanatory variable in growth models.

An understanding of the biological processes affecting growth and
change in trees and forests can help modellers in two ways. It should help
to formulate hypotheses and select potentially useful explanatory variables
and relationships for the development of models. It is also necessary for
proper evaluation and interpretation of alternative model forms. Any
relationship that violates accepted biological principles should be rejected,
even if it results in efficient predictions for a particular data set. For
example, a negative coefficient for site index may suggest that there is less
growth on better sites, and this is not tenable with the concept of site index.
Such conflicts are often indicative of an error (e.g. some data incorrectly
recorded or entered on computer) or other anomaly in the database (e.g.
excessive correlation between explanatory variables). Special techniques
such as ridge regression may alleviate some of these problems, but
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anomalies in model coefficients should cause careful re-examination of the
principles, the model and the data.

Passive monitoring plots (i.e. without experimental treatments) may
reveal that the highest growth rates can be found on the best sites with high
stand basal areas, and that little growth occurs on poorer sites with low
basal areas (see p. 88). A growth model constructed from such data might
suggest that greater increments accrue in stands with more competition, as
the effects of site productivity and stand density would be confounded.
Thus a haphazardly constructed model derived from such passive
monitoring data would predict a reduction in diameter increments following
thinning, whilst a model from experimental data (e.g. thinning studies)
would show an increase in diameter increment. Even if no experimental
data are available, the modeller can improve on the haphazard model by
deliberate inclusion or exclusion of terms in the model (e.g. by excluding
the contradictory site productivity term, even if significant, to ensure
sensible extrapolation).

Growth and Yield Equations

It is important to understand the relationship between growth and yield.
Growth refers to the increase in size of a population or an individual over
a given period of time (e.g. growth in volume of a stand, in m ha y ).3 !1 !1

Yield refers to the final size of a population or individual at the end of a
certain period (e.g. total volume produced by a stand, in m ha ), and3 !1

usually includes any removals (e.g. thinnings). A growth equation for even-
aged stands predicts the growth of diameter, basal area or volume in units
per annum, whilst a yield equation predicts the diameter, stand basal area
or total volume production attained at a specified time (i.e. age). Thus a
growth function may indicate that at age t a stand is growing at dy/dt units
per annum, whereas an equivalent yield function indicates that a stand at
age t has produced y units. The notation dy/dt simply means the change in

2 1y observed during a very short period of t, so that if t !t  spans a very short
time, )t becomes very small, and

This is known as differentiating, and the converse, integration, is the
analytical equivalent of summing the increments observed over many short
periods, or alternatively, calculating the area under the growth curve. You
need to understand these concepts for efficient modelling, and should refer
to an introductory calculus text for clarification and further details.

Figure 6.2 illustrates growth and yield curves derived from a single
equation. The symbols on both curves represent equal 5-year intervals,
despite their unequal spacing on the growth curve. The growth function in
Fig. 6.2 is expressed as a function of stand status y, but could equally well
be given as a function of time t. The two equations are intimately related;
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Fig. 6.2. Growth and yield forms of equations and curves are analogous. This
is the logistic equation, but the principle applies to all growth and
yield equations. Points on both curves represent 5-year time
intervals.

0either one can be derived from the other (if Y , the value of Y when t = 0, is
given).

A yield equation may be produced by integrating the growth equation,
and conversely, a growth equation may be obtained by differentiating the
yield equation. Yield may also be determined by projecting the growth
model, one step at a time, through the required number of years and
summing the increments. The latter is the more flexible approach, as yield
models generally do not allow for changes in management regime. In
uneven-aged forests, models which express the status of the forest at some
future time are termed yield models, and those which express increment are
growth models.

Empirical Equations

Empirical equations are expressions which describe the behaviour of the
response variable without attempting to identify the causes or to explain the
phenomenon. This does not mean that empirical functions do not provide
biologically realistic predictions, nor does it mean that they are inferior to
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supposedly biologically-based equations. They can and should be
formulated to behave in a biologically realistic way across a wide range of
possible conditions. The most widely used form of empirical equations, and
the only form considered here, is the linear equation.

Linear equations are not necessarily straight lines, but are equations in
which the explanatory variables enter in a linear (i.e. additive) fashion:

(6.1)

where Y is the response variable (e.g. diameter increment), the Xs are
explanatory variables (e.g. tree diameter, site productivity, stand basal area),
the $s are parameters to be estimated, and Q is the error term. For
convenience, the error term is often omitted from equations, but is assumed
to be present in its additive form unless explicitly shown otherwise, or the
left-hand side of the equation refers to the expected response ì (note that

i j jY = ì+Q). An explanatory variable X  may be a transformation of X  (e.g. X 2

j j k or ln X ) or an interaction term (e.g. X X ). The response variable Y may also
be transformed to alter the shape of the relationship or to emulate a
multiplicative relationship between the explanatory variables (e.g. ln Y).

Linear equations are widely used in growth and yield studies, and offer
several advantages. Most computers and many pocket calculators have
reliable packages to fit such equations to data. The solution to the equations
is unique, easily obtained, and rather robust, even when assumptions
implicit in the method are violated. However, there are also disadvantages
with these and other (e.g. non-linear) empirical equations. They often do
little to further understanding of the processes involved in the system being
modelled. While they may describe the data satisfactorily, they may give
anomalous estimates for values lying outside the range of data on which
they are based. Careful choice of the variables used and transformations
applied will help to overcome these problems.

Theoretical Equations

In contrast to empirical equations, theoretical equations have an underlying
hypothesis associated with the cause or function of the phenomenon
described by the response variable. There are few theoretical equations
formulated specifically for forestry applications. Most theoretical equations
have been borrowed from other disciplines, and as a result may be rather
empirical for some forestry applications. However, some general principles
govern the behaviour of many systems, and provide the basis for these
theoretical equations.

Bertalanffy (e.g. 1941, 1942, 1949, 1968) hypothesized that the growth
of an organism could be represented as the difference between the synthesis
and degradation of its building materials. He assumed that the processes of
anabolism (synthesis) and catabolism (degradation; these assumptions were
attributed to Pütter 1920) could be expressed as allometric functions of
mass (Y ), and thus growth (dY/dt ) would approximate
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where " and ( are the constants of anabolism and catabolism respectively.
He argued that catabolism was generally directly proportional to weight in
animals, and that in any case, small deviations in ( from unity would have
little effect on the form of the relationship. The parameters " and ( are
highly correlated, causing problems when fitting the model, and the
simplified form with ( = 1 is more convenient and fits most data almost as
well as the more general form of the equation.

Bertalanffy (1949, 1968) argued that " could vary between b and 1, but
would generally be b for animals. He did not propose any specific value of
" for plant individuals or populations. The generalized form of the equation
(i.e. value of " not constrained) is sometimes called the Chapman-Richards
equation because of studies by Richards (1959) on plant growth, and by
Chapman (1961) with fish populations, but the equation had been reported
by Mitscherlich (1919) and was used by German foresters during the 1950s
(e.g. Weck 1951).

The Bertalanffy equation may be used at the stand level or the tree level.
Here we consider the stand level implementation (tree level aspects will be
considered in Chapter 8). At the stand level, the derivation of the equation
is rather different, because catabolism may not remain proportional to stand
volume or basal area (heartwood does not respire), and anabolism is
asymptotic to an upper limit (reached at canopy closure). Consider the
following argument. Assume that living tissue may be proportional to girth
times height Edh%G  (where G is stand basal area, and ".0.75). Expressing"

stand volume increment as the difference between gross stand anabolism

0 0(A) and stand catabolism ($ G ), put dV/dt = A ! $ G . Assume that an" "

1allometric relationship exists between stand volume and basal area (V = $ G
, ( . 1.0), so that(

Anabolism is related to the amount of sunlight intercepted by the
photosynthetic surfaces of the trees in the stand, and may exhibit an
allometric relationship for low basal areas, but should be asymptotic as
basal area increases, and a constant may be sufficient for well stocked

2stands. For an allometric relationship A = $ G  with 0 small (060), 0

The value of "+1!( should be close enough to 1.0 for practical purposes,
but several empirical studies using the Bertalanffy equation at the stand
level have reported coefficients with signs other than anticipated (i.e.

 4dY/dt = !$ Y  + $  Y, e.g. Moser and Hall 1969, Murphy and Farrar 1982). 3 0
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García (1974) examined an alternative theoretical equation for stand
volume growth in plantations. He assumed that

1. gross increment in stem volume is proportional to the increase in dry
weight )V%)B,
2. stand density remains sufficiently high to ensure full occupancy of the
site and that assimilation per hectare is constant,
3. respiration is proportional to the quantity of live tissue which was in
turn proportional to the surface area of the stems and thus the product of
mean diameter ( &d  ) times the height ( &h  ) and the number of stems (n).

0 1Thus stand volume increment ()V ) could be predicted as )V = $  ! $
n &h  &d . Assuming a constant form factor ( f ) so that V = f G &h  with stand
basal area G = Bn&d /4, 2

    and thus  

Despite this nice theoretical development, the model did not fit the data
well. Both these examples serve to illustrate some limitations in our present
ability to quantify biological principles and reconcile them with empirical
data. The "theoretical" equations presently available remain rather empirical
in application.

Empirical Analogues of Theoretical Equations

The Bertalanffy equation is a member of a family of asymptotic, nonlinear
growth equations (Fig. 6.3) including the:

1. Monomolecular growth equation when " = 0:

2. Gompertz growth equation when " = 1:

3. Autocatalytic growth (or logistic) equation when " = 2:

4. Bertalanffy equation (b # " # 1):
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1 2Fig. 6.3. Forms of the Bertalanffy equation dY/dt=$ Y !$ Y."

maxwhere Y is the size of the organism, Y  is the asymptotic maximum size,
t is time, and ", $ and ( are constants. There are some difficulties in fitting
the generalized three-parameter Bertalanffy equation to data with non-linear
regression (Ratkowsky 1983, 1990), and these can be avoided by using one
of the two-parameter relatives in which " is fixed. However, Zeide (1993)
showed that the Bertalanffy equation can be converted to a linear equation:

0 1 2 where t is age, $ = ln($ ) and $ = ! (. In a comprehensive empirical study,
Zeide (1993) examined many alternatives to the Bertalanffy equation, and
concluded that it, and two variants,

(6.2)

were the best descriptors of height, diameter and volume growth. Equation
6.2 was slightly better than the two alternatives for predicting height and
diameter growth of individual trees.
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It is not surprising that these equations are equally efficient at predicting
increment of tree diameter, height and other parameters. We can express
many equations in a form which indicates relative growth, e.g. the

1 2Bertalanffy equation for diameter increment is Md/d = $ d ! $ . Then for "!1 

any parameters for which there exists an allometric relationship v = "d (

(e.g. for basal area, ( = 2 and " = B/40 000), we have Mv/v = M("d )/"d  = (  (

( Md/d, so that

Thus the Bertalanffy and similar equations should apply equally well to all
tree and stand parameters which exhibit an allometric relationship.

Bailey (1980) suggested another equation which has no biological basis,
but which is an extremely flexible function, describing a family of
asymptotic curves that encompass both the Bertalanffy (when ( = 1) and the
Weibull equations (when 0 = 1):

However, it cannot be converted to a linear form, and must be fitted using
non-linear methods.

An empirical study by Martin and Ek (1984) found that carefully
formulated empirical equations could be more accurate than theoretical
equations for a wide range of data. However, theoretically based equations
may be more reliable for predictions which involve extrapolations beyond
the range of the data. Figure 6.4 illustrates how the Bertalanffy equation
may provide safer extrapolations than an empirical polynomial equation.
However, polynomial equations are notorious for their poor extrapolation,
and other linear equations would perform better in this instance (e.g. an

0 1 asymptotic relationship such as Y = $ + $ X ). !1 

Equations can be empirical or otherwise, but should be carefully
formulated to provide sensible predictions across the full range possible for
all explanatory variables. Explanatory variables should not be chosen
haphazardly, but should be selected deliberately to provide realism and
robustness in the model. Mere goodness of fit is no justification for
adopting a given model since several functions may fit the data equally
well.

Regression Techniques

There are many techniques available for fitting equations to data, and the
appropriate one to use depends on the relationships chosen to represent the
system, the nature of the data, and on the resources available to fit the
model. There may be only one guideline that holds for all approaches: plot
the data, the fitted model and the residuals to check and compare them.
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Fig. 6.4. Dangers of extrapolating empirical models (after Payandeh 1983).

Examining data and models

Careful visual examination is one of the best ways to begin to understand
a set of data, to choose a model to represent the data, and to check for errors
in the model and in the data. Four series of graphs should be prepared and
examined:

1. scatterplots of the raw data showing the response variable plotted
against possible explanatory variables;
2. graphs showing both the raw data and the fitted model plotted against
the chosen explanatory variables;
3. plots of the residuals versus the fitted values, versus alternative
explanatory variables, and of standardized residuals versus normal order
statistics;
4. graphs showing the fitted model evaluated for a wide range of
explanatory variables.

Figure 6.5 illustrates some of these graphs. Scatterplots A–C show the raw
data, with the response variable (diameter increment )d ) plotted against
three potential explanatory variables, tree diameter (d ), basal area in larger

>dtrees (G ), and stand basal area (G). These allow the modeller to check that
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Fig. 6.5. Graphs for screening data and models. Scatterplots A–C show raw
data, D-E include the fitted model, F plots residuals vs fitted values,
G shows that residuals are normally distributed, and H evaluates the
model at extremes.

there are no serious data errors, and give some ideas on potential
relationships. Graphs D and E are the same as scatterplots A and B, but

>dinclude the fitted model evaluated for the range of d and G  in the data, and
confirm that the fitted model is appropriate. The plot (F) of residuals
()d!)d$  ) versus fitted values ()d$  ) may reveal trends not explained by the
model (see below, and Fig. 6.6), and thus may indicate transformations that
should be considered for inclusion in the model. In Fig. 6.5, the residuals
are reasonable, except that the variance is rather large for increments of
0.3–0.4 cm y . The analogous plot with studentized residuals indicates the!1

quality of the fit in terms of standard errors rather than in the units of
measurement (not shown, but left to the reader in Exercise 6.4). Residuals
may also be plotted against other variables not in the model (e.g. Fig. 6.6,
D). The graph of studentized residuals versus normal order statistics (Fig.
6.5, G) shows that the residuals have a near-to-normal distribution. Finally,
graph H shows the fitted model evaluated for extremes of the two predictor
variables in the model to demonstrate that the model gives sensible
predictions under all circumstances. Readers are encouraged to fit a model
to these data, given in Exercise 6.4.

Figure 6.5 illustrates just some possibilities, but there are many
alternatives that can offer further insights. Residual plots may reveal non-
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Fig. 6.6. Interpreting residual plots: (A) an outlier, (B) non-constant variance,

j(C) transformation required, and (D) variable X  should be included
in the model.

constant variance (Fig. 6.6, B) and outliers which warrant further
investigation (A). It is useful to plot residuals against explanatory variables
to look for transformations that may be required (C), and to check for
additional variables that should be included (D). Residuals may be
standardized and plotted against standard normal deviates to check the
validity of model assumptions. Other plots (e.g. of cross-validation
residuals) and criteria may offer further insights and readers should consult
standard statistics texts (e.g. Weisberg 1985) for details of how to compute
and interpret these. If possible, the fitted model should also be compared
with data not used in fitting the model. Graphs like these, especially when
coupled with comparisons using additional data, remain one of the best
ways to detect errors in and inconsistencies between the raw data and the
fitted model.

Hand-drawn Curves

Most models are fitted to data using regression techniques, but hand-drawn
curves continue to be useful, especially where few data are available.
However, when drawing curves, care should be taken to represent the data
adequately. There is a tendency for hand-drawn lines to follow the first
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Fig. 6.7. Principal component (PC) and least squares (LS) fit to data. The
naive hand-drawn fit may follow the principal component rather than
the least squares fit.

principal component rather than the least squares fit (i.e. minimize the
perpendicular distance from the data points to the fitted line, rather than the
vertical distance as in least squares, Mosteller et al. 1981). This may
overestimate the gradient, thus underestimating the response for small
values of the predictor variables and overestimating for large values (Fig.
6.7). However, the effect may be small if the modeller is aware of
regression techniques and conscious of the potential for bias.

If regression analysis is subsequently used to estimate parameters of an
equation describing the hand-drawn line, remember that the goodness-of-fit
statistics reflect the points chosen from the hand-drawn curve, not the
goodness-of-fit to the original data. This will provide an over-optimistic
estimate of the quality of the fit.

Linear Regression

Linear regression implies that explanatory variables enter the objective
0 1 1 2 2function in a linear or additive way (i.e. ì = $  + $ X  + $ X  + . . .; see

Eqn 6.1 on p. 108, 111). It in no way implies that the resulting relationships
are straight lines. This form of regression is widely used for fitting
equations to data, and linear regression packages are available on most
computers and many calculators. Three alternatives exist.

In the first, the user specifies the response and all the explanatory
variables, and the computer merely determines the values of the required
coefficients. This encourages a logical approach to model construction, as
the user must decide which explanatory variables will best describe the
response variable. Plotting residuals from preliminary models against other
potential explanatory variables may assist in the formulation of the final
model.
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Stepwise regression methods automate the procedure. The user
identifies the response variable and provides a list of possible explanatory
variables. The stepwise algorithm chooses the explanatory variable most
highly correlated with the response variable, then iteratively includes
additional (or deletes previously included) explanatory variables until no
further significant correlations can be found. There are two minor variants,
forward selection (inclusion of variables only) and backward elimination
(starts with all variables in the model and iteratively deletes non-significant
ones). These alternatives do not necessarily select the same, or the best
subset of possible explanatory variables. Problems may arise if there is
much correlation between the explanatory variables in the data. Regression
by leaps and bounds (Furnival and Wilson 1974) overcomes some of these
problems, but is not often available in statistical analysis packages.

Combinatorial screening (Grosenbaugh 1967) fits every possible
combination of the explanatory variables nominated. It will find the best
combination of variables specified, but the possibility always exists that a
better model could be constructed by using different transformations of, or
interactions between, the explanatory variables. These automated methods
focus on goodness-of-fit and overlook the importance of the deliberate
selection of variables and transformations in ensuring sensible predictions.

Non-linear Regression

Non-linear regression enables the fitting of models in which the estimated
parameters do not enter in a linear additive manner. Many theoretical and
asymptotic models are of this form. For example, in the asymptotic equation

0 1 2 2Y = $  + $ ($ +X)  the coefficient $  enters the equation in a non-linear!1

2way (compare the derivative dY/d$  for this equation with those in Eqn 6.1
on p. 108, 111). Whilst non-linear regression allows great flexibility in
formulating models to ensure sensible extrapolation, it does have some
limitations. One problem is that, unlike linear regression, non-linear
regression does not necessarily provide a unique best unbiased solution for
a given set of variables. Non-linear solutions are determined iteratively, and
may be influenced by the estimation method and the starting conditions
specified by the user.

Ratkowsky (1983, 1990) discussed why problems arise in iterative
estimation of the parameters of non-linear models. These can usually be
overcome by "reparameterizing" the model so that the model behaves in a
"near to linear" fashion. The simplest method of iterative estimation, the
Gauss-Newton method, can then be employed and the resulting parameter
estimates are unbiased, normally distributed, minimum variance estimators.
If the model does not behave in a near to linear fashion, the parameter
estimates will not have these desirable properties and more complex
estimation techniques may be necessary. In such cases, the use of analytical
derivatives rather than computational approximations usually result in more
efficient and more precise parameter estimation, but some sort of sensitivity
analysis remains necessary to ensure that the global minimum has been
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reached, as some situations may lead to a local minimum rather than to the
"best" fit.

Reparameterizing involves expressing the parameters of one model as
a function only of the parameters of another model. For example, the
models

   and   

1 2 1 2where " , " , $  and $  are parameters, are reparameterizations of each
1 1 2 2 1other since it can be shown easily that "  = 1/$  and "  = $ /$ . The model

is not changed in any way by this reparameterization and its fit to the data
will be exactly the same in either form. However, the statistical properties
of the parameter estimates may be very different depending on the form that
is used.

Robust Regression Techniques

Robust regression refers to some techniques that attempt to overcome the
problems of a non-normal error distribution and correlated explanatory
variables. Unusual data points (e.g. Fig. 6.6, A) often occur in growth data,
and although they may have an excessive effect on the least squares
estimates of coefficients, they cannot validly be omitted from the analysis.
Robust estimators offer one way to minimize the impact of such outliers in
the database.

Schreuder et al. (1979) discussed three classes of robust estimators, and
observed that of these, maximum likelihood estimation was most amenable
to regression analysis. They demonstrated the effect of using three
approaches of maximum likelihood estimation, with both relatively clean
and noisy data. All three techniques gave estimates similar to ordinary least
squares with the clean data, but the estimated parameters varied
considerably when the techniques were applied to the noisy data.

Robust estimators are a compromise between including all the noisy
data, and using an edited subset of the data from which the outliers have
been removed. One advantage of editing data is that it forces the researcher
to evaluate the data critically and decide if they come from the population
of interest. Choosing the parameters which determine the degree of
robustness in maximum likelihood techniques does not force the same
decisions upon the researcher. Since the outcome from robust techniques
depends largely upon the subjective determination of scale parameters,
these techniques remain an investigative tool for the data analyst and are not
a cure for bad data.

For most growth modelling applications a robust and reliable result can
be obtained by fitting a carefully formulated linear equation using ordinary
least squares linear regression. While this approach makes some
assumptions unsatisfactory to theoreticians, it is relatively robust, repeatable
and readily available.
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Statistical Assumptions

Linear regression and other least squares methods are normally robust
enough to give good estimates under adverse conditions, but it is important
to understand the assumptions implicit in the method and to realize the
possible implications of violating these assumptions.

Linear regression assumes that the response variable Y can be predicted
from the explanatory variables X:

where the errors (e) reflect natural variation and factors not included in the
model. This is Equation 6.1 (p. 108, 111) written in matrix notation. The
least squares method minimizes the sum of the square of the errors (3e ),2

so the nature of these errors has a big influence on the qualities of the fitted
model. The least squares method makes many assumptions made about
these errors and the variables in the model, so the following discussion is
necessarily brief and intended as an introduction to the selected references.
In many cases, there are two ways to deal with departures from these
assumptions:

(a) to employ a more sophisticated (and sometimes complex) analysis,
or
(b) to improve the database and the model.

Sometimes the former option is the only one available, and thus references
to analytical alternatives are given. However, the second option is usually
preferable, so discussion here concentrates on ways to improve the database
and the model formulation to overcome these deficiencies.

Independent Observations

The basic assumption of least squares analysis is that the errors are
independently and identically normally distributed with zero mean and
constant variance. The independence of observations may be compromised
when several measurements are taken on the sample unit (e.g. remeasures
of a permanent plot, many trees on a plot, or several measurements on a
single tree). These repeated measurements on the same trees tend to be
correlated, and are thus not statistically independent.

When ordinary least squares techniques are used with such data, the
parameter estimates are unbiased, but the estimators of the covariance
matrix of the parameter estimates and the residual variance of the regression
equation may be underestimated. This means that it is not possible to carry
out properly the normal statistical hypothesis tests that are usually necessary
to apply the results of regression analysis.

West et al. (1984) reviewed how and when this problem arises and
discussed some solutions that have been suggested. None of these
alternatives is entirely satisfactory and only experience can suggest the most
appropriate solution for a particular data set. In some cases such as when the
number of multiple measurements is small in comparison with the number
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Fig. 6.8. Serial correlation may be minimized by modelling growth as a
function of initial size (r=!0.30), rather than yield as a function of
time (r=0.92) (simulated data with random perturbation for trees,
time and measurements).

of sampling units, the problem may not be serious. The simplest solution
may be to use only one observation from each sampling unit. Ordinary least
squares regression is then appropriate and the problem is avoided altogether,
but information is lost by using only part of the full data set. An alternative
may be to use only one observation per sampling unit to formulate the
model and test for the significance of terms, and having resolved the model,
to fit it again using the full data set (West 1994).

In an empirical study of yield models, Borders et al. (1988) found no
serial correlation when data were derived from non-overlapping growth
intervals, and that problems associated with serial correlation may be model
dependent. The specific problem of serially correlated errors appears worst
when yield (i.e. total standing volume) is predicted from age. When growth
is predicted from initial size (cf. predicting yield from age), these problems
may be reduced and the conventional estimation methods may be acceptable
(Fig. 6.8). If ordinary least squares are used despite serially correlated
errors, unbiased parameter estimates will be obtained, but the variance may
be underestimated. The implication is that parameter estimates may appear
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to be significant, when in reality they are not, possibly leading to the
acceptance of a more complex model than is warranted.

Homogeneous Variance

In least squares methods, the errors e are assumed to have an identical
distribution, i.e. to be homogeneous. In many biological applications, the
variance is not constant, but may increase as the expected value of the
response variable increases. This characteristic is known as heteroscedastic.
The extreme residual values in heteroscedastic data have a big influence on
the least squares estimates, and may disproportionately influence the form
of the equation. Heterogeneous variance may be detected in residual plots
(e.g. Fig. 6.6, C, p. 115), and tests for homogeneity of variance are
discussed in standard texts (e.g. Weisberg 1985).

Two solutions to the problem exist. A variance stabilizing
transformation can be used, or a variance estimating function can be used
to weight the regression (e.g. Parresol 1993). Weighted regression assumes
that the errors are distributed normally with variance (vF²), and that a
function to predict v can be determined. The weights used in the regression
are the inverse of this function (w = v ).!1

Suitable transformations can be determined graphically or analytically
(e.g. Aitkin et al. 1989). If the variance is plotted against the mean, a
horizontal line (F² = c) indicates that no transformation is required; a straight
line increasing with the mean (F² = :) suggests a square root transformation
and a line curving upwards (F² = : ) indicates a logarithmic transform.2

Alternatively, the slope of the line fitted to ln(F²) on ln(:) also indicates the
appropriate transformation. If the line passes through the origin, a slope of
1 indicates that a square root, slope 2 a logarithmic, and slope 4 that a
reciprocal transformation should be used.

If such a transformation has been used, predictions will contain
transformation bias, the magnitude of which depends upon the variability
of the data. Often this bias may be small enough to be ignored. However,
where a poor fit is obtained, an adjustment should be made for this
transformation bias when performing the back transformation (see any
standard statistics text, e.g. Weisberg 1985). Weighted regression avoids the
need for these transformations and corrections.

Transformations not only affect the distribution of errors, but also
influence the explanatory variables. For example, a linear model

iassumes an additive interaction between the explanatory variables (X ),
whereas the transformed model
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implies a multiplicative relationship between the explanatory variables and
the errors

which may or may not be appropriate.

Normally Distributed Errors

The least squares method assumes that the errors e are normally distributed
with constant (but unknown) variance e = N(0, F²). Many standard
statistical tests are sensitive to long-tailed distributions, and asymmetrical
distributions may lead to biased estimates. Non-normal data may lead to
inappropriate confidence regions about the regression surface if the usual
formulae are used. Standard tests (see e.g. Weisberg 1985) may be used to
check for departures from normality, and a useful visual indicator may be
obtained by plotting studentized residuals versus normal order statistics,
which are available in many packages.

Transformations may be used to correct departures from normality in
data (e.g. Weisberg 1985). Count data (e.g. number of recruits) may be
distributed in a Poisson fashion, which can be stabilized by a square root
transformation. Data concerning proportions are often binomial, and can be
stabilized by an angular (arc sine square root) transformation. The truncated
distribution of bounded count data (e.g. mortality data, where k out of n
trees die) may be improved by the logit transformation:

max where Y lies between zero and Y , the upper bound.

Outliers

Outliers are observations that deviate greatly from the general trend (Fig.
6.6, A, p. 115). They may have a great influence on least squares estimates
and, if due to errors, may lead to biased predictions. Since not all outliers
are caused by error, they should not be deleted from the data set without
careful investigation of their source and validity.

Increment data need special care when examining outliers, as negative
values caused by measurement error may be associated with an excessively
large value in the preceding or subsequent period. The negative outliers
should not be removed from the analysis without removing the
corresponding large positive value, or bias will result. Not all decrements
are caused by measurement error. Some may be caused by natural variation
in stem size or by bark shedding, and should not be removed from the
analysis. These factors re-emphasize the importance of using a
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remeasurement interval sufficiently long that increments are large relative
to measurement errors and any fluctuations in stem size.

Not all erroneous data are revealed as large outliers. Extreme values
may exert great influence over regression results without producing large
residuals (e.g. Fig. 6.9). Influence values and leverage plots (e.g. Weisberg
1985, Aitkin et al. 1989) enable such values to be detected. Observations
with large residuals or influence values should be carefully examined and
checked against the original field sheets. They should not be automatically
rejected, but should always be carefully evaluated.

Independent Explanatory Variables

The explanatory variables X in the model are assumed to be independent,
but are often correlated. If two (or more) variables are correlated so that

1 i 2 j $ X + $ X = ", a singular matrix will result and no parameters can be
estimated. This situation may occur in lists of potential explanatory
variables for stepwise regression. For example, ln (d ) is perfectly correlated
with ln (g), since

ln (g) = ln (kd ) = ln (k) + 2 ln (d )2 

Stand basal area and crown competition factor may also be highly correlated

cf 0 1 cf(e.g. G = Ed B/40000 and C  = 100E($ +$ d ) B/40000, so G%C %Ed 2  " 2 

0  if $ .0 and ".1).2

Collinearity may also exist between explanatory variables gathered in
an opportunistic way without a deliberate sampling strategy. For example,
data gathered only from undisturbed natural forest would not provide a
good basis to fit the equation in Fig. 6.5, because tree size (d ) would be
highly correlated with basal area in larger trees (i.e. small trees always have

>d large G , and vice-versa). The nature of the problem can be gauged by
imagining a child's play-house made by stretching a sheet between some
stakes. If the stakes are arranged around the perimeter of the sheet, we will
have a good model. The model is improved by some additional stakes in the
middle, to give the "roof" the right shape. If the stakes form a single line

1 2(i.e. high correlation between X  and X ) we will have problems draping the
sheet. Even if we use rigid material (e.g. plywood; analogous to making
some assumptions about the shape of the response surface), we will still
have problems balancing it. The amount of "wobble" in the plywood is
analogous to the variance of parameter estimates and model predictions.
There is less wobble close to the stakes (i.e. within the sampled region) than
there is away from them (i.e. extrapolations).

Such correlation leads to numerical problems in parameter estimation.
The absolute value of the estimated parameters may be too large, the sign
may be wrong, and parameter estimates may change substantially after the
addition or deletion of a single data point. This situation exists where the
computations are exact, and the result of even small rounding errors in the
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computer may make parameter estimates even more unreliable. Correlated
explanatory variables may lead to substantial overestimates of the F-ratio
and of t-tests, and thus to the acceptance of models containing more
parameters than warranted. Variance inflation factors (Marquardt 1970)
may indicate the severity of correlations between explanatory variables, and
large values indicate variables that may contribute to poor extrapolations.

Fortunately, multiple collinearity does not inhibit our ability to obtain
a good fit, nor does it affect inferences about mean responses or predictions
from new observations, provided that these inferences are made within the
region of observations (consider the play-house analogy and think about
how the plywood wobbles at different distances from the stakes). However,
it does mean that when formulating models, modellers should be careful to
avoid the unnecessary inclusion of correlated terms in the model. The
problem can also be minimized by deliberately sampling to include the full

1 2 range of all explanatory variables (i.e. a good range of X  for every X , and
vice-versa, e.g. see Fig. 5.3 on p. 87, and recall the dangers of passive
monitoring on pp. 88 and 106).

Accurate Variables

Standard least squares regression assumes that the explanatory variables are
accurate and have no error and no bias (in practice, bias may not matter,
provided that it is the same in both development and applications data).
However, in forestry applications, the explanatory variables may contain
error, and may be rounded. The effect of this is to increase the variance of
the estimates beyond the values predicted by the usual formulae. Thus the
calculated confidence region will be conservative. Fortunately, the
implications are minor provided that the range of each explanatory variable
is large relative to its error, and the usual least squares analysis may be
performed (Draper and Smith 1981). But caution is required when
interpreting regression results that incorporate categorical data (e.g. crown
classes coded as 1, 2 and 3), especially if they are included in the model as
quantitative rather than qualitative variables.

It is also assumed that the response variable is continuous, when in
practice it may be measured with finite precision and may take only discrete
values. If the precision of measurement is low relative to the standard
deviation of the fitted model (i.e. */F > 0.1) (Aitkin et al. 1989), this
discreteness should be allowed for explicitly in the model. Maximum
likelihood methods can be used to fit such models, but are considerably
more complicated than the usual procedures. Failure to account for the
discrete nature of the response variable will lead to inflated estimates of
variance and the adoption of simpler models than may otherwise be
indicated. The best solution is to maintain the highest possible precision in
the response variable, by ensuring that all plot and tree parameters on
permanent plots are measured in such a way to ensure that average growth
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(or other changes) is substantially greater than the likely measurement error
(e.g. measuring tree diameters to the millimetre, at intervals long enough to
allow 1 cm dbh increment on average).

Comparing Equations

It is not always easy to make meaningful comparisons between alternative
functions. Simple F-tests provide a good basis for comparison where models
have been developed from the same database, but it is more difficult to
compare models fitted with different data sets. The most widely-used (and
abused) criterion is probably the coefficient of determination (R²) and
variants such as the correlation coefficient (R) and the ratio of residual
mean squares (RN²). The coefficient of determination is given by

m : mR² = 1 ! RSS /RSS  where RSS  is the residual sum squares of the model

:under consideration, and RSS  is the residual sum squares about the mean.
This expression illustrates two advantages of R²: it is a ratio, and thus
independent of units, and it is an indicator of how the model compares with
a simple average (R² = 0) and with the perfect fit (R² = 1). However, the R²
does not discriminate between "pure error" or natural variation, and lack of
fit by the model. An R² close to one does not mean that it is the best
possible model, or that it will provide good predictions.

0 1 Figure 6.9 (overleaf) illustrates a simple linear regression ì = $ + $ X

0 1 fitted to four data sets formulated so that estimates of $ , $ , F² and R² are

0 1 identical (i.e. $ = 3.0, $ = 0.5, F² = 13.75 and R² = 0.667, Anscombe 1973).
Despite the similar R²s, the graphs in Fig. 6.9 illustrate that the quality of
the fit varies greatly between the four data sets. They reveal "pure error", an
outlier, use of the wrong model (a quadratic term may be needed), and a

1case where the estimate of $  relies entirely on a single point with high
leverage. Without further information, it is impossible to judge which of
these models is suitable, but all except the first case warrant further
investigation. A fuller discussion of this illustration was given by
Anscombe (1973) and Weisberg (1985), but the importance of plotting both
the data and the model remains obvious.

There are other disadvantages of the R² coefficient. It takes no account
of the number of terms in the model, and more terms, even if non-

psignificant, result in a higher R². Mallows' (1973) C  is a measure of the
expected variance associated with predictions from the fitted model and

pmay be a better basis for comparison. Because Mallows' C  accounts for the
error in estimating each parameter, it leads to the acceptance of simpler
models than many other decision criteria.

The R² is also influenced by transformations, and yield equations (e.g.

1d + n.Md = f (d)) and basal area increment equations (M(kd ) = 2kd.Md =2

2f (d)), both of which include initial size (d ) in the response variable, nearly
always indicate a higher R² than the corresponding diameter increment

3model (Md = f (d)), even though the functional relationship and the data may
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Fig. 6.9. The R² does not indicate how well a model fits the data. Here the
plots reveal (A) pure error, (B) the wrong model, (C) an outlier, and
(D) a point with high leverage, but all cases have R²=0.667 (redrawn
from Anscombe 1973).

be the same. The Furnival (1961) index overcomes this problem by
expressing the average standard error in the original untransformed units,
and is derived from the maximum likelihood estimate. It can be computed
as I = s [ fN(Y)]  where fN(Y) is the derivative of the transformed response !1

variable with respect to the untransformed variable, and s is the usual
estimate of standard error. Furnival (1961) gave an example where the

0 1combined variable volume equation v = $ +$ d h yields an R² of 0.96 and 2 

1 0a Furnival index of 19.2, and an alternative formulation v/(d h) = $ + $ 2 

/(d h) yields R² = 0.72 and Furnival index 9.4. The alternative formulation 2 

is the preferred model, as indicated by the distribution of residuals and by
the Furnival index (smaller is better, since the index is based on the back
transformation of the standard error), but this is not suggested by the R².

The R² also gives an over-optimistic indication of the model's predictive
ability. The Prediction Sum of Squares (PRESS, see e.g. Weisberg 1985,
Aitkin et al. 1989) is available in many statistical packages, and indicates
the predictive ability of the equation by cross-validation. This entails
omitting each observation in turn from the data, fitting the model to the
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remaining observations, predicting the response for the omitted observation,
and comparing the prediction with the observed value. Since PRESS is

CVanalogous to RSS, small values are desirable, and the cross-validation R²
is analogous to the usual R² coefficient.

When comparing alternatives, consider the Furnival index and PRESS
as well as R². Do not be pre-occupied with these indices, but plot the data
and fitted model to appraise the fit, consider if predictions will be
biologically reasonable over a wide range of possible values for the
explanatory variables, and see if the coefficients are reasonable estimates of
the effects of the individual terms.

Strategies for Grouping Data

Data available for developing models for mixed forests, frequently do not
contain sufficient observations to allow reliable relationships to be
established for all species. In this situation, two approaches may be adopted.
One can guess at the appropriate relationship, and employ this subjective
relationship in the model, or data can be aggregated so that a relationship
can be developed for a group of species. Subjective relationships are often
used in succession models where it is important to maintain individual
species identities, but unnecessary to predict yields accurately. Subjective
relationships pose problems of bias, and it is preferable to use an objective
method for yield prediction models. Aggregation also enables the number
of equations required for modelling to be reduced to a manageable number
(Occam's razor). Such an approach should aggregate species that are in
some sense similar so as to minimize within-group variability and maximize
the variation between groups.

Subjective Classifications

Many simple models use two or three groups based only on economic
criteria. Although this may be useful in assessing the present value of a
forest stand, it is a potentially dangerous approach in modelling as it may
bear little relevance to the dynamics of the species, and it is preferable to
group species on ecological criteria.

In the tropics, there are often a few species that are difficult to
discriminate and which may be confused by inventory personnel.
Combining these similar species may reduce overall errors by eliminating
across-group species confusions. For example, in Queensland the common
name blush silky oak (coded BSO) was used in resource inventory (but not
in permanent plot work) for two similar species Bleasdalea bleasdalei and
Opisthiolepis heterophylla, so these species were also assigned to the same
group for growth modelling. Not only does this aid the rapid collection of
data, but it also eliminates a serious source of error in the data. If the species
comprising any group are in fact, frequently confused, then the variation in
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the grouped data will not be appreciably greater than in the individual
species data, even if the growth patterns vary considerably.

It may be possible to classify trees according to their regeneration
strategy and growth rate. The light-demanding pioneer species require large
gaps in the canopy to become established, and tend to have rapid growth
rates and small long-lived seeds. The shade tolerant species require only
small gaps in the canopy to regenerate, and are often slow-growing with
large short-lived seeds. Swaine and Whitmore (1988) proposed grouping
into pioneer and climax guilds based on seed germination and seedling
establishment strategies. They recommended that further classification
should be based on height at maturity (pygmy, small, medium and large).
However, these characteristics may not be known for all species, and may
not provide a good indication of growth responses critical in modelling (e.g.
diameter increment).

Shifley (1987) aggregated species subjectively on taxonomy and silvics.
Where little is known about the characteristics of a species, the botanical
affinity of a species may give a useful indication of the possible behaviour
of a species, and the logical grouping to adopt. However, taxonomy may not
provide a reliable basis for grouping; for example the genus Eucalyptus
includes both the world's tallest hardwood trees (E. regnans) and shrubs
(e.g. mallees such as E. vernicosa) which may barely attain 2 metres height
at maturity. Many other examples exist.

The many species occurring in the tropics pose some problems for
subjective grouping: determining how many groups are necessary, and how
little-known species should be assigned. Meldahl et al. (1985), Leech et al.
(1991) and Vanclay (1991b) examined objective procedures to resolve these
questions.

Cluster Analysis

Meldahl et al. (1985) argued that the grouping should reflect the dynamics
of growth, and that this could be best expressed through the coefficients of
a regression equation on diameter increment. They attempted cluster
analysis on these coefficients, but found that reasonable results could only
be obtained when the regression analysis was constrained to a single
explanatory variable. They investigated several possible explanatory
variables, and obtained best results when diameter increment of each

>dindividual tree ()d) was predicted from the basal area in larger trees (G ):

1Cluster analysis, weighted by the inverse of the significance level of $  (e.g.
Fig. 6.10, B), formed twenty clusters from 110 species-type equations. The
number of data assigned to each cluster varied greatly, and the outcome was
subjectively adjusted to provide the final grouping. The adequacy of final
groups was tested by fitting a multiparameter linear function and examining
the total (across clusters) residual sum of squares, on the assumption that a
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Fig. 6.10. Different species groupings based on growth trends (A), using
unweighted cluster analysis (B), T² distance (C; lines are s.e. of $s),
and pairwise comparisons (D). The "best" is context-dependent.

better grouping would result in a better fit. Whilst the method provided a
satisfactory grouping of similar elements, it did not provide a unique
solution.

Principal Co-ordinate Analysis

Leech et al. (1991) studied ways to group 27 species for the construction of
volume equations. They used the so-called Behrens-Fisher analogue of
Hotelling's T  as a measure of difference between species. This effectively2

measures the distance between parameter estimates in terms of their
standard errors (e.g. Fig. 6.10, C). They used a polynomial equation to
predict tree volume (v) from tree diameter (d) for tree i:

Then, representing the vector of coefficients as
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Hotelling's T  between two species i and j can be defined as2

where S  is the combined covariance matrix of regression coefficients for!1

species i and j. By calculating all possible combinations a symmetric matrix
with zero diagonal elements can be formed. Principal coordinate analysis
was used to group species on the basis of this matrix. Useful results were
obtained only when the order of the polynomial, and the sign of the highest
term, were the same for each of the individual species equations being
compared.

Pairwise Comparisons

Vanclay (1991b) used pairwise comparisons between species specific
diameter increment regressions. His method involved the following steps:

1. Ranking species in order of increasing number of observations.
2. Assigning the species of highest rank the founding species of group 1.
3. For each species in decreasing order of rank, conducting pairwise
F-tests with the founding species of higher rank. If the incoming species
was significantly different (P<0.01) from all existing founding species, it
became the founding species of a new group. Species not significantly
different from founding species remained ungrouped.
4. After identifying all founding species, those species remaining
ungrouped were compared, in order of rank, with all existing groups, and
grouped with the most similar group. Similarity was determined as the
grouping that lead to the smallest increase in residual sum squares when the
incoming species was amalgamated with the group. These comparisons
were made with the whole group, not just the founding species.

This approach overcomes some of the difficulties associated with the
alternatives above. Instead of comparing all possible pairs, initial
comparisons are made between species with many data, reliable parameter
estimates and homogeneous variance. Species with few data are only later
compared with one of these major groups. It also avoids the need to
arbitrarily select a subset of the more numerous species to define the groups.
This selection is by no means intuitive as in Vanclay's (1991b) study, the
species ranked 186 with only 13 observations initiated a new group. There
is, unfortunately, no guarantee that the outcome is optimal, and the grouping
is specific to the particular data set and increment function used. Despite
these weaknesses, it provided a useful classification of 237 species into 41
groups for the development of diameter increment functions for the NORM
model.

The appropriate approach to use depends on the quantity and quality of
data. The methods reviewed here all have weaknesses which have yet to be
overcome. The three numerical alternatives may provide different groupings
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(e.g. Fig. 6.10), and there may be no decisive way to determine the "best"
grouping. Where few data are available, a subjective classification based on
growth habit may be best. If sufficient data are available, one (or more) of
the numerical alternatives may be attempted.

An aggregation based on diameter increment may not be suited to
modelling mortality, and while it may be necessary to aggregate species to
formulate equations, it may be best to retain individual species identities
during growth and yield simulations (see Fig. 4.5, p. 75; Vanclay 1991c).

Synthesis

The design, construction and implementation of growth models can be
complex and involves many skills. Few of us can expect to become experts
in all these areas. However, a few guidelines may be adequate to ensure that
reasonable models are produced:

1. Think about the design of the model first; try to keep it simple, and
ensure that it meets your needs.
2. Understand the limitations of your data, and any implications they have
for your model and analyses.
3. Always plot the data and the fitted model to visually examine the quality
of the fit.
4. Know your own limitations, and if you don't understand something,
seek help.

Success in developing models depends on carefully identifying the needs,
selecting the important variables, formulating a suitable model, collecting
good data (both quantity and quality), using reliable coefficient estimation
procedures, and carefully evaluating the model (Chapter 11). Good
modellers should rely as much on their knowledge of silviculture and on
biological principles of growth, as they do on statistical tests when selecting
models and developing algorithms.

Ultimately, the method of obtaining a model is irrelevant. The important
thing is whether or not the model will provide useful predictions, assessed
by an appropriate suite of diagnostic tests. Prominent among these criteria
is the requirement that the model provides biologically reasonable
predictions for the whole range of possible conditions.

In the next few chapters, we examine some specific functional
relationships required to predict tree growth, mortality and recruitment in
size class and single-tree models. We begin by examining ways to appraise
site productivity, as the first model required in a growth modelling study
may be one to quantify site characteristics.
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Exercises

6.1. Demonstrate the equivalence of the growth and yield equations in
Fig. 6.2. Calculate the equation which gives growth (current annual
increment) as a function of time. Also calculate the equation for mean
annual increment, and determine where they intersect. Can you give an
equation for periodic annual increment (e.g. for a 10-year period)?

6.2. Create a data set with 10 pairs of points from the relationship Y = X2

0 1for X = 1, 2, . . ., 10. Fit the simple linear model Y = $ + $ X, and calculate
the R². Discuss the size of the R² and the quality of the fit.

1 3 3 26.3. Synthesize some data using the relationship Y = X X + (1!X )X  with

3 0 1 1 2 2 3 30 < X  < 1, and then fit the linear model Y = $ + $ X + $ X + $ X . What
value of R² do you think you will get, when the linear model is obviously
irrelevant and misleading? Generate 10 or more random numbers for each

1 2 3of X , X  and X . Repeat the exercise several times to see that the result is
no co-incidence. This exercise is taken from Warren (1981).

6.4. The data used to draw Fig. 6.5 are given below. These data were
synthesised for this exercise, but represent tree growth in a tropical
rainforest. Fit a model to these data to predict diameter increment ()d) from

>dtree diameter (d), basal area in larger trees (G ) and stand basal area (G).
You may need to use transformations of some of these variables. Are all
these explanatory variables necessary for a good model? Defend your model
with a discussion of its strengths and weaknesses.

>d >dd G G )d d G G )d

 13.9
 28.2
 46.3
 61.5
 75.9
 90.6
105.4
 10.8
 25.8
 36.4

 9.11
 6.51
 4.14
 2.66
 4.71
 2.61
 0.54
22.94
14.31
 8.53

 9.82
10.37
10.04
 8.39
15.13
14.23
10.04
25.26
21.29
15.30

0.52
0.80
0.97
0.89
0.43
0.45
0.24
0.06
0.19
0.65

 56.2
 66.4
 78.1
 92.2
 11.8
 24.2
 40.7
 51.2
 63.3
 78.0
 96.8

 6.87
10.34
 5.91
 2.95
18.54
29.98
18.00
19.37
 9.28
 8.90
 3.09

20.19
25.93
22.14
14.94
30.53
35.48
27.35
27.37
25.23
29.34
24.70

0.59
0.24
0.55
0.36
0.19
0.08
0.15
0.11
0.50
0.27
0.40
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6.5. Calculate the correlation coefficients (r) for each of the potential
explanatory variables listed above. Do they give a good indication of the
utility of the variable for modelling? Why does tree size (d) have such a low
correlation? Calculate the correlation between the explanatory variables (d,

>d G , G). How would you manage your field plots to reduce this correlation?

6.6. Expand on your answer to Exercise 4.1 (p. 77), giving more details
about the explanatory variables and equations that you might use in your
model. What data would you need to fit these equations, and how would
you collect these data?
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Chapter Seven

Forest Site Evaluation

One of the first tasks facing the growth modeller may be to find a way to
quantify site differences. Some sites support luxuriant forest whilst others
are capable only of supporting "poor" forests. These differences may be due
to soil (fertility, drainage, etc.), climate (temperature and rainfall patterns),
topography (elevation, aspect, etc.) and other factors, and may be reflected
in the species composition and growth patterns. Meaningful growth and
yield forecasts require some evaluation of these site differences. Estimates
of site productivity must be accurate as any bias may propagate through
growth, mortality and recruitment functions to affect all modelling results.

Any single estimate of site productivity must be approximate, because
it summarizes several multi-dimensional factors of the environment as a
single index. The challenge is to find the most useful index. No single index
based directly on environmental parameters has shown sufficient precision
to be useful for forest management and modelling. The vegetation itself
reflects most of the important site factors, and the growth of pure even-aged
stands may provide a good measure of site productivity. Wood production
may be the best indicator of site productivity for forest management
purposes. However, volume production is difficult to measure, and it is
convenient to use an alternative which is easier to measure. In even-aged
stands of a single species, the most common alternative is site index, the
expected height at a nominated index age (Baur 1877). Site index is often
used as a proxy for volume production: height is measured at a known age,
and is converted to a yield class (a measure of wood volume production)
using an equation or look-up table, in the same way that girth measurements
may be used to estimate tree diameter.

There are many ways to estimate the productivity of a site, and a
comparison of their merits requires some definitions and a classification of
the major alternatives. It is useful to classify site assessment procedures by
methodology and viewpoint (Table 7.1). A phytocentric view assumes that
total stand volume production or phytomass production is the ultimate
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View Method

Direct        Indirect        

Phytocentric Wood volume Tree height

Geocentric Soil moisture &
 nutrient status
Photosynthetically
 active radiation

Climate
Land form
Physiography
Plant indicators

Table 7.1. Views and methods of forest site evaluation (after Leary 1985).

measure of a site's productivity, while the geocentric view asserts the
dependence of site productivity upon the soil and climatic factors. Although
direct methods are preferable, they are more difficult to quantify, and this
has led to the proliferation of indirect methods (Leary 1985).

The status of indirect phytocentric methods is so inflated that some speak of direct
and indirect methods, not of site productivity estimation, but of site index estimation.
This appears to be an unhealthy situation; what began as an interim solution (site
index) to a difficult problem (geocentric approach) should not now be called the
solution to the original problem.

It is also useful to classify methodology as predictive or descriptive, and
qualitative or quantitative. However, these distinctions are not clear-cut, and
methodologies range from one extreme to the other. Descriptive systems
assess site productivity on past performance by drawing on historic data,
usually two or more measurements several years apart. These are easy to
estimate, but their data requirement limits their utility. Predictive systems
assess site productivity at a single point in time, using measurements of
some site or crop characters made on a single occasion. These are more
difficult to establish, but are more practical for most applications.
Quantitative systems use a continuous variable, frequently height, as a
measure of site, which may be expressed as a real number, or grouped into
classes.

Qualitative systems usually have only a few classes, which may be
labelled numerically (Classes I, II, etc.) or otherwise (e.g. poor, good).
Classes need not have cardinal numbers (i.e. yield class II may not be twice
as productive as yield class I). Qualitative classes require that border-line
cases be resolved. Expansion of the system to recognize more classes (either
to include new extremes or to encompass more classes) is difficult. Thus
careful consideration must be given to the number of classes to be
identified. Provided the difference in growth rate is significant, there is no
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advantage in having fewer classes than can be reliably recognized.
Quantitative systems are generally flexible and infinitely expandable,
eliminate the need to resolve border-line cases, but may give an inflated
impression of precision.

Predictive approaches require measurement of some character of the site
or stand and modifying it to derive an estimate of site productivity.
Commonly such methods involve determining height at a known age, and
transforming it to estimate site index or expected volume production. Site
characteristics may also be used to estimate site productivity, and
geographic regions, geology, vegetation types and crop appearance have
also been used. For forest management purposes, predictive systems which
enable site productivity to be estimated after a single visit, are preferable to
descriptive systems that require the maintenance and remeasurement of
permanent plots. However, in mixed forests, descriptive systems may form
a prerequisite necessary to enable the development and evaluation of
efficient predictive systems.

Much research and many publications have been devoted to site
productivity assessment in plantations (even-aged, single-species stands),
and no attempt is made to review these here. This chapter gives an overview
of the more complex issue of site assessment in mixed forests. There has
been comparatively little work done in this area, but some emerging
techniques are reviewed below. As we review these alternatives, remember
that we are looking for a quantitative measure of site that is:

1. reproducible and consistent over long periods of time;
2. indicative of the site, and not unduly influenced by stand condition or
management history;
3. correlated with the site's productive potential; and
4. at least as good as any other productivity measures available.

Phytocentric Methods

Phytocentric measures such as site index are widely used as measures of
plantation site productivity because they are easy to measure and are good
predictors of the utilizable production from the site. Site index normally
requires an even-aged stand of uniform development, but several authors
(e.g. Duerr and Gevorkiantz 1938) have tried to adapt it for mixed forests
by identifying a main even-aged stand in the forest. Stage (1963) proposed
a method based on height, age and the rate of early diameter growth to
compensate for early suppression. Careful selection of subject trees may
overcome some problems, but many difficulties remain, and the techniques
are of little use where age cannot be determined.



137Forest Site Evaluation

Visual Assessment

The appearance of the stand may give an indication of site productivity.
Lewis et al. (1976) reported that P. radiata plantations develop
recognizable stand differences in general vigour and form, in crown density,
in needle length and colour, in tightness and colour of bark, in green level
and in degree of canopy formation at age of assessment, particularly prior
to thinning. The South Australian site quality classes (7 classes) can be
recognized by experienced assessors from these qualitative characteristics.

Vanclay (1989a) reported the use of visual assessment to classify
Queensland rainforests into two site quality classes (good, poor). Subjective
assessments were generally reliable, and could be confirmed using a scoring
procedure based on soil, species present, bole height and standing volume.
Regression analyses of stand basal area increment on stand basal area
suggested that additional classes offered no advantage. This does not reflect
on the range of site productivity in these forests, but rather on the ability of
assessors to classify sites reliably.

Natural Basal Area

Pienaar and Turnbull (1973) observed that even-aged stands with initial
stocking above a certain lower limit, converge towards an identical stand
basal area, determined by the capacity of the site. If the premise that
undisturbed sites tend toward equilibrium is accepted, then the equilibrium
or natural basal area may be assumed to be an expression of the site's
productivity. This assumption is implicit in many growth models (e.g.
Botkin et al. 1972), and the concept has been used as an indicator of site
productivity for natural forests in Western Australia (Havel 1980b).
However, as stand basal areas may fluctuate over time (especially on small
plots) even when undisturbed, the approach may be liable to error. In logged
stands, remeasurements over long periods are needed to estimate the
equilibrium basal area.

The concept is not entirely consistent with other theories of limiting
density (Chapter 9). For example, Reineke's (1933) stand density index
assumes that

gwhereas the concept of natural basal assumes that stand basal area (kNd )2

tends towards a constant, and thus that

Since these equations conflict, these concepts cannot co-exist.
In mixed stands, natural basal area may depend upon species

composition and stand structure. Sterba and Monserud (1993) found that
maximum basal area may be higher in pure even-aged stands than in
uneven-aged mixed stands of the same dominant height on comparable



138 Modelling Forest Growth and Yield

sites. They found that the difference depended on the skewness of the d 1.5

distribution, and diminished as the dominant height approached the
maximum for the site. The natural basal area of any given site may be lower
for light demanding and crown-shy species than for shade tolerant species.
Thus natural basal area may depend on the successional status of the stand,
and should be used with caution.

Stand Height

The height attained by trees at the cessation of height growth (assuming that
such an asymptote exists; see e.g. Robichaud and Methven 1993) is, in
theory, a good indicator of site productivity (Kramer 1967, attributed this
observation to Öttelt in 1765). Stand height may be used as an estimator of
site productivity if there are trees present in the stand that are sufficiently
large to reflect the maximum potential height that the nominated species is
likely to attain on that site. The concept is analogous to a site index with a
very large index age.

The average total height of dominant and co-dominant trees remaining
after logging has been used as an indicator of site productivity of
dipterocarp forests in the Philippines (Canonizado 1978, Mendoza and
Gumpal 1987).

One difficulty of using stand height or total tree height is that the tree
tops may be difficult to see. In such cases, useful results may be obtained
using height to crown break or merchantable height. Other problems include
the presence of emergent trees (e.g. Araucaria), harvesting of the larger
trees, and wind damage to tree tops.

Where suitably large trees are not available, height–diameter curves can
be used to estimate the asymptotic height. This can be done by fitting an
equation such as

to several pairs of height (h) and diameter (d) measurements from

max 0individual trees, and estimating the maximum stand height as h = $ .!1

However, extrapolation like this can be misleading, and care needs to be
taken in interpreting the results.

Some non-linear equations are constrained so that they extrapolate more
safely than simple asymptotic equations (e.g. Meyer 1940):

bwhere h  is breast height. Stout and Shumway (1982) argued that the
parameter $ was constant for any given species in even-aged hardwood
stands in the eastern USA, and suggested that this equation could be used
to estimate maximum stand height from a few pairs of height and diameter
measurements on dominant or codominant trees, using the relationship
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Fig. 7.1. Site index of western larch estimated from the height–diameter
relationship (drawn from Equation 7.1).

 They also used the height–diameter relationship to estimate site indices
compatible with published height–age equations, but their approach may be
relevant only in even-aged stands.

Height–Diameter Relationship

To avoid the need to extrapolate the height–diameter relationship, the height
at a nominated index diameter can be used as a measure of site productivity;
it has been suggested that this measure could be called site form (Vanclay
and Henry 1988) to avoid confusion with site index derived from the
height–age relationship. The height–diameter relationship allows not only
efficient evaluation of site in the field, but also the assessment of site from
stereo aerial photographs by estimation from crown widths and tree heights
measured on the photographs.

Reinhardt (1982) investigated the height–diameter–site relationship in
western larch in the USA, and found a polymorphic trend (Fig. 7.1):
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Fig. 7.2. Height–diameter curves used to estimate site productivity (site form)
in Callitris stands in south-eastern Queensland (drawn from Equation
7.2).

(7.1)

h,twhere h is tree height (m), d is diameter (cm) and S  is site index (m) at 50
years. Reinhardt (1982, 1983) worked with data from pure and mixed
stands of western larch, and used the height–diameter curve to predict site
index compatible with published height–age equations. The curves are not
well differentiated for trees less than 40 cm dbh, and data from trees
exceeding this diameter are necessary to establish a reliable relationship
(Fig. 7.1).

Vanclay and Henry (1988) used the height–diameter relationship to
characterize site productivity in uneven-aged coniferous (Callitris) forests
in Queensland, using the monomolecular or Mitscherlich equation
(Fig. 7.2):

(7.2)



141Forest Site Evaluation

Indicators of Site Productivity Site Form
(m)

Site Quality
(4 classes)

Subjective site quality estimate
   (4 classes)

0.29 1.00

Maximum stand height (m) 0.70 0.40

Natural basal area (m ha ) 0.46 0.212 !1

Periodic annual volume increment    (m3

ha y )!1 !1
0.40 0.34

Table 7.2. Correlation coefficients between site form and subjective site quality
classes in Callitris forest in south-eastern Queensland.

maxwhere h is tree height (m), h  is the asymptotic stand height (m),

max h,d h,dh  = !10.87 + 2.46 S , and S  is site form (m), the expected height of
a 25 cm dbh tree. An adequate estimate of site form could also be obtained

0 1 from a simple linear regression of height on diameter (h = $ + $ d ) for
trees 20 to 30 cm dbh, and Equation 7.2 was required only when trees of
this size did not occur in the stand. Site form estimates for Callitris forests
were relatively insensitive to harvesting, and remained constant over long
periods of time. Harvests may cause a perturbation in the estimate of site
form for a few years, but the estimate stabilizes in a few years when the
stand remains undisturbed. Site form is positively correlated with stand
basal area increment and diameter increments of individual trees (Vanclay
1988a), and with several other indicators of site productivity (Table 7.2).
Routine field application of this method suggests that best results are
obtained in well-stocked monospecific stands.

The height–diameter relationship also showed promise as a measure of
site productivity in mixed eucalypt forest and exhibited a strong correlation
with volume production (e.g. 44 plots had a correlation of 0.77 between site
form and periodic annual volume increment). The use of several Eucalyptus
and other Myrtaceous species to estimate site form on any plot did not
appear to influence estimates.

Choice of index diameter may influence the precision of site form
estimates (e.g. Goelz and Burk 1992). The height–diameter relationship can
be determined with least error if the index diameter is within the range of
diameters normally observed in the stand and if diameters are sufficiently
large to allow height differences to be manifested (cf. Fig. 7.1). Equations
may be required to predict heights in a stand of known site form, or to
estimate the site form of a stand in which heights and diameters are known,
and the correct form of equation should be used in regression analyses (e.g.
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Curtis et al. 1974). The response variable about which the errors are
minimized should be the variable of interest, in this case, height at the
reference diameter. Some equations can be inverted and enable appropriate
prediction functions for site form and for height to be formed. Parameters
estimated for these alternative formulations usually differ (e.g. Monserud
1984). Omule and Macdonald (1991) offered an efficient methodology for
fitting a series of compatible height–diameter curves, but remember that the
shape of these curves may vary with site (e.g. Beck and Trousdell 1973).

Volume Production

Since volume production is usually the growth parameter of greatest interest
to the forest manager, an evaluation of site productivity in terms of volume
is desirable, but the method of measuring volume must be standardized.
Utilizable volume is inadequate because utilization standards vary in time
and place. Estimates of sawn volume are even more unreliable, because they
depend on assumptions regarding conversion efficiency. Assmann (1961)
recommended the use of solid wood (derbholz) volume defined as the
volume under bark of all stem and branch material not less than 7 cm
diameter under bark. This is convenient for conifers as it reflects utilization
standards in common usage in many places. However, in trees with a
deliquescent habit, this may entail the measurement of branch volume,
which may be difficult.

As early as 1888, the Association of German Forest Experiment Stations
adopted total volume production at 100 years of age as a standard measure
of site productivity. Others (e.g. Bradley et al. 1966) advocate that mean
annual volume increment at culmination provides a better basis for
comparison, but these measures apply only to pure even-aged stands.
Difficulties arise in mixed forests where there may be many different
species with great variations in growth habit, growth rate and wood density.
Biomass production (t ha y  dry weight) may provide a suitable basis for!1 !1

comparison, but should it refer to just one species, or to a specified mixture
of species? In mixed forests, an index of the site is probably more useful
than an index of a species on that site. Notwithstanding these limitations,
the historic volume production of a well stocked and well managed forest
may provide a good measure of site productivity, and may serve as a
benchmark with which to test other more practical measures of site.

Direct measurement of volume production requires measurement of
permanent plots over many years. Schmoldt et al. (1985) attempted an
alternative approach by fitting yield equations to permanent plot data, and
examining both the maximum growth rate and the asymptotic volume. They
found that aspect and soil nutrients were significantly correlated with
asymptotic basal area, maximum basal area increment and asymptotic
volume, but not with maximum volume growth rate or site index. They
suggested that site index is unreliable in mixed hardwood forests in North
America, and suggested that coefficients from yield equations fitted to



143Forest Site Evaluation

permanent plot data may provide practical alternative measures of site
productivity.

Growth Index

If a simple growth model is compared with remeasures of several permanent
plots, the residuals will indicate the relative site productivity of the plots.
Large positive residuals indicate a better-than-average site, small residuals
indicate an average site, and negative residuals indicate a poorer-than-
average site. The simplest method is simply to compare mean basal area
increments, but better estimates may be obtained if basal area increment is
adjusted for stand basal area. More sophisticated analyses may use
individual tree increments, and may take stand composition into account
(see Exercise 7.2). This requires measurements over a period of several
years before site productivity can be estimated for the site, but if a
correlation can be discovered between the residuals and some easily
measured site or crop parameter, this may provide the first step toward a
predictive system.

Vanclay (1989c) developed an index of site productivity based on
individual tree growth adjusted for stand density. The index was initially
estimated from the historic measurement record of permanent plots. Later,
biotic and abiotic variables correlated with the index were used to predict
the growth index for other sites.

The index was based on the diameter increment of individual trees of
18 reference species. These reference species were subjectively selected
because their widespread distribution and common occurrence, to ensure
that all plots contained at least one tree of half these species. The 18 species
were Acronychia acidula, Alphitonia whitei, Argyrodendron trifoliolatum,
Cardwellia sublimis, Castanospora alphandii, Cryptocarya angulata,
C. mackinnoniana, Darlingia darlingiana, Elaeocarpus largiflorens,
Endiandra sp. aff. E. hypotephra, Flindersia bourjotiana, F. brayleyana,
F. pimenteliana, Litsea leefeana, Sterculia laurifolia, Syzygium kuranda,
Toechima erythrocarpum and Xanthophyllum octandrum.

An increment function (Fig. 7.3) was fitted simultaneously for all 18
reference species, to all non-overlapping remeasures on 80 permanent plots
(for some plots measured more frequently, selected remeasurements with
approx. 5 year intervals were used). The plot identifier was included as a
qualitative variable (see p. 104):

(7.3)

ijk ijk >dijkwhere )d , d  and G  are the diameter increment (cm y ), initial!1

diameter (cm dbh) and basal area in larger trees (m ha ) respectively for2 !1
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Fig. 7.3. Growth index equation for Cardwellia sublimis trees in stands with
30 m ha  basal area with 10 m ha  basal area in larger trees.2 !1 2 !1

k itree j of species i on plot k, G  is the stand basal area (m ha ) on plot k, Z2 !1

is a binary variable (see p. 104) which takes the value 1 for trees of species

ki and zero otherwise, Z  is a binary variable which takes the value 1 for trees

i kon plot k and zero otherwise, and ", $  and (  are parameters to be
estimated. The parameter " was assigned the value 0.02 after inspection of
residuals and examining the residual mean squares from a range of values.

This equation (7.3) can be re-arranged to estimate the growth index for
a given permanent plot:

(7.4)

)d ijwhere S  is the growth index of the plot, d  is the diameter (cm) of tree j of

ij >dijspecies i, )d  is its diameter increment (cm y ), G  is the basal area of!1

trees within the plot that are bigger than tree ij (m ha ), G is the plot basal2 !1

area (m ha ), and the $$ s are estimates of the $s in Equation 7.3. The value2 !1

11.35 (in Equation 7.4) was subjectively determined to scale the growth
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indices into the range 0–10. This equation provides an estimate of site
productivity based on the diameter increment adjusted for tree size and
competition, of all trees of 18 reference species using all available
remeasures for the plot. This may look very complicated, but is analogous
to taking the average of growth indices read from Fig. 7.3 (or similar curves
for the other species) for each remeasure of each tree of any of the 18
reference species that occur on a plot.

This procedure yielded a descriptive measure of site, in effect an
objective ranking of permanent plots, and does not provide a predictive
measure that can be applied to temporary plots. However, the growth index
can be predicted from other measurable or observable biotic and abiotic
factors.

Geocentric Methods

Phytocentric methods of site assessment are based on forest measurements,
and thus cannot be used where suitable forest stands are not present.
Alternative methods are important for evaluating plantation viability, and
the prediction site index from site attributes has been researched thoroughly.
Natural forest management may not require site assessment of bare land, but
geocentric methods of site evaluation may be useful even where forest is
present. Descriptive measures such as growth index require remeasured
plots, and it is desirable to have a predictive method that provides an
estimate of site productivity after a single visit. Many site characteristics
can be recorded during a single visit, and may provide an efficient way to
estimate site productivity if a relationship can be established with growth
index or other proven measures of site.

One problem in appraising geocentric methods of site evaluation is that
it is difficult to test them against the true site productivity, and that they are
usually tested against some phytocentric estimate of site productivity (e.g.
site index), which may or may not be reliable. This problem is evident in
Grey's (1979) attempt to relate geocentric site factors to site index: he found
that three measures of site productivity (two from alternative height–age
curves and an estimate of the mean annual volume increment), each were
predicted by a different subset of the site factors considered, and that no one
factor was common to all three. This suggests that these three measures of
site productivity were not sufficiently reliable to enable a consistent
relationship to be established. Schmoldt et al. (1985) also found that site
index was not well correlated with site factors, and suggested that
alternative phytocentric estimates should also be considered in appraisals.

Climate

The best known climatic index of forest growth is Paterson's CVP index
which was designed to predict the maximum growth potential in terms of
volume production over large areas (Johnston et al. 1967). It is based on
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evapotranspiration, annual temperature range, mean annual precipitation,
length of growing season and mean monthly temperature of the warmest
month. Although it has been adopted on a national scale by several
countries, it is probably only useful for economic geography and general
forest statistics where estimates of potential production are required for
large inaccessible and non-inventoried areas. Similar indices of net primary
production for global atmospheric studies have been based on
evapotranspiration (e.g. Lieth and Box 1972) and on temperature and
precipitation (e.g. Esser 1984).

Czarnowski (1964) developed an equation with three climate
parameters, three soil parameters and four species properties to predict the
productive capacity of a species independently of age, anywhere on earth.
Trials with his equation indicate that predictions were close to observed
values for three species on four continents. The model was subsequently
refined to predict site index (at age 20) of P. radiata from three climatic and
nine soil characteristics, with a mean error of about 10 percent (Czarnowski
et al. 1976). However, the equation lacks general utility and involves
considerable effort in determining soil nutrient status.

Degree-days (number of days during which the mean temperature
exceeds a specified temperature, usually 5 or 10 degrees C) and
precipitation during growing season have been used to estimate site
productivity in temperate forests (e.g. Farr and Harris 1979). The
distribution of the rainfall is probably more important than the actual
amount (e.g. Jackson et al. 1975). In temperate regions, rainfall during the
growing season is important, whilst in the seasonal tropics the dry season
rainfall may be critical. These variables may be used directly, or predicted
as a function of latitude and elevation.

Topography

Climatic variables can only give a general indication of site productivity
because they do not account for any local variations in site. Thus estimates
may be improved by incorporating topographic details for the each site. An
advantage of using only climatic and topographic information is that these
details can easily be obtained from topographic maps (or air photos) and
climatic records.

In areas of marked relief, topographic effects may be the dominant force
controlling site productivity. Evans (1974) found that height at age twelve
in P. patula plantations in Swaziland was highly correlated with elevation.
Site index of oak in Ohio (USA) can be predicted from aspect, slope shape
and position on slope (Carmean 1967). Stage (1976) demonstrated the
interacting effects of slope and aspect on the site index of white pine, and
showed that the favoured aspect can be detected by including both the
trigonometrical functions sin(aspect) and cos(aspect) in equations.

Most investigations into the relationship between topography and site
productivity have used simple variables such as elevation, aspect and slope.
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Whilst these have produced some promising results in temperate forests,
their predictive ability has not been demonstrated in the tropics. In an
analysis of vegetation types, Moore et al. (1991) found that "steepness" (the
diversity of elevation within a 200 m neighbourhood, indicative of
erosional/depositional environments) and "exposure" (the average angle to
the northern horizon, indicating shading by the topography; their study was
in the southern hemisphere) provided better predictions than slope and
aspect. Vertical height above the nearest stream may also provide good
discriminations, often better than the conventional position on slope. This
suggests that there remains scope for further research in this area.

Soils

Geocentric estimates of site productivity may be further refined by
including details about the soil. Soil depth, colour and texture are easily
determined, but soil moisture and nutrient status are more difficult to
quantify and may vary in time and space. Despite these difficulties,
numerous studies involving soil analysis have been made in temperate
regions (see e.g. Carmean 1973). Some studies report high correlations
between site productivity and soil nutrient status (e.g. Mader 1976, with
white pine) while others found no useful correlation (e.g. Fralish and
Loucks 1975, with aspen). Grey (1979) found little correlation between site
index of Pinus patula in South Africa and soil structure and chemistry, but
found a significant correlation with slope, distance from ridge, etc. These
findings may be species-specific, and effective rooting depth may be the
most influential predictor of site productivity (e.g. Schönau and Aldworth
1991, with Acacia plantations).

Wright and van Dyne (1971) studied 50 equations predicting site index
from site factors for several species in the USA, and found that on poorly
drained sites, texture and depth to impermeable layers were crucial, while
on other sites, topography, available water and soil depth were important.
Carmean (1979) suggested that important soil features include surface soil
depth, depth to mottling, depth to impermeable layer, effective soil depth,
structure, drainage and subsoil colour. This is good news, because these
parameters can be determined in the field, and do not need laboratory
analyses.

Webb and Tracey (1967) found that site index of Araucaria
cunninghamii in Queensland could be predicted from surface geology and
land form, within broad climatic zones. Surface geology reflects soil
mineral status, as acid rock produces soils of low fertility while more basic
parent material yields soils of high nutrient status. Slope, soil depth and
drainage were also important factors.

Turner et al. (1990) formulated a soil classification for intensive
P. radiata plantations, designed to reveal potential nutritional deficiencies
and other management limitations from physical soil parameters that did not
require laboratory analysis. The system was based on characteristics that
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indicated innate nutrient supply, the development of roots, moisture supply,
and other growth and management factors, and included parent rock, texture
profile, depth to and nature of impeding layer, texture and condition of the
uppermost 10 cm of soil, character of horizons and the condition and colour
of the subsoil. Parent rock sets upper limits to the total amounts of clay,
primary quartz and many plant nutrients that can be released through
mineral weathering (Brewer 1954). Turvey et al. (1990) found that parent
rock, depth to, and nature of impeding layer explained most of the variation
in wood volume production. Parameter estimates from their equation could
be summed to provide estimates of wood volume production at age 11
years. The Turner et al. (1990) soil classification system provided better
estimates of productivity than did other more widely used classifications.

Biotic Factors

Many site properties such as available water and nutrient concentrations are
not easily measured, so an alternative is to measure indicative variables
such as composition of ground vegetation. No causal relationship is implied,
but it is assumed that both ground vegetation and wood production are
influenced by the same properties (e.g. Cajander 1909, 1949).

Daubenmire (1976) drew on six basic principles to argue that vegetation
is the best method for assessing site productivity:

1. Vegetation reflects the sum of all the elements of the environment
which are important to plants.
2. The species with the highest competitive powers are the best indicators.
3. Forests consist of superimposed groups ("unions") which occur in
different combinations over the landscape.
4. Each union is sensitive to certain special aspects of environment.
5. Many characters of vegetation have potential significance as ecologic
indicators.
6. Types of environment ("habitat types") are the most basic ecologic units
of landscapes.

Two main approaches can be distinguished: the classification approach
(also known as subdivision, European or Braun-Blanquet) which uses the
(potential) climax vegetation, and the ordination approach (also known as
the Anglo-American or Clements) using indicator plants.

Classification

There are several variations on classification, but all use the potential
climax vegetation to classify areas into habitat or site types, which are
considered to be effectively uniform in many respects (Havel 1980a). The
classic example of floristic classification for site evaluation is Cajander's
(1909, 1949) use of various associations of ground vegetation to predict site
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productivity in Finland. This approach has been used with only minor
modifications in Europe and north America.

Ure (1950) used this system in New Zealand to estimate P. radiata site
class from habitat types. Reliable estimates require that the vegetation must
not have been burnt, ploughed or otherwise interfered with, and that road
edges are avoided. Daubenmire (1961) also found that floristic
classification was a useful way to predict height growth and disease
susceptibility of P. ponderosa in the USA.

Webb et al. (1970) classified Queensland rainforests on physiognomic
and structural characters, and found this an effective way to indicate
environmental conditions. Structural features offer greater ease and speed
of data collection than floristic classifications. The approach also appears
to have greater applicability over diverse geographic regions. One
shortcoming is that structural features are generally defined in an informal
manner, and delineation of habitat types is not necessarily unique especially
when prepared by workers not familiar with the approach. This work has
focused on general environmental conditions rather than site productivity,
and the value of this classification for growth prediction has not been
demonstrated.

One danger in shifting emphasis from assessing forest site productivity
to a system which fulfils broader multidisciplinary objectives is that in
doing so the value of the classification for site assessment may be reduced.
However, classification into habitat types may be useful, and Monserud
(1984) found that each type exhibited site index curves of different shapes.
Classification may provide accurate estimates of site productivity when
developed specifically for the purpose, but more general approaches that
can be used for a variety of purposes may not predict the site productivity
so well.

Unfortunately, floristic classification remains a rather imprecise science.
Non-mathematical classifications are unavoidably subjective, whilst the
outcome of mathematical approaches depends heavily on the algorithm
chosen. Of the many algorithms available, only single linkage cluster
analysis emphasizes the separation of clusters; other algorithms may
maintain clusters without regard to the possibility that two similar units may
be assigned to different major clusters (e.g. Gower 1967, Jardine and Sibson
1971).

Ordination

Two approaches to ordination exist. The first and most widely used is to use
the presence (and occasionally abundance) of certain plants as an indication
of site productivity; the other uses physiognomic characters such as size and
shape of leaves, and the height of the indicator plants. These methods are
not mutually exclusive, and may be used in conjunction.

The presence and abundance of each plant indicator express a set of
environmental conditions favourable to that species. A community of such
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plants may reveal many biologically relevant factors and interactions of a
site. Thus the use of indicator plants may reflect the integration of factors
more flexibly than the climax vegetation approach (e.g. Webb et al. 1967).
The relative abundance of plant species may be used an indicator (e.g.
Corns and Pluth 1984), but ordination based on presence-absence seems to
be influenced less by disturbance.

Carleton et al. (1985) examined the influence of temporal factors such
as stand density and succession on understorey vegetation in northern
Canada, and found that these have minimal influence on vegetation. They
found that the understorey vegetation was most influenced by soil, and
concluded that the understorey vegetation should provide a reliable
indicator of site productivity.

Webb and Tracey (1967) gave a list of pioneer species indicative of
good and poor sites for Araucaria cunninghamii plantations in Queensland;
these pioneers should be present following disturbance. However, indicator
species need to be chosen carefully, as even apparently stable rainforest may
have a relatively high species turnover rate. Swaine et al. (1987) reported
a species turnover of around one percent per year in an undisturbed tropical
forest in Ghana. Schönau (1987) argued that plant indicators are more
useful in temperate regions where there are fewer species, and suggested
that vegetation on its own generally does not provide satisfactory site
productivity estimates.

In Queensland rainforests, the growth index may be estimated from the
presence of several tree species (Vanclay 1989a). If the correct taxonomy
of indicator trees was known, geology contributed no further improvement.
However, identification of rainforest trees is often difficult, and a single
common name may refer to more than one species. Good estimates of
growth index can be obtained if geology is used in conjunction with
common names:

where all variables are binary variables which take the value one if the
geology (S ) or species (Z ) is present on the plot, and zero otherwise, and
BLO is blush silky oak (Bleasdalea bleasdalei and Opisthiolepis
heterophylla), SBN is salmon bean (Archidendron vaillantii), VTX is vitex
(Vitex acuminata), RAP is rapanea (Rapanea achradifolia), BUA is buff
alder (Apodytes brachystylis), RBN is rose butternut (Blepharocarya
involucrigera), CLL is cinnamon laurel (Cryptocarya cinnamomifolia and
some affiliated species), and BGR is brown gardenia (Randia fitzalanii), and
where the geology al is alluvial, bv is basic volcanic, av is acid volcanic, cg
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is coarse granite, sm is sedimentary-metamorphic, and fg is fine-grained
granite. Note that only one geological type (S ) may occur on a site, but that
any number of species may be present and used to evaluate the growth
index. None of these species are short-lived pioneer species, and the
presence or absence of these species should be relatively independent of
successional status and disturbance.

Keenan and Candy (1983) examined the utility of floristic data for
predicting height growth of Eucalyptus delegatensis in Tasmania. Ten
species or species groups were formed by amalgamating some less frequent
taxa, and omitting species which occurred on fewer than three of the 52
plots. A binary matrix indicating relative abundance was compiled by
assuming a taxon was abundant (1) if occurred over at least 30% of the plot
area (0.01 ha) covered by non-eucalypt vegetation, and non-abundant (0)
otherwise. Matrices comprising presence/absence (any occurrence of 28
species) and percentage cover data provided similar but inferior results.
They found that the first principal component of this matrix explained 29%
of the total variation in growth, more than the non-floristic site factors
(slope, elevation, exposure, soil parent material, soil pH, soil drainage)
which, although significant (P<0.01) collectively explained less than 9% of
the total variation. Their analysis suggested that plant species were better
predictors of height growth than human appraisals of non-floristic factors.

Principal components offer some advantages for investigations such as
this. They provide more than one linear combination of the (0,1) data and
can thus reflect more than one environmental gradient. Secondly,
component correlations of the principal components are unchanged by
adding or subtracting other explanatory variables to the model. However,
one disadvantage is that principal components are specific to each set of
data: additional data may give rise to different principal components, and
thus subsequent studies and predictions must use the original component
correlations.

Practical Considerations

The accuracy of any attempt to model a forest system depends largely upon
the precision with which the site can be classified into homogeneous units
(e.g. see simulation studies by Gertner and Dzialowy 1984, Smith and
Burkhart 1984). Thus the ability to stratify a forest resource with respect to
site productivity may make a significant contribution to the accuracy of
yield predictions. Remote sensing and geographic information systems may
be helpful in mapping site productivity and stratifying areas of forest.

Mapping Site Productivity using Remote Sensing

Forest types have been mapped using remotely sensed data for many years,
and broad site productivity classes can often be defined. Aerial photographs
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may allow objective measurement of some measures of site productivity.
Bonnor and Morrier (1981) used aerial photography to classify temperate
mixed forest in Canada into several 5-metre site index classes with 76%
success; the remaining instances underestimated by one class. Goodwin
(1988) reported the use of aerial photography to determine mature stand
height in temperate Eucalyptus forest in Tasmania. However, the ground
must be visible through the canopy for these methods to work, and this may
not be possible in dense forests.

Digital remote sensing from satellite (e.g. Landsat) offers potential for
objective algorithm-based site productivity mapping. Fox et al. (1985)
reported that broad site productivity classes could be estimated from aspect
(computed from digital topographic data) and vegetation classes obtained
through supervised classification of Landsat data. Vanclay and Preston
(1990) reported that growth index in Queensland rainforests could be
estimated directly from Landsat thematic mapper (TM) data and geology,
although prediction equations may need to be re-calibrated for each Landsat
scene. Vanclay and Preston (1990) found that the ratio of band 4 (near-
infrared) and band 5 (mid-infrared) provided reasonable estimates of growth
index, especially when used in conjunction with geological data:

where av, bv, cg and sm are binary variables representing acid volcanic,
basic volcanic, coarse granite and sedimentary-metamorphic geology

1 4 5 respectively, and where R , R  and R  are reflectances observed in the blue,
near-infrared, and mid-infrared Landsat TM bands respectively. However,
this equation should be re-calibrated for each image, and could not be
extrapolated to other passes (i.e. different dates). The ability to predict site
productivity remotely may depend on timing, especially in the seasonal
tropics.

Mapping Site Productivity using Geographic Information Systems

Geographic information systems have become an important and useful tool
in forest management, and offer some potential for mapping site
productivity. Several studies (e.g. Moore et al. 1991) have demonstrated the
utility of these systems for mapping vegetation types, and these studies
suggest potential for mapping site productivity.

Turvey et al. (1990) found that soil parent material and soil depth were
the primary determinants of Pinus radiata site productivity. Suitable soil
parent material classes can be derived from published geological maps,
whilst soil depth may be inferred from a digital elevation model. Moore et
al. (1991) found that steepness (elevation diversity) was easily calculated



153Forest Site Evaluation

with a digital elevation model and indicated erosional and depositional
areas which may serve as a suitable proxy for soil depth.

Multiple Estimates

Different methods of site productivity assessment may give rise to differing
estimates, and the forest manager may have no basis for resolving these
differences. Choosing the most popular or well established technique is one
alternative, others may include choosing the method that intuitively seems
right, or taking the mean or median of all available estimates. If permanent
plot data are available, the alternative techniques can be tested using
standard procedures (e.g. Freese 1960, Gregoire and Reynolds 1988, see
Chapter 11), but where no such data are available, the "true" value cannot
be determined and alternative selection procedures are required. Reed and
Jones (1989) suggested an objective approach based on psychometrics (e.g.
Campbell and Fiske 1959) to help reconcile different estimates of site
productivity. The method involves conceptualizing the relationships among
the estimates, standardizing the estimates, calculating correlations and
identifying correspondences between the approaches. The most consistent
approach is assumed to be the most reliable.

Changing Species of Estimation

Where a crop parameter is used as a measure of site production, it may refer
to a specific species in the crop, or to a stand of specified composition. It
may be possible to gauge the potential of a site for another species or
composition by a transformation of the measured parameter. Another
application of this technique is that it enables extensive areas of mixed
forest to be evaluated in terms of one standard species, even if that species
is not present over the whole area.

Foster (1959) found a curvilinear relationship between the site indices
of eastern white pine and red maple. Red maple has rapid early height
growth and may exceed the height of white pine during the first 46 years,
after which the trend reverses. Red maple is more sensitive to site than
white pine, being taller on good sites and shorter on poor sites.

Shoulders and Tiarks (1980) examined the influence of rainfall, slope
and available soil moisture on the height at age 20 of four species of pines
on the USA Gulf Coast. Relative heights of these species were affected by
all three factors. P. echinata is the tallest where annual rainfall is less than
1300 mm. Elsewhere, P. elliottii or P. taeda may be taller, depending on
soil, slope and rainfall distribution.

Equations comparing site indices may be useful for assessing the
potential performance of species on sites where they are not present.
However, care should be taken with interpretation, as most comparisons
published to date compare only the height at index age. Such comparisons
should be made only after comparing the methods of determining site index
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for both species, and comparing the shape of the height growth curves.
Differing growth habits of various species mean that height or site index of
different species may not provide a reliable basis for comparing site
productivity. Periodic annual volume increment realized under a specified
management regime may provide a better basis for comparison.

Uniformity of Site

A further complexity in assessing site productivity arises where the site is
not uniform, but is perforated by physical obstructions such as rocky
outcrops. An insidious feature of this phenomenon is that conventional
measures of site such as site index may indicate the potential of the better
pockets, and fail to indicate the true average productivity of the site.
However, top or predominant height is often determined as the mean of the
tallest tree on each of several adjacent non-overlapping plots, and this
should reduce bias from such phenomena.

MacLean and Bolsinger (1973) proposed the use of a stand density
index (Curtis 1970) predicted from indicator plants to adjust yield
estimates. An alternative approach is to examine the physical attributes of
the site and determine an arbitrary reduction, but this approach is not
without difficulty.

Synthesis

This chapter has neatly compartmentalized the many options available for
site evaluation into discrete categories. This is convenient for the present
study, but irrelevant in application. It is likely that the best approaches to
site evaluation may employ a combination of several of these options.

The development and evolution of an efficient method of site evaluation
for mixed forests will rely on comparisons of alternatives with long term
growth recorded on permanent plots. This will require considerable amounts
of quality data. Rayner (1992) found that several classifications based on
climatic, edaphic, landform and vegetative characteristics did not help to
explain forest stand dynamics, and attributed this to inadequate selection of
site attributes, measurement techniques and sampling intensity. Others
report more promising results, but it appears to be more difficult to
demonstrate an environment–productivity relationship, and there remains
ample scope for further research in this area.

Indices such as growth index show promise, but in practice would
normally be estimated from stand and environmental variables, including
indicator species. Measures of stand height such as maximum stand height,
canopy height and the height–diameter relationship may also prove useful
where visibility allows unimpeded estimation of tree heights. Any measure
of site productivity should be tested to ensure that it is reproducible and
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consistent over long periods of time, and not unduly influenced by stand
condition or management history.

Exercises

7.1. Suggest a measure of site productivity that might prove suitable for
your forests. How would you test this measure to ensure that it was a good
indicator of site productivity? Could you do this with existing data, or
would you need to collect new data? Design an experiment to calibrate and
test this measure of site productivity.

7.2. Stand basal areas (m ha ) recorded during successive remeasures2 !1

at 10-year intervals on six permanent plots are given below. Derive an
estimate of site productivity for each of these six plots. Define three
productivity classes and choose two plots for each class. Hint: read the
section on Growth Index (p. 143) again.

0 1 2 Plot G , G , G , . . . Species present

A B C D E F G

1
2
3
4
5
6

11.2, 13.3, 15.5, 17.6
16.3, 17.6, 18.8
 9.7, 12.2
19.5, 21.2, 22.8
12.4, 15.0, 17.6, 20.0
 9.3, 11.0, 12.7

1
0
0
0
0
0

0
1
0
0
0
1

0
0
1
0
1
0

1
0
1
0
1
0

0
1
0
1
0
1

0
1
1
1
1
0

1
1
1
1
1
0

7.3. The data above also indicate some of the species that were found on
the six plots of Exercise 7.2. Are some of these species useful as potential
indicator species to predict the site productivity? Which ones?



 

156

Chapter Eight

Diameter Increment

Most models suitable for mixed forests predict individual tree growth
explicitly, often with equations to estimate diameter increment from tree
diameter and other variables. These equations are usually fitted with data
from remeasured permanent plots on which all trees have been individually
identified. Some alternatives exist where such data are not available, but
these approaches are generally less accurate. This chapter focuses on single-
tree diameter increment equations that can be used in tree list and size class
models, and assumes that suitable permanent plot data are available for
developing these equations (see Chapters 3–5).

It is often convenient to model diameter increment, but this is not the
only alternative, and the principles discussed in this chapter apply equally
to other measures of stem dimensions, including cross-sectional area, height
and volume (e.g. see p. 112). These alternatives should be considered, even
if the model utilizes diameter increments, because it may be more efficient
to estimate one of the alternatives, and convert it to a diameter increment.
For instance, the FORMIX model (Bossel and Krieger 1991) for Malaysian
dipterocarp forest estimates volume increments from nett photosynthesis
and converts these to diameter increments (see p. 41).

What to Model

The increase in stem size of individual trees can be modelled as
(a) diameter increment,
(b) basal area increment,
(c) future diameter, or
(d) future basal area.
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Although arguments have been advanced in favour of all these options, all
four are mathematically related and there should be little difference between
the alternatives, provided that the assumptions concerning the error term (p.
119) are satisfied.

Some models (e.g. Mitchell 1969, Ek and Monserud 1974, Alder 1979)
simulate height development, and derive diameter increment from the
predicted height growth. This method has been useful for modelling
regeneration and in modelling pure even-aged coniferous forests, but the
difficulty of measuring heights of mature trees is a major limitation in many
forests, and the approach will not be considered further in this chapter.

We begin by examining the options for modelling increment, and
address the alternative approach of estimating future diameter or basal area
later.

Diameter or Basal Area Increment

Individual tree growth may be predicted as basal area increment or as
diameter increment. Some argue that modelling basal area increment is
preferable, since basal area increment supposedly resembles more closely
the volume growth achieved by the tree than does diameter increment.
Others justify the use of basal area increment as the response variable
because it usually has a higher R², but this claim is invalid since R² does not
provide a valid comparison between these alternatives (see Chapter 6,
p. 125). Both these arguments are unfounded.

Tree diameter increment and basal area increment are related
mathematically (i.e. Mg = M(kd ) = 2kd Md ), and any apparent differences in2

the goodness-of-fit may be due to differences in the error structure and
implied functional relationship, rather than the superiority of one model
over the other. Many researchers (e.g. Bella 1971, Johnson 1973, West
1980) have observed that the use of basal area increment as the response
variable tends to give higher values of R². This has more to do with the
limitations of the R² statistic (e.g. p. 125) than the suitability of the response
variable, and is unlikely to be reflected in other more suitable statistics (e.g.
Furnival index, p. 126). Empirical studies (e.g. West 1980, Shifley 1987)
offer no evidence of any difference in the precision of estimates of future
diameter from diameter and basal area increment equations.

This means that the decision to model diameter increment or basal area
increment may be based on convenience. One of these alternatives may be
desirable because it offers a more satisfactory error distribution, but the
same effect may be obtained through weighted regression and other
techniques (p. 119). This chapter focuses on diameter increment, but the
prediction of basal area increment is equivalent in most respects as the two
are intimately related.
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Future Diameter or Diameter Increment

The increase in stem diameter can be expressed as a yield function that

n 0 1 estimates future diameter (d  = F(d , t) + e ), or as a growth function which

2 1estimates the increment over a specified period ()d = f(d) + e , where e

2and e  are the errors associated with the estimates). Yield equations can be
differentiated to form growth equations and thus to provide compatible
growth and yield estimates. Where there is a single measurement interval
of the same duration for all observations, both formulations should, in
theory, yield the same result. However, where measurement intervals vary
and where there are repeated measurements from the same plots, these
alternatives may give rise to different results, because the error structure

1will be different (i.e. errors e  in the yield formulation have linear units

2whereas the errors e  in the growth form are per unit time, e.g. mm and
mm y  respectively).!1

The growth equation may pose some problems not encountered with the
yield equation, especially if the measurement interval is long or varies
greatly. If remeasures are fairly frequent, initial values of various tree and
stand variables (d, G, etc.) can be used in regression analyses. However
stand conditions may change significantly during longer intervals, so in
such cases, some account should be taken of the change in the initial values.
The simplest alternative is to use the value corresponding to the middle of
the interval, estimated as mean values, but estimates may also be based on
the functional form of the relationship (McDill and Amateis 1993).

Figure 8.1 illustrates that the average increment observed over a 13-year
period ()d, thick line) is a good predictor of the expected annual growth

0 13 >d,0 >d,13 (Md ) for the average conditions (i.e. (d + d )/2 and (G + G )/2 )
during that period, but not of the conditions at the beginning of the period.
The instantaneous growth (dd/dt) cannot be observed, and annual
increments may be obscured by measurement error and other noise, so in
practice we have to make do with periodic average increments. Here we
infer expected growth from the results of Exercise 6.4 (p. 132). Notice that
the expected growth (thin solid line) decreases as the tree becomes larger

>dand the basal area in larger trees (G ) increases, and that a different trend

>demerges if G  is assumed to be constant (dashed lines). Thus a sensible
compromise when fitting growth models may be, for example, to regress the

n 0  observed increment on the mean diameter (d + d )/2 and the mean basal
area in larger trees rather than on the initial values. A better but more
complex alternative is to interpolate using the functional form of the
equation being fitted (McDill and Amateis 1993).

Many modellers choose the growth rather than yield formulation for
predicting diameter increment because the implications regarding serial
correlation of errors are minimized, but they remain divided between
predicting diameter increment or basal area increment. In practice, this
choice is immaterial. Any of the four alternatives (growth or yield of
diameter or basal area) can be formulated to provide reasonable estimates.
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Fig. 8.1. Observed periodic increment ()d) may be a better predictor of

>dannual growth (Md) at the mean diameter and competition (G ), than
at initial conditions.

Competition Indices, Modifier Functions and Allocation Rules

Competition indices are an attempt to quantify in a simple expression, the
effects of neighbouring trees (or other plants) on the growth of an individual
in a forest stand. They may be expressed as an absolute value such as stand
basal area, or as a relative index comparing tree growth to expected growth
under ideal conditions. Many competition indices have been proposed (see
Chapter 4, p. 58), but several empirical trials have suggested that general
non-spatial measures of competition such as stand basal area and basal area
in larger trees are as effective as other indices for many applications (e.g.
Opie 1968, Lorimer 1983, Martin and Ek 1984). Many competition indices
require spatial data and are thus unsuitable for non-spatial models such as
size class and tree list approaches.

One robust way to model diameter increment is to predict potential
growth and use a modifier function to estimate actual increments (e.g. Ek
and Monserud 1974, Leary 1979, Arney 1985, Pretzsch 1992a):

Whilst this has some attractions, it poses several difficulties. One difficulty
is estimating the potential growth rate. Shifley (1987) based his equation for
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potential growth rate on the fastest growing five percent of trees in his data.
Such approaches should be based on the average growth rate between the
first and last measure, since the use of growth estimates between individual
consecutive pairs of measures may select for measurement errors rather than
for real growth. An alternative that avoids this problem is to base the
potential growth equation on trees assessed as open-grown or free of
competition.

An alternative approach is to predict the stand increment, and distribute
this among the stems comprising the stand. Stand increment may be
predicted as basal area increment (e.g. Opie 1972, Clutter and Allison
1974), as increment in the sum of diameters (e.g. Leary 1979, 1980), as
biomass increment (e.g. Bossel and Krieger 1991), or as canopy
photosynthesis (e.g. Sievänen and Burk 1993). Allocation rules range from
the simple to the complex. One widely used approach is to allocate the basal
area increment according to the basal area:

where the weight w may vary from 0.93 (Campbell et al. 1979) to 1.25
(Opie 1972) for Eucalyptus regnans.

Vanclay (1988a) found that this relationship (with w = 1) held for even-
aged stands of Callitris, but that in uneven-aged stands, the smaller trees got
a greater share of the increment (i.e. w < 1). This result may reflect the fact
that competition in this semi-arid part of southern Queensland is mainly for
moisture rather than for light. The allocation of stand increment to
individual trees was predicted from the cumulative basal area distribution
using the diameter of the largest tree, the stand mean diameter and standard
deviation of diameters as explanatory variables.

Leary et al. (1979b) predicted the share of the increment in sum of
diameters with a more complex relationship:

i i i i where Y = )d /)D  and X = d /D , the $s are constants common to species
and stands, and the (s depend upon species and stand condition. All these
methods may provide good results in well-stocked stands with few species,
but the allocation rules become complex for stands with many species.

Explanatory Variables

Many of the explanatory variables used in plantation growth and yield
models are of little relevance to models for mixed forests as they cannot be
determined or have no apparent meaning. These include stand-level
variables such as age, site index, top height, and mean diameter. Spatial
competition indices may be useful in research applications, but often cannot
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be used in growth models for forest management because the necessary
spatial data are rarely available from operational inventory.

Variables which may be more accessible in mixed stands include
species, diameter, stand basal area and estimates of site productivity
(Chapter 7). The advantage of these variables is that the model can readily
predict future values during long simulations.

Other variables such as crown size and position (e.g. dominant,
intermediate, suppressed) may exhibit a high correlation with diameter
increment, but pose difficulties in predicting how these variables themselves
change over time. It may be valid to assume that crown size and position do
not change during short projections, but it is unreasonable to assume this
during long simulations. Some studies (e.g. Alder's 1990 Ghafosim model
for high forest in Ghana) recruit the largest trees to the dominant crown
classes to maintain a predetermined number in each class and replace
dominant trees that died or were harvested. Many studies have observed a
high correlation between crown characteristics and the growth during the
preceding period (e.g. Wadsworth et al. 1989), but overlook the fact that
growth in the succeeding period is not so well correlated with crown
characters (i.e. many tree variables are better for description rather than
prediction of growth).

Basal Area in Larger Trees

>dThe basal area of trees larger than the subject tree (G ) has been found to
be a useful predictor of diameter increment in both temperate (e.g. Meldahl
et al. 1985, Wykoff 1990) and tropical forests (e.g. Vanclay 1991b). It is
analogous in many respects to available light, used in many succession and
process models. For example, the JABOWA model (Botkin 1993) assumes
that leaf area is proportional to the square of tree diameter, and "shading

<hleaf area" (A ) is the sum of leaf areas on taller trees. Tree height is
assumed to increase monotonically with diameter, so shading leaf area is
analogous to basal area in larger trees (depending on the specific

a height–diameter relationships). Available light, estimated as l = $e , is<h!"A

>da multiplier in increment predictions. This is equivalent to including ln G
in a linear model which has the logarithm of diameter increment as the
response variable.

Several researchers (e.g. Ford and Diggle 1981, Cannell et al. 1984,
Hara 1986) have suggested that competition between plants in a
monoculture is mainly for light, rather than for other environmental
resources. This suggests that a component of competition is "one-sided" (i.e.
that larger plants shade smaller ones, but not vice-versa; but note that this
dependent on plant architecture, and that in forestry it may be more correct
to say that "higher leaves shade lower leaves"). Thus basal area in larger
trees should be a useful predictor, complementary to stand basal area which
indicates "two-sided" competition (e.g. for resources other than light,
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including moisture and nutrients). The relative importance of these
complementary measures may vary with site. On moist, fertile sites, light
may be the limiting factor, whereas other resources may be limiting in other

>d situations. Thus these two measures of competition (G and G ) should be
viewed as complementary rather than as alternatives.

Wykoff (1990) found that the interaction between tree size and basal

>d >darea in larger trees, G / ln(d+1), gave better predictions than G . He also
argued that basal area in larger trees was a more appropriate explanatory

>d g variable than relative size (G /G and d /d ), as the latter would be
influenced by harvesting and could predict a counter-intuitive response to
thinning from below.

>dOne weakness with G  is that it assumes that all species exert equal
competitive influence. However, it is likely that some species (e.g. those
with large, dense crowns) exert a greater influence than others, so some
weighting according to species may be desirable. There is currently no
paradigm for "strong" and "weak" competitors, and this remains a fertile
area for further research.

Diameter Increment Functions

Many diameter growth and yield functions have been published and no
attempt is made to review even a few these. Only those functions that do not
require age are considered. Functions are grouped into broad classes
(empirical, theoretical, probabilistic) to allow generalizations to be made.
Little distinction is made between diameter and basal area increment
models, or between growth and yield models.

Empirical Functions

Empirical equations are simply mathematical expressions with a
resemblance to the observed growth, but without any associated hypotheses
of cause or function of the phenomenon. Such equations may be useful for
interpolation, but generally contribute little toward further understanding of
stand dynamics, and are often unreliable when extrapolated beyond the
limits of the data. However, empirical equations can be formulated to
provide biologically realistic predictions across a wide range of values, and
such equations may provide better predictions than theoretical equations
(e.g. Martin and Ek 1984). They may also be easier to fit to the data. Many
empirical equations are developed using stepwise regression analysis to
select variables correlated with the response variable. Unfortunately, such
equations often include an unnecessarily large number of variables, and may
perform poorly when used near the limits of the data.

One commonly used empirical equation is the simple quadratic

0 1 2 relationship )d = $  + $ d + $ d , but it does not ensure robust results. If 2



163Diameter Increment

2$  is positive, the quadratic equation predicts ever-increasing increments for
larger and larger trees. This is biologically untenable but can be seen in
some models. Quadratic equations may provide reliable estimates of growth
over a limited range of diameters, but are unsuitable for extrapolations, and
should not be used in models which may be used to provide long term
simulations.

Mawson (1982) recognized these limitations of the quadratic equation,
and proposed a variation of Schumacher's (1939) equation: ln ()d ) = " +
$d . He argued that the parameter " could be expressed as a function of !1

site, and the parameter $ as a function of past stand treatment. Predictions
from this equation are asymptotic to e  as d becomes large, so care should"

be taken that sensible values are estimated for the parameter " (and all other
estimated parameters).

Hilt (1983) used a two-stage analysis to establish diameter increment
functions for even-aged oak forests. The first stage fitted )g = $d  ()g is 2

tree basal area increment and d is dbh) to individual tree data from each
plot, and the second stage fitted

g %to each plot, where S is site index, d  is the quadratic mean diameter and N
is percent stocking. This can be expressed as a diameter increment function:

Although this function performed well with the data used to fit the model,
it assumes a linear relationship between )d and d, and may predict
excessive increments for large trees.

Theoretical Functions

There are no particular theoretical equations relating specifically to the
growth of trees, but the Bertalanffy equation (see p. 108), originally
formulated for weight gain in animals, is often used to model diameter
growth in trees:

maxwhere d is tree diameter and d  is the maximum attainable diameter.
The Bertalanffy equation overcomes many of the shortcomings of

empirical equations, and provides for an asymptotic maximum diameter
which cannot be exceeded. Martin and Ek (1984) considered a modification
of the Bertalanffy equation for Pinus resinosa plantations:

but found that carefully formulated empirical equations could provide more
accurate predictions within the range of the data. Shifley (1987) used a
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similar equation to model potential growth of many species (e.g. for eastern
red cedar):

50 rwhere g is tree basal area (m ), S  is site index (m) at age 50 and c  is crown2

ratio, the ratio of crown length to total tree height. This was fitted using a
two stage approach. The first stage fitted

The estimated asymptotic maximum size

was then compared with the national register of big trees. If the asymptote

max 2g  seemed unreasonable, the parameter $  was revised to take the value

2 1 max$ = $ g  . The second stage estimated the final three parameters in the"- 1

equation. These potential increments were reduced by a modifier predicted
from tree size, basal area in larger trees and stand basal area.

Another variation of the Bertalanffy equation is the equation of Hahn
and Leary (1979) and Leary (1980):

rwhere d is diameter, S is site index and c  is crown ratio. This equation

0  includes an intercept $ , which improves the prediction of increments of
very small trees, but detracts from the theoretical attraction of the equation.
Unlike the mass of an organism, tree biomass is not zero when dbh is zero,
so the Bertalanffy equation may underestimate increments for small trees.
An intercept is one solution, but it is theoretically preferable to use an

1 2 allometric relationship of d + ( (i.e. $ (d + () ! $ (d + () ) rather than an"  

intercept. The assumption that site index and crown ratio affect only
photosynthesis and not respiration may not be entirely realistic, but means
that the increment pattern (as well as rate) may vary with site and crown
ratio.

The JABOWA model (Botkin et al. 1972, Botkin 1993) uses a similar

max equation, based on the logistic equation (dY/dt = $Y(1 ! Y/Y ) ), one of the
Bertalanffy family of equations:

This equation can be re-arranged to give a diameter increment function, and
a few simple assumptions (e.g. a quadratic height–diameter relationship, see
p. 70) reduce the equation to one with only three parameters which can be

max max max determined subjectively (e.g. h , d  and )d ). This basic growth
function was modified to account for shading, climate and soil quality.
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Fig. 8.2. Comparison of three "theoretical" diameter increment functions
(drawn from Equations 8.1–8.3).

The Bertalanffy, Leary and Botkin equations describe rather similar
diameter increment patterns. Figure 8.2 illustrates the following three
equations, with parameters selected so that all three equations coincide

h,t rapproximately (based on sugar maple with S  = 21 m and c  = 0.32):

Bertalanffy: (8.1)

Botkin: (8.2)

Hahn and Leary: (8.3)

Empirical Analogues of Theoretical Functions

Although the Bertalanffy equation is flexible and frequently used to model
tree growth, it has limitations that may be attributed to its origins as a
particular theoretical equation for growth in weight of animals. When
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applied to diameter increment data of forest trees, the equation may over-
estimate the increment of large trees. This may be attributed to the fact that
although an animal consists almost entirely of living tissue, a tree is a thin
layer of living tissue enclosing a corpse of dead wood. Thus an asymptotic
relationship may describe tree respiration better than the linear relationship
assumed in the Bertalanffy equation. The effect of such an asymptotic
relationship is to "bend" the right-hand tail of the increment curve, allowing
trees to attain larger diameters (Fig. 8.3), and can be achieved using a
variant of the Bertalanffy equation (e.g. Equation 6.2, p. 108, 111). One
such family of equations relies on the underlying relationship:

where d is tree diameter and typically k = 1 or k = 2. Zeide (1993) examined
many equations for predicting tree growth (including many employing tree
age as a predictor variable), and found this equation (with k = 1) the best
alternative for estimating individual tree diameter increment.

This equation is the basis of Wykoff's (1990) revision of growth
functions in the Prognosis model:

where E describes the environmental effects and is estimated from habitat
type, location, elevation, slope and aspect; and where C describes
competition and is estimated from crown ratio, crown competition and
relative tree size. The final function was:

where d is diameter, the Es are environmental variables (e.g. slope, aspect,

>d r cfelevation), G  is basal area in larger trees, c  is crown ratio, and C  is
crown competition factor. The first line of this equation reflects the effect
of tree size on increment, the second line is a proxy for site productivity,
and the third line accounts for competition. This equation produces diameter
increments similar to those produced by the theoretical equations, and is
constrained to produce sensible increment predictions for any tree size and
any stand density.

Another empirical linear equation (Vanclay 1991b) with a similar shape
does not require crown characteristics, and may provide good predictions
(see Fig. 7.4, p. 144):
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Fig. 8.3. Comparison of Bertalanffy, Vanclay and Wykoff equations for
predicting diameter increment (drawn from Eqns 8.1, 8.4 and 8.5).

These two empirical analogues are contrasted with the Bertalanffy equation
in Fig. 8.3. The Bertalanffy equation is the same as before (Equation 8.1),
while the other equations were fitted using least squares to data generated
from the Bertalanffy equation for d = 5, 10, 15, . . ., 90.

Wykoff: (8.4)

Vanclay: (8.5)

The equations describe a similar shape for trees less than 80 cm diameter,
but the Vanclay and Wykoff equations always predict a positive increment,
allowing some growth on trees of very large sizes, while the Bertalanffy
equation imposes a maximum attainable size (here 150 cm dbh). Although
the Bertalanffy equation provides a convenient way to constrain the upper-
end of a relationship where data are few (but it may be impossible to
estimate objectively when data are few), this imposition of a maximum tree
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size may not be very realistic, since heartwood has no respiratory cost (e.g.
Prentice and Helmisaari 1991).

Probabilistic Functions

Lowell and Mitchell (1987) used a probabilistic function to predict diameter
increment, an approach that enables simultaneous estimation of increment
and mortality. They argued that since growth and mortality are biologically
related they should be modelled simultaneously. Lowell and Mitchell
(1987) illustrated the approach for 4 species groups in even-aged mixed oak
forests in the USA. Their equation for white oaks was

)dwhere p  is the probability that a tree of d cm dbh will achieve a diameter
increment exceeding )d cm over a five year period (D is the sum of
diameters 3d of all trees per hectare; note that d/D can also be expressed as
the relative diameter d/ 6d divided by the stem number N). The probability

0p  of achieving a zero increment is the probability of survival. Since )d
enters the equation in a linear form, the model will predict a normal
distribution of diameter increments. Transformations such as ln)d may be
necessary to provide for a non-normal distribution of increments.

A similar probabilistic diameter increment function was used in the
NORM model (Vanclay 1991d). The probability that a tree would complete
one centimetre of growth during a given year (i.e. that a tree less than d cm
dbh would attain a size of d cm or more within a one year interval, for any
integer d ) was predicted from tree size, competition and site factors (e.g. for
Flindersia pimenteliana, Fig. 8.4):

(8.6)

)dwhere p is the predicted probability, d is tree size (cm dbh), S  is the

>dgrowth index, G is stand basal area (m ha ), G  is basal area in larger trees2 !1

av(m ha ), and S  is a binary variable which takes the value one on soils2 !1

derived from recent alluvial, volcanic or granitic parent material, and zero
on soils derived from sedimentary or metamorphic parent materials. This
formulation offers two advantages over alternatives: it is robust in the
presence of outliers and simplifies the construction of compatible
deterministic/stochastic growth models.
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Fig. 8.4. Annual diameter increment probabilities for several species in the
NORM model, under typical conditions (drawn from Equation 8.6

)d >d with S =6, G=30 and G =G×(1!d/140)). 

Diameter Increment as a Stochastic Process

Stochastic variation in diameter increment may be introduced into a model
by adding random variates to predicted increments, or by simulating the
same effect in a deterministic way by using a "swindle" such as record
tripling.

Stage (1973) observed that the introduction of stochastic variation in
predicted diameter increments would have ramifications on all other
components of the Prognosis model. The distribution of the logarithm of the
tree basal area increments is assumed to be normally distributed, consistent
with the regression model. The logarithmic transformation provides for
heteroscedastic increments, and ensures that negative increments do not
arise. In stands with many trees where the effect of the stochastic element
is not likely to influence the total stand estimate, uniform random variables
are assigned to each tree, and the corresponding normal deviate is added to
the logarithm of its increment. Because of the logarithmic transform, the
effect of this is multiplicative and allows a small proportion of trees to have
comparatively large increments. The random variable associated with each
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tree is retained to preserve the appropriate serial correlation in increment
estimates. Where fewer cohorts were present, the same effect is introduced
in a deterministic way by "tripling" cohorts (see p. 72).

Failure to preserve serial correlation in single-tree models may, in
theory, lead to underestimates of yield. Swaine et al. (1987) reported
significant correlation between successive increment observations and
found that these persisted for several years. Hilt (1983) predicted the
standard deviation for a given increment prediction as F = "e  and drew $d

random numbers to assign increments to individual (simulated) trees. He
observed a correlation of 0.63 between successive increments and assumed
the bivariate normal distribution in calculating successive increments. Stage
and Wykoff (1993) demonstrated how to construct a model for unexplained
variation in estimates of periodic tree increments, including serial
correlation. Their work improved the theoretical basis of the Prognosis
model, but made little difference to model estimates because the reduction
in variance thus attained was compensated for by modelling serial
correlation (which tends to increase the range of estimates).

Synthesis

No attempt has been made to review the vast number of functions used to
predict diameter increment. Instead, selected equations have been used to
illustrate strengths and weaknesses of some popular relationships. The most
appropriate equation in any situation may depend upon the data available
and the resources available for analysis. It is irrelevant whether growth or
yield, basal area or diameter is modelled. But it is important that the
researcher takes proper and explicit account of the error distribution, and
ensures that the function provides reliable results over the full range of
possible tree sizes, sites and stand conditions.

One diameter increment function that offers promise is a generalization
of the Bertalanffy equation based on

This equation has been used in several models, can easily be fitted to data,
and provides robust predictions.

Exercises

8.1. Using the data given below, fit a simple linear regression to estimate

0 1 diameter increment from initial diameter ()d = $ +$ d ). Fit the equivalent

0 1 models for basal area increment ()g = $ d + $ d ) and future diameter 2

1 0 1 0 (d  = $ + $ d ). Explain the differences in the parameter estimates ($s) and
the R²s. Which is the best model? Why?
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d 10 11 12 13 14 15 16 17 18 19 20
)d 0.74 0.82 0.80 0.81 0.91 0.94 0.90 0.93 1.02 0.97 1.01

8.2. The data below relate to the growth of Anisoptera thurifera in Papua
New Guinea (Oavika 1990). Fit a diameter increment function to these data.
Justify your choice of equation, and explain its strengths and weaknesses.

d G )d d G )d d G )d

25
35
45
55
65

 5
 5
 5
35
35

1.04
2.16
0.90
0.40
0.30

15
25
35
45
55

15
15
15
15
15

0.40
0.60
1.02
0.68
0.60

25
35
45
65

25
25
25
25

0.24
0.68
0.64
0.26

8.3. Howard and Valerio (1992) used the data below in their study of
silvicultural prescriptions for natural forests in the Osa Peninsula of Costa

r%Rica (G  represents the basal area harvested or destroyed in logging as a
percentage of the initial basal area before harvesting). Fit a diameter
increment function to these data. Justify your solution by explaining its
strengths and weaknesses. Howard and Valerio (1992) used the following
relationship:

Explain why your model is better than theirs. Is the growth response to
harvesting realistic, particularly as it relates to tree size?

r% r% r%d G )d d G )d d G )d

 7.5
15.0
25.0
35.0
45.0
17.5
22.5
27.5
32.5
42.5
47.5

 6.7
 6.7
 6.7
 6.7
 6.7
10.4
10.4
10.4
10.4
10.4
10.4

0.19
0.30
0.45
0.40
0.46
0.28
0.25
0.29
0.35
0.35
0.33

17.5
22.5
27.5
32.5
37.5
42.5
47.5
52.5
57.5
67.5

17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1

0.38
0.28
0.45
0.51
0.51
0.57
0.46
0.45
0.46
0.25

 7.5
15.0
25.0
35.0
45.0
 7.5
15.0
25.0
35.0
45.0

43.3
43.3
43.3
43.3
43.3
76.7
76.7
76.7
76.7
76.7

0.29
0.56
0.47
0.79
0.53
0.45
0.95
0.87
0.57
0.34
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Chapter Nine

Mortality and Merchantability

Many growth models for plantations avoid the problem of predicting
mortality by assuming that no mortality occurs in well managed stands. This
assumption may be reasonable for intensively managed plantations, but is
inappropriate when modelling natural forests where mortality is significant
and should be taken into account. Stage and Renner (1988) found that most
(80%) of the variability in volume predictions for mixed conifer forests in
the Rocky Mountains region of the USA was due to uncertainty in mortality
estimates. Clearly, mortality estimates may have a major influence on the
accuracy of growth and yield forecasts.

Criticism and comparison of the alternative methods for predicting
mortality is easier if we begin by classifying mortality according to cause
and pattern of occurrence. Mortality patterns may differ in scale, frequency
and severity, and these should be considered when choosing a modelling
strategy.

Tree age may be a contributing factor in the death of a tree, but may not
be the cause of death, and many deaths may be attributed to competition,
pests and diseases, and chance events. Tree size does not appear to be a
cause of tree death, but is in practice a good predictor of the probability of
mortality.

Much attention has been given to the processes of competition and
suppression, especially in pure stands. Much of this debate (e.g. Drew and
Flewelling 1977, Aikman and Watkinson 1980, White 1981, Smith and
Hann 1984, Westoby 1984, Lonsdale 1990) focuses on Reineke's (1933)
stand density index and Yoda et al.'s (1963) self-thinning line, but it
appears impossible to explain density-dependent mortality in sufficient
detail with these simplistic theories, even in pure, even-aged stands (e.g.
Zeide 1987, Norberg 1988, Skovsgaard 1994). In mixed forests, the
situation is more complex (e.g. Sterba and Monserud 1993), but the need for
light, nutrients and physical space continues, and any reduction below the
minimum requirements will eventually lead to death.
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Pests and diseases may also kill trees. In many natural forests, these
often occur in a dynamic equilibrium, but epidemics may occur. The effects
of an epidemic may range from a comparatively small reduction in
increment for a year, to the elimination of the host species from the region.

Weather also influences mortality patterns in forest stands. Drought or
prolonged waterlogging may hasten the demise of aged, diseased or
suppressed stems, but may also cause death of healthy trees. Lightning, hail
and wind storms may kill or damage trees. Wind damage may be
catastrophic, and may or may not be dependent upon stand condition.
Wildfires may also cause catastrophic losses. Many other tree deaths can be
best attributed to chance, as no satisfactory explanation can be given.

Mortality or removal of trees from the forest as a result of human
interference should also be simulated in forest growth and yield studies. The
most obvious aspects of human interference may be the official harvest of
timber and any silvicultural treatment (felling, girdling or poisoning of
unwanted stems). Pollution and unauthorized timber harvesting may be
significant in some areas, but modelling these impacts may also require
socio-economic indicators and will not be considered in this chapter.

Authorized timber harvesting usually follows some guidelines, and
these may be included in a model for growth and yield studies. From a
growth modelling viewpoint, silvicultural treatment can be simulated in the
same way as harvesting. Damage arising from harvesting activities may also
contribute to mortality in forest stands. Logging operations may destroy
smaller stems, may damage roots and bark, and may create entry points for
disease and decay. Disturbance to the canopy caused by logging may also
disadvantage some tree species, or favour pests and diseases. Thus
harvesting practices may need to be considered in mortality models.

The relevant amount of detail to include in the model depends on its
purpose. A succession model may simulate only natural mortality, but
growth and yield studies require that many of these factors are taken into
account. Here we consider some aspects of anthropogenic (human-related)
mortality as well as natural mortality.

Natural Mortality

Two major categories of natural mortality can be distinguished: regular and
catastrophic mortality. Regular mortality refers principally to ageing,
suppression and competition, but also to mortality arising from "chance",
and from normal incidence of pests, diseases, and weather phenomena (e.g.
drought, storms, etc.; events which typically occur less frequently than once
every ten years). Catastrophic mortality includes wildfire, occasional but
severe losses from "abnormal" weather conditions, and major pest and
disease outbreaks.
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Fig. 9.1. The concept of limiting stand density. Stands grow "upwards" with
little mortality until they approach the limiting density, after which
deaths occur (data from T.J. Dean, Louisiana State Univ.).

Estimates of regular mortality may be based on theories of limiting
stand density (e.g. Reineke 1933, Yoda et al. 1963), or may use empirical
relationships fitted to stand- or tree-level data. Most theoretical and
empirical approaches rely on estimates of stand density, competition or tree
vigour, but some methods also draw on tree age.

The JABOWA model (Botkin et al. 1972, Botkin 1993) predicts chance
mortality from the estimated potential maximum age of a tree species,
assuming that only two percent of trees reach their maximum age. This is
supplemented with competition-related mortality. No further mention is
made of age-based methods, because of the difficulty of determining age in
many natural forests.

Theoretical Approaches

Many growth models for even-aged forests predict density-dependent
mortality, assuming that there is a simple relationship between maximum
stand density (stems ha ) and mean tree size. Three relationships of this!1

type have been proposed:
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1. Relative spacing (Hart 1928, Wilson 1951) was originally proposed as
a practical thinning guide, but has also been used as a guide to limiting
stand density (e.g. Mitchell 1975). It relates the average spacing to top

Theight (h ), and can be expressed in terms of stem number (N):

2. Reineke's (1933) stand density index relates limiting stocking (N) to

g mean stem diameter (d ) (Fig. 9.1):

3. Yoda et al.'s (1963) self-thinning line relates limiting stocking to plant
mass, but in forestry applications, mean tree volume ( 6v  ) is often used as a
surrogate for plant mass:

These three alternatives are related, and some unification is possible if the

T g stand development trajectories are viewed in three-dimensions (h , d , N ;

T g note that 6v  . f ( h , d ) ) and these limits are expressed collectively as a
plane in the three-dimensional space (García 1994). Here we deal mainly
with Reineke's stand density index because diameter measurements are
more accessible than estimates of height and mean tree volume (or mass).

Although these concepts of limiting density are elegant (at least for
pure, even-aged stands), there are some practical limitations:

1. They indicate the residual stem number, but not the trees that die so that
other assumptions are needed. Many modellers assume the smallest trees
die, but this is not necessarily correct.
2. They do not indicate deaths from causes unrelated to competition (e.g.
weather, physical injury, and some pests and diseases). These may
contribute a substantial proportion of total mortality. For example, half of
juvenile mortality in tropical forests may be due to physical causes (e.g.
Hartshorn 1975, Osunkjoya et al. 1992).
3. The size–stocking relationship may not be linear, and its slope may not
be constant. A constant slope assumes that (Zeide 1987):

(a) the combined action of crown growth and self-thinning maintains a
closed canopy, and
(b) plants of the same species are geometrically similar in shape,
irrespective of growth stage and habitat condition.

These two assumptions are unlikely to be satisfied for forest trees, as tree
death creates gaps in the canopy which are not filled immediately by crown
growth, and mechanical considerations require tree allometry (i.e. the
relationships governing tree dimensions) to change with tree size.
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4. There may be problems in identifying the onset of density-dependent
mortality in data, and in obtaining reliable estimates of the coefficients
describing the relationship (e.g. Ferguson and Leech 1976).
5. Unless the stand is pure, even-aged and evenly-spaced (i.e. a plantation),
the relationship is likely to be highly data-dependent (e.g. dependent on plot
size), as the onset of density-dependent mortality may not occur in all parts
of the stand at the same time. Sterba and Monserud (1993) found that in
uneven-aged mixed stands, the slope of Reineke's line depends on the
skewness of the d  distribution. Reineke's line is almost flat for stands with 1.5

ga reverse-J diameter distribution (i.e. ln N + 0.0 ln d  = constant).

Despite these limitations, the concept of a limiting stand density has been
used as the basis for modelling mortality in several growth models for pure
stands. However, many of these require subjective decisions regarding the
trees that "die". For instance, Opie's (1972) model was based on Reineke's
line, and "killed" every third tree commencing from the smallest, until the
required reduction in stocking was obtained. Any trees smaller than one-
seventh of the largest diameter in the stand were also assumed dead.
Campbell et al. (1979) later modified the model to remove every sixth tree
from the smallest, up to a maximum of 100 deaths per hectare in any year.
Both of these alternatives are rather arbitrary.

Some alternatives to Reineke's line rely on tree height and crown
competition. Mitchell's (1975) model used a relative spacing guide (Wilson
1951) based on the square of the site height (tallest 40% of trees), and
assumed that the shortest trees would die first. Arney's (1985) approach was
based on the crown competition factor. Leak (1969) used an exponential
function of mean diameter increment, implying that every centimetre
increase in stand mean diameter is associated with a fixed decrease in
stocking: in his case, 15% for commercial species, and 19% for intolerant
and intermediate species.

None of these options is entirely satisfactory, and a better alternative
may be to predict limiting conditions directly from growing space,
competition index or crown dynamics. Mitchell (1969) modelled the crown
development of trees, and assumed that when the actual crown width fell
below 17% of the potential open-grown crown width for a tree of that size,
it had a 50% probability of being overtopped and dying. Arney (1972)
assumed that trees would die if the crown length receded to less than 5% of
the tree height. However, there is no threshold at which mortality increases
markedly, and these limits are rather arbitrary.

Another alternative often used in models for uneven-aged stands is to
estimate a threshold increment, and assume that all (e.g. Newnham 1964)
or some (e.g. Botkin et al. 1972, Reed 1980) of the trees with predicted
increments less than the threshold will die. Ek and Monserud (1974) used
a stochastic function of diameter to predict the threshold, and assumed that
all trees with predicted increments less than the threshold would die.
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Fig. 9.2. Mortality (% of trees in class dying during 1970–82) in relation to
growth rate (mm y ) at Kade, Ghana (redrawn from Swaine et al.!1

1987).

The threshold increment approach makes sense and is supported by
some empirical evidence. Spurr (1962b) reported that any Pinus radiata
tree achieving an annual increment less than twenty square centimetres, has
on average, less than eight years to live. Bevege (1972) observed that stems
dying in a P. elliottii plantation had existed for a considerable period (3 to
10 years, mean 6) with negligible increment, and this moribund period was
independent of tree age and size. These observations show that the dead
trees had been moribund for several years prior to death, but they do not
prove that failure to achieve a critical increment results in death.

Swaine et al. (1987) observed that mortality in semi-deciduous forests
in Ghana was significantly higher among trees that did not increase in size.
Trees which decreased in diameter by 1 and 2 mm y  had twice and four!1

times the average mortality rate (Fig. 9.2). Dead trees may have exhibited
very little increment in the years prior to death, may have grown rapidly
until shortly before death, or may have died while rapidly growing (e.g.
Hartshorn 1975).

Threshold increments may provide a suitable basis for modelling some
components of mortality amongst light-demanding species, but are less
relevant to shade-tolerant species. For example, Douglas-fir trees may
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survive for more than 25 years with an average diameter increment less than
0.3 mm y  (Newnham 1964), and Araucaria cunninghamii seedlings may!1

reach 50 years of age before attaining a height of 0.5 metres.
These theoretical approaches based on limiting conditions do not

account for all regular mortality, and may need to be supplemented with
empirical models of "chance" mortality. Another problem with predicting
mortality according to causal agent (competition, etc.) is that it may be
difficult to determine the agent responsible. The assumption that most
mortality can be attributed to competition is not always reliable. An
alternative is to predict a composite estimate of all regular mortality from
stand or tree characteristics with an empirical function.

Empirical Approaches

Most size class models use an empirical method to predict mortality, often
as simple linear functions of stand density and relative size (e.g. Moser
1972, Leak and Graber 1976, West 1981, Shifley et al. 1982). Such
functions should be used with caution because they may give estimates
outside the feasible range (0,1), if used beyond the range of data for which
they were developed.

The logistic function (Fig. 9.3, overleaf) offers a convenient way to
constrain predictions to the interval (0, 1), and provides a realistic
(binomial) distribution of errors. The logistic function can be expressed in
several ways:

(9.1)

where P is the probability of survival and f(X) is a function (often linear) of
several explanatory variables. Probability of mortality may be obtained from
1!P. The advantage of predicting survival is that it, unlike mortality, is a
Markov process (i.e. it is a transient rather than absorbing state), so that
survival over an n year period is given by the n  power of the annual th

probability of survival. Unequal measure intervals can be accommodated by
using the interval as an exponent (i.e. !t replaces !1 in Equation 9.1). This
may sometimes cause difficulties, and an efficient alternative is to weight
Equation 9.1 by the remeasure interval (Hamilton and Edwards 1976).
Although not technically correct, this alternative seems reasonable provided
that remeasurements are fairly frequent and mortality is relatively low (e.g.
frequency < 8 years and mortality < 0.7%; Hamilton, pers. comm.).

Equation 9.1 may be converted to a linear equation if the data are
grouped into categories with at least one death and one survival in each
category:
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Fig. 9.3. The logistic is better suited for modelling mortality than linear
equations because it is constrained between 0 and 1.

survwhere P is the proportion of trees surviving, N  is the number of survivors

deadand N  is the number of deaths. This is useful for initial investigation of
variables and for plotting data, but is inefficient for parameter estimation
and inappropriately affects the error distribution. Many statistical packages
allow logistic functions to be fitted to data without this conversion to a
linear form (e.g. using generalised linear models; Aitkin et al. 1989,
Crawley 1993), and these should be used if they are available. The beauty
of fitting Equation 9.1 without transformation is that it allows individual
tree data to be used, allowing the maximum information to be extracted
(e.g. there is no need to use the class mean for tree size and other
explanatory variables).

Equation 9.1 has been used in many mortality models, often with
empirical functions of diameter, height, defect, crown class and stand basal
area (e.g. Hamilton and Edwards 1976). It is useful to include two
transformations of tree size (e.g. d  and d , or d and lnd ) in the model to 0.5  !1

allow a good fit for both large and small trees (Hamilton 1986). Many tree
variables are highly correlated and provide equally good predictions of
mortality when used separately, but offer no further improvement when
more than one variable is included (e.g. tree height and diameter).
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Fig. 9.4. Predicted survival patterns for several tree species in the NORM
model (relative size 0.5, growth index 7, basal area 30 m ha ; drawn2 !1

from Equation 9.2).

The relative size of individual trees may also be useful, and has been
included in mortality models as a relative diameter (d / &d  ) (e.g. Hamilton
1986, 1990) and as the rank in the cumulative stand basal area distribution

>d (G /G ). Although analogous, these alternative measures of relative tree
size imply a different response to harvesting. Relative diameter tends to
increase (thinning from above) or decrease (thinning from below) by the
same proportion for all trees in the stand (i.e. &d  changes while the ds remain
unchanged), whereas changes in relative rank depend on tree size as well as

>dharvesting direction (since both G  and G may change).

Tree survival in the NORM model was predicted from tree size, site and
competition. For Flindersia pimenteliana, survival of individual trees was
predicted as (Vanclay 1991c, Fig. 9.4):

(9.2)

>dwhere p is the annual probability of survival, d is tree diameter, G  is basal
)darea in larger trees, G is stand basal area, and S  is site quality. The zero



181Mortality and Merchantability

parameters are non-zero for some other species groups. These probabilities
are used to reduce the expansion factors of cohorts in the annual simulation
cycle in the NORM model (e.g. see Fig. 4.3, p. 72).

The effect of site productivity on survival is unclear. There is empirical
evidence that in plantations, density-dependent mortality expresses itself
earlier on better sites, and if mortality is expressed as a function of age, it
appears that mortality increases with increasing site productivity. However,
if mortality is expressed with respect to top height or stand density, a
different picture emerges. Better sites should be able to sustain a higher
basal area, and all other things being equal, should have lower mortality.
Half the species groups in north Queensland rainforests show a positive

)dcoefficient for site productivity (S  in Equation 9.2), while the others show
no significant trend. Empirical investigations into the interaction between
site productivity and mortality appear to be hampered by a lack of suitable
experimental data.

Many models have employed past diameter increment to predict
probability of mortality (e.g. Ek and Monserud 1979, Hamilton 1986,
Wan Razali 1989, Pretzsch 1992a). However, predicted and observed
diameter increments will provide different parameter estimates, and it is
important to choose the appropriate formulation to suit intended uses of the
model. Generally, observations of past diameter increments will not be
available, and models fitted with predicted increments will have greater
utility, despite poor goodness-of-fit statistics. Monserud (1976) predicted
the survival of all species in mixed northern hardwoods stands with the
equation:

where p is the probability of survival over a t year period, d is diameter, ) d$
is predicted diameter increment and c is a competition index. This function
correctly classified 88% of survivals and 35% of deaths. An analogue of
this equation using actual rather than predicted diameter increment correctly
classified 98% of deaths and 90% of survivals.

The use of predicted diameter increment in the mortality function makes
it dependent on the diameter increment function, which then should not be
revised without also revising the mortality model. If mortality can be
estimated from predicted increments, then it should also be possible to
estimate it from the explanatory variables for increment without the
intermediate step of estimating diameter increment. Modelling mortality
directly from tree and stand variables is a more robust approach and should
be preferred.

It takes a lot of data to obtain good mortality models, and data available
for model development may not represent all sites and stand conditions for
which the model may be used. The fact that a model provides biologically
reasonable predictions over a wide range of conditions does not necessarily
ensure reliable extrapolations, but the inclusion of some specific provisions
in its implementation may provide for more robust predictions. Hamilton
(1990) found that he could improve predictions by specifically constraining
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mortality estimates in very dense stands, for very small trees, and in habitats
and for species not represented in the development data set. His
modifications included provisions to ensure that the site's maximum basal
area would not be exceeded, and that mortality amongst new recruits (these
have no previous diameter increment and may have d < 0.5) was bounded
(i.e. same as if d = 0.5).

Mortality predictions may be applied in the model in a deterministic or
stochastic way. The stochastic implementation draws a random number and
compares it with the predicted probability of mortality. Alternatively, these
probabilities can be interpreted as proportions, and the stocking in each
cohort or class can be reduced by the predicted proportion. These alternative
approaches should produce compatible predictions (e.g. Weber et al. 1986),
but there are computational advantages in simulating mortality in a
deterministic way unless the user is specifically interested in studies of
variability.

Catastrophic Mortality

Catastrophic mortality is generally ignored in mortality functions. If it is to
be taken into account, yields may be predicted in the absence of catastrophic
mortality, and the final estimate may be reduced by an arbitrary allowance
to account for such losses. There may be good reasons for adopting this
approach, as any attempt to include catastrophic mortality data in regression
analyses may severely compromise the assumptions of normality, and result
in biased estimates. However, an objective estimate of the reduction to
apply to the final yield is preferable to a subjective guess.

Catastrophic mortality can be modelled in two stages: first the
probability of a catastrophe should be predicted, and then a conditional
function should be used to predict the probability of mortality given that a
catastrophe has occurred. This approach can provide a weighted estimate of
annual mortality for a deterministic model including catastrophic mortality,
or may be implemented directly in a stochastic model.

Several models simulate the interacting effects of pest or disease
populations and stand condition. Stage (1973) explicitly modelled mortality
due to mountain pine beetle using a deterministic model incorporating tree
and stand characteristics (phloem thickness, bole surface area, stand density,
etc.) and beetle population. Similar models exist for other pests and diseases
(e.g. Valentine and Campbell 1975 for gypsy moth). Reed (1980) examined
the development of a forest after the catastrophic elimination of one of its
component species.

Harvesting and other Human Factors

As well as natural mortality, a growth model should be able to predict
anthropogenic mortality, including planned harvesting, silvicultural
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treatment, and any deaths which may arise indirectly from these activities
through damage, etc.

Here we are concerned with forest management-related activities
including harvesting (i.e. commercial thinning, logging) and other
silvicultural treatments (i.e. non-commercial thinning, timber stand
improvement, climber cutting, poisoning of unwanted stems, etc.). In many
forests, other human activities (e.g. unauthorized logging and cultivation,
pollution) may have a significant influence on forest yields, and should be
considered in yield studies. These activities cannot be predicted from forest
conditions alone, but may also involve socio-economic indicators, and are
outside the scope of this book. Nonetheless, they may have a significant
impact on forest yields in many places, and should be taken into account in
yield predictions.

Harvesting

A clearfelling operation is easy to model; all the merchantable stems are
removed. Thinnings and selection harvests are more complex to model, as
the size distribution of the removals or of the residual stand must be
predicted. Systematic thinnings in pure even-aged stands are simple, as a
constant proportion of stems in all size classes can be removed. In uneven-
aged stands, there may be a greater variation in the stand condition, and
selection logging tends to remove the largest stems, often according to
defined size limits (cutting limits). Thus functions to predict the distribution
of removals are likely to be cumbersome to use, and a better approach may
be to specify "harvesting rules". Harvesting rules may specify the

1. number of trees in each size class to be removed at the time of
harvesting,
2. percentage of trees in each size class to be removed, or the
3. number of trees in each size class to be retained after the harvest.

The first of these reflects a market-oriented approach which may be
impractical to implement (i.e. cannot remove more trees than exist). The
third option is ideal for plantations where the desired residual stocking can
be specified; in natural forests the composition and stocking may be so
variable that this option may be impractical. Thus for many natural forests,
the second approach may be the only viable alternative, and is of practical
relevance in computer simulation studies and as a field guide for officers
marking trees for removal.

Logistic functions were used in the NORM model to predict the
probability that a given tree would be harvested, given its species and size,
and the time since the last harvest (Vanclay 1989b). The equation for some
of the prime veneer species (e.g. Flindersia pimenteliana) was

(9.3)
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Fig. 9.5. Probability of harvesting a Flindersia pimenteliana tree, given its
diameter and the time since last harvest (drawn from Equation 9.3).

where p is the probability of harvesting, d is tree diameter (cm dbh or above
l cbuttress), t  is years since last harvest and d  is a binary variable which takes

the value one if the tree exceeds the cutting limit (d > 100) and zero
otherwise (Fig. 9.5, overleaf).

Silvicultural Treatment

Silvicultural treatments such as liberation thinning, timber stand
improvement, and other operations to reduce stand density can be modelled
in much the same way as harvesting. Treatment prescriptions may dictate
the removal of all old stags remaining after logging, a reduction in stocking
in the smallest size classes to some specified amount, or poisoning of non-
commercial species. These and similar treatments are essentially the same
as harvesting, and can be implemented in the model in the same way.

Some treatments (e.g. climber cutting) may induce a response that is
greater than can be attributed to the reduction in stand basal area, and must
be modelled explicitly. Transient responses in diameter increment
(additional to that attributed to the reduction in stand basal area) following
silvicultural treatments have been found in many forest types, ranging from
tropical rainforests to semi-arid forests (e.g. Vanclay 1988a). Such
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Fig. 9.6. Silvicultural treatment may stimulate tree growth for several years
following treatment, and this may be modelled with a multiplier,
illustrated here for Flindersia brayleyana in north Queensland.

responses can be accommodated directly in diameter increment functions
(e.g. Flindersia brayleyana in north Queensland, Vanclay 1991b):

swhere t  is the time (years) since the last silvicultural treatment. The term

s $t e  acts as a multiplier on the basic (untreated) growth rate, boostings0.2t

growth predictions for several years (Fig. 9.6).

Logging Damage

Harvesting not only removes stems from the forest, but may also damage
some of the trees remaining in the residual stand, and the effects of this
damage should be included in the model. Logging damage should not be
included with regular mortality, as its impact may be dependent upon the
frequency and nature of harvesting. This distinction between logging
damage and regular mortality may be particularly significant if the model
is to be used to determine optimal stand condition and optimum cutting
cycle, when failure to identify this component separately may bias estimates
of the optimum cutting cycle.
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Fig. 9.7. Probability of logging damage in north Queensland rainforest.
Directional felling minimizes damage to larger trees of the prime
species, but slope has a big impact on the ability to control damage
(drawn from Equation 9.4).

Relatively few studies of logging damage have been published as
equations suitable for inclusion in growth models. The NORM model
predicted the proportion of stems destroyed as a function of tree size,
topographic slope and the basal area removed in harvesting (Fig. 9.7):

(9.4)

where p is the probability that a tree will be destroyed in a harvesting

roperation which removes a proportion G  of the standing basal area, and

swhere E  is the topographic slope in degrees. The value of $ depends on the
species group, and takes the value 0.0596 for prime commercial species,
0.0361 for other commercial species, and 0.0157 for non-commercial
species. This reflects the practice of directional felling which attempts to
minimize damage to commercial trees in the residual stand.

Tree size, topographic slope and harvesting intensity explained most of
the variation in this study, but canopy height may also be useful as
explanatory variable in some cases.

Logging may cause mortality indirectly in several ways. The presence
of logging waste or changes in the canopy conditions may favour pests or
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diseases, and trees with mechanical injuries may slowly deteriorate and die
some years later. Walters et al. (1982) reported that tree mortality may
treble for several years following logging in the Rocky Mountain region of
the USA, apparently because of injuries inflicted during harvesting
operations. A similar trend is also evident in Malaysian dipterocarp forests.
There are two possible ways to model this effect. One way is to try to
identify mortality arising from logging-related causes, and to fit a model to
this data. An alternative and probably superior approach is to include these
deaths in the composite model, and to include time since logging (or some
suitable transformation) as a variable in the model to account for the
increased mortality following harvesting.

Hann (1980) included time since logging in his logistic function for
composite mortality, and this increased mortality estimates for a few years
after a simulated harvest. However, time since logging did not improve
predictions of mortality in the NORM model. Hamilton (1986) also found
that time since and type of thinning had no impact on mortality rates
following thinning in forests in Idaho (USA), and this did not explicitly
include thinning in mortality functions for the Prognosis model. However,
it remains important to discriminate between this logging-related mortality
and natural mortality, or biased predictions may result, especially in studies
concerning the optimal cutting cycle.

Merchantability

The assessment of merchantability may seem unrelated to mortality
prediction, but for modelling purposes, they are analogous. Provided that we
accept the assumption that once defective, a stem will never again become
merchantable (i.e. "defect" is an absorbing state, and "merchantable", like
survival, is a transient state), then we can predict deterioration of
merchantable trees in the same way as we predict the death of living trees.
Similarly, estimating the proportion of commercial stems among those
felled is essentially the same as predicting the proportion to be felled.

Deterioration of Living Trees

Stems assessed as merchantable at time of inventory may not remain so
until the next harvest. Some of these once-merchantable trees may
deteriorate to the extent that they are no longer of commercial importance,
and this deterioration should be taken into account in growth models.
Although small, this deterioration is cumulative and becomes sufficiently
large during a cutting cycle to warrant inclusion in yield studies.

The NORM model predicted deterioration of rainforest trees using a
logistic function of stand basal area, tree size, time since logging and soil
type (Vanclay 1991a). For the more durable and valuable species (e.g.
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Fig. 9.8. Proportion of stems assessed as merchantable and remaining
merchantable, as a function of tree size and stand basal area (drawn
from Equation 9.5).

Flindersia pimenteliana) time since logging was not significant, and the
prediction equation was (Fig. 9.8):

(9.5)

 where p is the annual probability that a tree remains merchantable, G is
cgstand basal area (m ha ) and S  is a binary variable which takes the value2 !1

one on soils derived from coarse granite parent material, and zero
elsewhere.

Hann (1980) studied an analogous problem in Pinus ponderosa. Young
vigorous trees have dark-coloured bark and are known as blackjack pine,
while the mature slow-growing trees develop a yellow-coloured bark and
are called yellow pine. Hann found that trees in these two categories
displayed different growth and mortality rates, and that predictions could
be improved by modelling the two categories separately. Thus it was
necessary to predict the conversion from blackjack to yellow pine. One
problem is that this conversion, like deterioration, is a slow but continual
process, and the classification of a tree as one or the other is extremely
subjective. Hann's model took the form

where p is the proportion of blackjack (vigorous) trees converting to yellow
h,tpine, d is diameter and S  is site index.
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Fig. 9.9. Probability that a felled tree does not contain at least one commercial
log. Species groups are prime (e.g. Cardwellia sublimis), structural
(e.g. Syzygium wesa) and less-durable timbers (e.g. Acacia
mangium) (Equation 9.6).

Merchantability of Harvested Stems

Not all trees assessed as merchantable and felled during harvesting will
yield a merchantable log; some will be found, after felling, to be
unmerchantable. The harvesting model could treat these stems as logging
damage, and the predicted harvest could comprise only the merchantable
stems. An alternative approach is to use three functions for modelling
harvesting: one to predict all felled stems, one to predict the destruction of
trees in the residual stand, and one to predict the proportion of felled stems
which are merchantable.

The NORM model predicted the proportion of stems which were
assessed as merchantable prior to felling, but which once felled, failed to
realize at least one merchantable log. This is consistent with field practice:
stems which are thought to be defective are not felled, and remain in the
residual stand. The model used a logistic function with tree species and size
as explanatory variables (e.g. for Flindersia pimenteliana, Vanclay 1989b;
Fig. 9.9):

(9.6)



190 Modelling Forest Growth and Yield

where p is the proportion of apparently merchantable trees which fail to
realize a commercial log and d is tree diameter (cm dbh). The values of the
$s depended on the species group, and the resulting trends reflect the
commercial value of the timber, the higher costs associated with smaller
logs, and the increasing amounts of defect in the very large trees.

Strub et al. (1986) predicted merchantability of Pinus taeda stands at
clearfall, and were concerned with the proportion of the total number that
were merchantable (cf. previous example which predicted the proportion of
stems assessed as merchantable). They used an exponential function of tree
diameter and mean height of dominant and codominant trees:

where d and &h  are tree diameter (cm dbh) and mean height (m) of
dominants respectively, and P is the proportion of the total stocking which
is merchantable.

Synthesis

One reliable and efficient way to model mortality, merchantability and
similar relationships, is to fit logistic functions to the individual tree data
using maximum likelihood estimation or generalized linear modelling.
Although these techniques are not always presented in elementary statistics
texts, they are available in many statistical packages (e.g. Aitkin et al. 1989)
and are not difficult to use. Such packages allow models to be fitted to the
individual tree data enabling the most efficient use of these data and
realistic assumptions regarding the error distribution.

Growth modellers have devoted more attention to natural stand
dynamics than to the modelling of forest management (e.g. harvesting, etc.)
but management models may be equally important in the context of
management-oriented modelling of forest growth and yield. These models
are sometimes based on few data and may not be very accurate, and this can
degrade the overall accuracy of yield forecasts. Commensurate effort is
required for constructing and testing all model components if a good overall
result is required.

Exercises

9.1. The data opposite are a summary of tree deaths recorded on 212
permanent plots in a tropical rainforest (Vanclay 1991c). These 70871
observations were made on 30523 individual trees, some of which were
measured more than once. The time interval varied, but averaged about 5
years. Fit a mortality function to these data. Discuss the merits of your
equation.
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Dbh
(cm)

Total
trees

Deaths Dbh
(cm)

Total
trees

Deaths

10–14
15–19
20–24
25–29
30–34
35–39
40–44
45–49

27109
13106

8272
5840
4515
3325
2407
1881

1306
608
301
200
144
109

70
62

50–54
55–59
60–64
65–69
70–79
80–99

100–119
120+

1399
928
582
450
491
298

95
83

52
40
20
22
14

7
4
4

9.2. The (simulated) data below represent a harvesting study, in which
a compartment was enumerated before and after logging to record the initial
stocking and the number of stems felled, removed (i.e. merchantable) and
damaged. Fit equations to these data so that you can predict the harvest, the
proportion of merchantable stems, and the incidence of damage in the
residual stand. Are your solutions generally applicable? Discuss.

d
(cm)

Number of stems

Initial Cut Removed Damaged

 15
 25
 35
 45
 55
 65
 75
 85
 95
105

3571
1820
 927
 486
 243
 116
  58
  29
  14
   7

 0
 0
 0
 6
 9
11
18
15
12
 7

 0
 0
 0
 4
 9
10
14
12
12
 4

307
113
 41
 12
  3
  1
  0
  0
  0
  0

Total 7271 78 65 477

9.3. Howard and Valerio (1992) predicted logging damage as

rwhere G  is the proportion of the basal area removed in logging. Compare
this equation with Equation 9.4 (p. 186), and discuss their relative merits
and limitations.
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Chapter Ten

Regeneration and Recruitment

Regeneration is the renewal of forest stands by natural (self-sown seed,
coppice, suckers, lignotubers) or artificial means (sowing and planting).
Recruitment refers to individuals that reach a specified size (e.g. breast
height or a specified dbh). Both concepts are related, and the distinction
depends on some rather arbitrary milestones in the development of an
individual from a seed to a small tree (Fig. 10.1). Simulations may begin at
any stage of development, but many models start with the "established
seedling" or when trees reach some specified threshold size, usually based
on its height or diameter. Accordingly, it is convenient to classify models
as:

1. Regeneration models, which predict the development of trees from seed
or seedlings, and
2. Recruitment models, which predict the number of stems reaching or
exceeding some specified size limit (e.g. 1.3 m height, 10 cm dbh, etc.).

These are simply convenient categories to consider in the present context.
Other alternatives have also been used in modelling forest renewal (e.g.
Leak 1968, who started with flower development).

In theory, there are some merits in simulating as much of this process
as possible, but in practice, this adds considerably to the complexity of a
model and may provide no measurable improvement in model predictions.
Efforts to build "seeding models" (Fig. 10.1) may be hampered by the large
part that chance events seem to play in the development and germination of
seed, the lack of empirical data to fit the model, and insufficient
understanding of the physiological processes involved. So in practice, many
modellers resort to regeneration and recruitment models. As suitable data
for modelling regeneration are often difficult to obtain, recruitment rather
than regeneration models are often used to model forest renewal.



193Regeneration and Recruitment

Fig. 10.1. Modelling of regeneration may commence at any of several stages
during the development of an individual from the flower to the
seedling and the small tree. Arrows indicate stages and convenient
names for popular modelling approaches.

This chapter is concerned primarily with natural regeneration and
recruitment in uneven-aged stands. Planting (and to a lesser extent, sowing)
after clearfelling is relatively easy to model, and is not considered here.
Regeneration within established plantations may be negligible, and many
plantation growth models disregard any recruitment. Many models for
uneven-aged forests also assume that recruitment is negligible or will not
influence short term estimates of yield. This assumption is unsatisfactory
for longer simulations of natural forests, as recruitment may contribute
substantially to future stand basal area and thus influence growth and yield
forecasts.

Recruitment Models

Recruitment models predict trees reaching a specified threshold size,
usually based on height (e.g. breast height) or diameter (e.g. 10 cm dbh). It
is convenient to distinguish two approaches:

1. Static approaches which take relatively little account of stand condition
and thus predict a fairly constant amount of recruitment indicating the long-
term average expectation under "typical" conditions, and
2. Dynamic approaches which respond to stand condition, predicting
recruitment as a function of stand density, composition and other
parameters.
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Static Approaches

Some recruitment models assume that the amount of recruitment observed
during the period of data collection reflects the long term average, and that
this amount will not vary greatly during simulations. This assumption is
common in many stand table and matrix approaches.

One common assumption is that the number of trees in the smallest
class remains the same, irrespective of upgrowth to the next class, and of the
total stand density. Size class models which smooth the stand table (p. 38)
may use the smoothing function to estimate potential recruitment (e.g. by
extrapolating the function to estimate stocking below the threshold size for
the model). Other models assume a constant amount of recruitment each
cycle, and assume that the mortality function will compensate for the errors
that this over-simplification introduces. These assumptions are not realistic,
and better approaches are available.

Many matrix models also make unsatisfactory assumptions. Positive
fecundity coefficients in transition matrices (p. 46) predict an exponential
increase in tree numbers, with the number of recruits increasing
proportionally with the number of trees in the stand table. This is easy to
implement in a matrix model, but is unrealistic and is unlikely to provide
acceptable results. More satisfactory approaches are illustrated in
Buongiorno and Michie's (1980) generalized matrix where recruitment was
negatively correlated with stand density, and in Bosch's (1971) Leslie
matrix which allowed regeneration to occur only after the death of another
tree.

The special case of even-aged regeneration (natural or artificial)
following clearfelling is often modelled by predicting the future stand
structure at a nominated point in time. Alder's (1979) cohort model
commenced with a prediction of stand structure when dominant height was
seven metres. Belcher et al. (1982) predicted regeneration entering the
STEMS projection system 15 years after clearfelling, using subjective
decision trees based on site characteristics and details of the original stand.

Although these approaches are rather empirical, they may provide useful
estimates of recruitment for stands that do not differ greatly from the source
stands used for model development.

Dynamic Models

Where data permit, a better approach is to predict recruitment as a function
of site and stand condition. Several such models have been published, and
range from the highly empirical to those with a biological basis. Variables
commonly used include site productivity, stand density (e.g. stand basal
area, stem number, competition indices), and time since and nature of
harvesting. Including details of the last harvest in the model may help to
obtain a good fit to the data, but this may limit applications of the model, as
these details may not be known for all stands. Where several species are
involved, models may predict recruitment for each species group



195Regeneration and Recruitment

Fig. 10.2. Recruitment at 20 cm dbh predicted from site quality, stand
composition and basal area (redrawn from Vanclay 1989a).

independently, or may predict the total and assign it to the candidate
species.

Vanclay (1989a) predicted the total recruitment at 20 cm diameter in
Queensland rainforests as a linear function of stand basal area and site
quality:

rwhere N  is number of recruits (trees ha y ), G is stand basal area (m ha )!1 !1 2 !1

and S is site quality. The composition of this recruitment was determined
by predicting the proportion in each of five species groups, and
standardizing the proportions. The proportion for each species group was
predicted from the stand basal area, the site quality and the basal area of that
species group (e.g. for the large, fast-growing species):

1where G  is the basal area of group 1 species (m ha ). These proportions2 !1

were then standardized to ensure they summed to unity:
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Although simplistic, this model allowed sufficient flexibility for species
group dynamics to emerge (Fig. 10.2), and provided reasonable results.

The JABOWA model simulates stand dynamics on 10×10 metre plots.
The original version of JABOWA (Botkin et al. 1972) predicted
recruitment at 2 cm dbh, but the model was later revised to predict
recruitment at breast height (Botkin 1993). A seed source is assumed to be
available for each of the major species considered in JABOWA, and
candidate species for the plot being modelled are selected from a master list
according to the requirements of each species for light, warmth and
moisture. For a given site where the temperature and soil moisture
requirements are met, the composition and amount of recruitment is
determined mainly by the light available at the forest floor. For example, if
the plot's leaf area index (LAI) is less than a specified threshold, 60 to 75
cherry trees are recruited on the plot. If the LAI is between the first and
second threshold, some (0–13) birches are recruited. If LAI exceeds both
thresholds, a random choice of the remaining shade tolerant species is
made, and a random number (0, 1 or 2) of each is recruited. In the current
version of JABOWA, the nominal threshold for recruitment is breast height,
but saplings are assigned a height selected randomly from the interval
137–167 cm.

Shugart and West (1977) followed a similar approach, but identified
specific requirements for mineral soil or leaf litter, simulated weather and
browsing stochastically, and allowed sprouting from dead trees. Trees were
recruited at breast height. Similar succession models exist for subtropical
rainforest in Australia (Shugart et al. 1980) and a tropical montane forest
in central America (Doyle 1981).

Recruitment can only be defined relative to a threshold size, and the one
threshold may not suit all applications equally. The smallest threshold
consistent with permanent plot procedures may provide the best model, but
operational inventories may adopt different standards and may use a larger
threshold size for measurement of trees. Data "censorship" occurs when the
threshold in the model is less than the minimum diameter recorded in
operational inventory, and degrades model performance. One solution is to
augment the censored data with an "average" stem distribution for the forest
type (Randall et al. 1988); this is preferable to using the unadjusted data.
An alternative is to make the recruitment model more flexible, so that it can
predict recruitment at any threshold.

Shifley et al. (1993) devised a model to predict recruitment of six tree
species in the North Central USA, at any threshold in the range 1–13 inches
(c. 3–33 cm). They argued the following:

1. Stands tend to move toward full site occupancy.
2. Stands that are understocked have potential space for new recruits.
3. Resources available to support ingrowth decrease as stocking increases,
so recruitment should decrease as stand density increases.
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Fig. 10.3. Recruitment estimated for different threshold diameters (left, drawn
from Equation 10.1). The model is very sensitive to estimates of
open-grown crown width, and a 10% perturbation may alter
recruitment estimates by 100% (right).

They assumed that site occupancy is revealed by crown competition factor:

wowhere c  is open-grown crown width and the $s are species-specific, and
that recruitment could potentially be equal to the number of trees of
threshold size need to lift the crown competition factor to the maximum for
the site:

wrwhere c  is the open-grown crown width of a tree at the recruitment
threshold. The maximum crown competition factor appeared to be constant
across several sites (except for elm-ash-cottonwood forests), but is

rdependent on the threshold diameter d  (cm):

The actual recruitment was then predicted from the potential (e.g. for
shortleaf pine, as shown in Fig. 10.3):

(10.1)

The low precision of the model reflects the highly variable nature of
recruitment, but Shifley et al. (1993) felt that the model was well-behaved
from a biological perspective, and saw few options for further improvement
without substantially increasing model complexity or reducing its
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geographic applicability. However, the model is very sensitive to estimates
of open-grown crown width at the threshold diameter (Fig. 10.3), and this
may limit the utility of the model, as it may be difficult to obtain reliable
estimates of open-grown diameter for many natural forest trees. The
analogue based on stand basal area (rather than crown competition factor)
may be more robust.

Two-stage Approaches

One of the difficulties in modelling recruitment is the great variability in
regeneration. Stand condition accounts for some of this variation,
periodicity of mast years and prevailing climate accounts for some, but
regeneration remains a stochastic process, providing difficulties for efficient
model estimation.

Much of the variability seen in recruitment data reflects the fact that
during any period regeneration may or may not occur. This characteristic
(no/some recruitment) becomes especially apparent when individual species
or species groups are modelled. Such data may be modelled using a two-
state approach, which helps to satisfy the usual statistical assumptions (p.
119). With this approach, we first predict the probability that some
recruitment will occur, usually with a logistic function with presence (or
absence) of recruitment as the response variable (cf. mortality functions,
p. 178). Then a conditional function can be used to predict the amount of
recruitment, given that some is known to occur. This conditional function
can be estimated using ordinary linear regression. Hamilton and Brickell
(1983) used this approach to predict defective volume in standing trees, and
the method applies equally well to modelling recruitment.

The Prognosis model uses a two-stage approach to predict recruitment
(Ferguson et al. 1986, Ferguson and Carlson 1993). It predicts regeneration
stochastically, assuming 50 subplots each 1/300 acre (about 0.001 ha), and
add these stems into the main Prognosis model at 10 and 20 years after
disturbance (the Prognosis model uses a 10-year simulation cycle). The
probability that some regeneration occurs is predicted from environmental
variables (habitat, slope, aspect, elevation), distance to seed source, residual
basal area and time since disturbance. Given that regeneration is known to
occur, the expected number of trees is chosen with random numbers, and
determines the number of cohorts for that subplot. The number of species
present (1–6 species), and the identity of these species is also stochastically
determined. Stochastic perturbations are also added to predicted heights of
recruits. Consistent with field procedures, they discriminated between
"best" trees and "excess recruitment", using smaller expansion factors to
model the former category.

The NORM model uses a two-stage approach (Fig. 10.4) to predict
regeneration occurring for each of the 100 species which contributed 97%
of all recruitment (at 10 cm dbh) recorded in 217 permanent plots. The
remaining 3% of recruitment comprised 113 species, and contributed
insufficient data for meaningful analyses of regeneration characteristics.
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Fig. 10.4. Recruitment predicted from the NORM model for typical conditions

r )d v t(N /N=0.2, S =7, S =0, R =0; drawn from Eqns 10.2–10.3).

There is no easy way to decide how many species to model recruitment for;
the law of diminishing returns seems to apply. In north Queensland
rainforests, 60 species contributed 90% of all recruitment, 80 species
accounted for 95%, and 100 species brought the total to 97% of all
recruitment observed (Vanclay 1992). The optimal number of species to
model depends very much on the data and resources available, and on the
intended uses of the model.

The probability that any recruitment occurred is predicted separately for
each species, in contrast to the approach used in the Prognosis model
(Ferguson et al. 1986) where the collective probability of regeneration is
modelled. Five species groups are used to estimate annual probabilities of
recruitment from stand basal area, the presence of the species in the existing
stand, and years since the last disturbance (e.g. for Flindersia pimenteliana;
Fig. 10.4, A):

(10.2)
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iwhere Z  is a binary variable indicating the presence of species i in the stand
(1 = present, 0 = absent), G is stand basal area (m ha ), t is years since2 !1

vsilvicultural treatment, and S  is a binary variable which takes the value 1
on soils derived from basic volcanic and coarse granite parent materials, and
0 elsewhere. This function can be employed in a stochastic or deterministic
manner. The deterministic implementation sums the annual probabilities for
each species until the cumulative probability exceeds unity.

Species were grouped in another fashion to analyze the amount of
regeneration, given that it is known to occur, and eight species groups were
used to estimate the final function. Recruitment is predicted from stand
basal area, site productivity and the relative abundance of the species in the
stand (e.g. for Flindersia pimenteliana; Fig. 10.4, B):

(10.3)

i )dwhere N  is the number of stems of species i in the stand, S  is an index of

asite productivity, and S  is a binary variable that takes the value 1 on alluvial
soils and fine-grained granite soils, and 0 elsewhere. Figure 10.4 illustrates
these two functions, and shows the expected annual recruitment for selected
species. There is no biological significance in the apparent asymptote in Fig.
10.4, B; it arises because many of the plots were 0.2 ha (range 0.04–0.5 ha),
and thus a single observed recruit would contribute 5 stems ha . The!1

predicted number of recruits may seem high, especially considering that 100
species are modelled in this way, but the expected average annual
recruitment is low; so low for some species that it is useful to display the
expected recruitment on a logarithmic scale (Fig. 10.4, C).

The two-stage approach introduces some complications when the data
represent different time intervals. Longer intervals will have a greater
probability of recruitment, and there may be more recruitment if it occurs
(the observed recruitment may represent more than occurrence). Thus it
may be necessary to adjust for the time interval in both functions, to obtain
a satisfactory fit to the data. However, this double correction may bias
predictions, so it is critical to compare predictions from the two equations
with the raw data, and make adjust predictions if necessary. It is a good idea
to exclude data drawn from plots with very long measurement intervals (e.g.
choose the maximum remeasure interval so that there will be relatively few
data with two recruitment events within a single datum).

i The use of variables such as presence and relative number (N /N) of a
tree species raises some complications. In medium- to long-term
simulations, the predicted composition of the stand may change. The
question then is, should these equations employ the initial presence or the
simulated presence? There is no easy answer. The composition of natural
stands may vary considerably over time. Flushes of pioneer species
appearing after disturbances may be short-lived, and the turnover rate of
species may be high even in undisturbed stands. However, recruitment
predictions cannot always be correct, and using the simulated composition
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may accelerate bias. The NORM model uses a compromise: it uses the
original relative abundance, but only if the species remains in the simulated
stand. However, all three options (original, simulated, compromise) are
available in the model, and users are encouraged to try all three and explore
the implications. Similarly, users may elect to invoke deterministic or
stochastic simulation, and are encouraged to investigate both options in
critical applications.

Regeneration Models

Recruitment models begin rather late in the process of stand renewal (e.g.
Fig. 10.1), and it is not always clear what assumptions regarding earlier
development are implicit in predictions. This limitation can be partially
overcome by commencing simulation at an earlier stage of seedling
development. Regeneration models are those that simulate the development
of trees from seed or seedlings, and thus attempt to take into account more
of the factors influencing the process of stand renewal. Some regeneration
models recruit seedlings directly into the main model, but most simulate the
growth of trees from seedlings to breast height within a separate
regeneration model (e.g. Ek and Monserud 1974). This approach is
sufficiently flexible that almost any size may be used as the criterion for
recruitment into the main stand.

An advantage of the approach is that it more realistically models the
time taken for regeneration to be recruited following a reduction in stand
density due to harvesting. Recruitment models which employ an expression
of stand density may lead to overestimates of recruitment in the projection
period immediately following the harvest, unless there are large reserves of
advance growth. Modelling may start at any of several stages. Leak (1968)
modelled regeneration from the stage of flower development, and Ek and
Monserud (1974) began with seed fall. Germination could provide a
suitable starting point, and many models started with "establishment" when
the seedling has survived its first year after germination.

Growth and development of the regeneration can be modelled in several
ways. Leslie matrices (p. 46) or "life tables" have been used (e.g. Hett and
Loucks 1968), but one problem is that age is not a good predictor of growth
in the understorey. Tree height is a better predictor, and a better approach
may be to use height cohorts.

Vanclay (1988a) predicted the amount of established one-year-old
regeneration in Callitris forest from stand basal area and site productivity:

r h,dwhere N  is the number (ha ) of one year old seedlings established, S  is!1

site quality and G is stand basal area (m ha ). Seedlings were modelled2 !1

using cohorts representing height classes until they reached breast height,
when they were recruited to the main model. A maximum of ten cohorts
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was imposed. Under ideal conditions (good sites with low stocking), these
cohorts represented annual flushes of regeneration. Where growth of
regeneration was slower and took more than ten years to reach breast height,
the most similar cohorts were amalgamated to ensure that the limit of ten
cohorts was not exceeded.

Ek and Monserud (1974) adopted a more sophisticated approach to
predict recruitment into their stochastic spatial single-tree model. The
regeneration model used cohorts representing the number of stems for each
species and age in each subplot within the main plot being simulated.
Despite having seed-crop records over a 26-year period, they were unable
to fit a model to describe seed production, and used random numbers to
select good, moderate and poor seed years according to the observed
frequency for each species. Seed and sprout production were estimated for
each overstorey tree as a function of its size and the threshold age, and were
distributed across the subplots according to the parent tree's position, height
and crown width. Germination was predicted as a stochastic function of
microsite and canopy cover conditions. Each year, a germinant or tree in the
understorey may die, or survive and grow in height by an amount predicted
from cover, species and age. When trees reached breast height they were
recruited into the main model. If trees did not attain this height within a
specified time (e.g. 25 years for black spruce), they "died".

Monserud and Ek (1977) refined this model, improving the efficiency
by reducing the number of cohorts to be modelled. They assumed that
understorey tree size was more relevant than tree age, and modelled the
development of trees to 7.6 metres height using five height cohorts of
varying size and movement ratios (p. 36). The height increment of the mean
tree was predicted from the potential height increment (a function of height
and site), overstorey competition index (a relative size-distance index),
shade tolerance (a function of species and height), and stand density. The
model gave good predictions, even when extrapolated to clearfall conditions
which were not represented in the database (Ek and Monserud 1979).
Detailed approaches such as this may not be warranted in all yield studies,
but may be relevant in models used to analyze silvicultural alternatives for
intensively managed stands.

Synthesis

Although regeneration models offer several desirable features, they may be
impractical in many natural forests because of difficulties with species
identification in small trees and an absence of suitable data. Many shade
tolerant species may exist as advance growth for decades, until a gap
appears in the canopy and provides an opportunity for these stems to grow
into the overstorey. If such advance growth contributes substantially to
recruitment in the forest and with the management system under
consideration, a regeneration model may confer any advantage over simpler
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recruitment models. As in all model components, there is no single best
strategy for all occasions, and the most suitable approach to use depends on
the situation.

In the next chapter we will consider procedures and tests to evaluate the
performance and suitability of models for various applications. This is an
important aspect of model construction, and should not be a mere
afterthought.

Exercises

10.1. Contrast the various methods of predicting regeneration and
recruitment and discuss their strengths and weaknesses. What method
would be most suitable for your application? Why? What data would you
need to fit the model and how would you implement it within an overall
growth modelling framework (e.g. your solution to Exercise 4.4)?

10.2. Construct an Usher matrix model (p. 46) which predicts recruitment
only on the death of another tree. State the assumptions you make regarding
growth and mortality rates, as well as any implications regarding
regeneration. How would you test this model?

10.3. The (synthesized) data below concern recruitment at 10 cm dbh in
a series of plots remeasured at 5-year intervals in a tropical forest. Build a
model to predict recruitment for this forest. Discuss the strengths and
weaknesses of your method. How could you test this model, and what data
would you need? 

Plots without recruits Plots with recruits

r rBasal area (G, m ha ) G N G N2 !1

 2.2
 2.6
 4.3
 5.3
 6.1
 6.6
 9.7

10.2
15.2
16.4
17.2
18.3
22.7
22.8

27.5
28.1
30.2
30.9
33.4
36.5
40.4

40.7
41.8
45.8
56.9
65.0
65.6
72.9

 2.5
 5.0
 5.2
 6.3
 6.3
 7.1
 8.7

81
87
72
91
62
41
44

 9.1
22.2
22.4
26.1
28.5
31.3
44.7

63
22
20
23
23
30
25
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Chapter Eleven

Model Evaluation and Re-calibration

Model evaluation is an important part of model building, and some
examination of the model should be made at all stages of model design,
fitting and implementation. Evaluation should not merely be an afterthought
or an acceptance trial. A thorough evaluation of a model involves several
steps, including two which are often called verification and validation. In
forest growth modelling, these usually denote qualitative and quantitative
tests of the model, respectively. There are several objections to these terms:

1. They are value-loaded, and it is preferable to use neutral language to
assess model performance (see e.g. Oreskes et al. 1994).
2. The same terms are used in other branches of mathematics and logic to
denote other meanings: a model is valid if it is logically correct, and verified
if it is true.
3. Verity implies truth, but it is impossible to prove a model "true" (except
in the special case of a closed system; e.g. Oreskes et al. 1994). The only
truth that can be established in a growth model is in the context of Goulding
(1979), namely that the model is a faithful representation of what the
modeller intended.

Thus it is appropriate to avoid these terms, and to use alternatives such as
model criticism and benchmarking respectively. The former should involve
examination of the structure and properties of model properties, with or
without supplementary data, to confirm that it has no internal
inconsistencies and is biologically realistic. Benchmarking requires
comparisons with data to quantify the performance of the model. Thorough
benchmark tests should involve data which are in some sense unlike the
data used to fit the model (Snee 1977), but useful insights can also be
obtained with the data used to fit the model. These tests cannot prove a
model to be "correct", but may be used to falsify inferences made from the
model. The quality of a model can only be evaluated in relative terms, and



205Model Evaluation and Re-calibration

its predictive ability always remains open to question. However, the failure
of several attempts to falsify a model should increase its credibility and
build user confidence. This is the role of model evaluation.

Re-calibration refers to the search for adjustments to improve model
predictions for a specific locality. It relates to model evaluation, because if
benchmark tests reveal deficiencies in a model, the question is if the same
data may be used to re-calibrate the model so that predictions are improved
for that locality, and if so, how. Both these activities require an operational
growth model, but should not be seen as "optional extras". They remain an
integral part of model development.

Model Criticism

Decision makers and managers may rely on predictions from growth models
to examine implications and consequences of forest policy options and
management strategies. Unreliable predictions may lead to suboptimal
decisions, so models should be examined and their limitations ascertained
before they are used. Model evaluation should be convincing enough to
boost user confidence so that the model will be used as a basis for action.
If the evaluation reveals faults, the question then is where and how the
model fails, and what can be done to improve it. The quality of a model thus
depends on the application and objectives.

Model evaluation should reveal any errors and deficiencies in the
model, and should establish:

1. whether the equations used adequately represent the processes involved,
2. if the equations have been combined in the model correctly,
3. that the numerical constants obtained in fitting the model are the best
estimates (unbiased minimum-variance estimators),
4. the range of site and stand conditions over which the model applies,
5. if the model satisfies specified accuracy requirements,
6. whether the model provides realistic predictions throughout this range,
and
7. how sensitive model predictions are to errors in estimated coefficients
and input variables.

Some of these criteria can be examined at several stages during model
design and construction, but some aspects require additional data for
benchmark tests. In this section on model criticism, we consider tests of a
model that can be completed without additional data, while aspects of
benchmarking will be considered later in this chapter.
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     This section on model criticism draws heavily from the paper by Soares et
1

al. (1994), and owes much to fertile discussions with J.P. Skovsgaard of the
Danish Forest and Landscape Research Institute.

Evaluation Procedures1

"Good science" or strong inference requires that scientists make imaginative
conjectures (such as models), deduce consequences amenable to testing, and
attempt to disprove the conjecture experimentally (e.g. Popper 1958). A
conjecture which survives repeated attempts to falsify it is corroborated, or
not yet falsified, and may begin to assume the status of an axiom. Tests of
model implications and consequences may involve analytical investigation
of component equations, or comparisons with empirical data.

Rigorous testing of a growth model may require data drawn from
permanent plots not used in the development of the model, and may be
more convincing if these are derived from a different population (e.g.
another forest of the same type, a different series of experiments, or data
collected by another agency). Repeated testing until a growth model fails
does not mean that the growth model will be rejected. Rather, it helps to
define the region within which the model behaves satisfactorily, and
indicates the areas where further research is warranted.

Forest growth models may comprise many separate but interrelated
components, each of which may influence, and be influenced by other
components and assumptions in the model. Model evaluation should extend
to all model components and assumptions, and this requires a thorough
understanding of the structure of the model and the interrelationships
between components. A thorough evaluation should include the following
aspects (Soares et al. 1994):

1. Examine the model and its components for logical consistency and
biological realism (e.g. Liu et al. 1989, Oderwald and Hans 1993) to ensure
that they

(a) are parsimonious and are biologically realistic,
(b) agree with existing theories of forest growth, and
(c) predict sensible responses to management actions.

2. Ascertain the statistical properties of the model in relation to data (e.g.
Ratkowsky 1983, Weisberg 1985), including the:

(a) nature of the error term (i.e. additive or multiplicative,
independence, etc.), and the
(b) estimation properties of parameters in model functions.

3. Characterize errors (e.g. Reynolds and Chung 1986, Gregoire and
Reynolds 1988) in terms of:

(a) magnitude (including confidence intervals and critical errors),
(b) residuals (distribution, dependencies on initial conditions and
projection length), and
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(c) contributions by each model component to total error.
4. Test, using statistical approaches (e.g. Reynolds et al. 1988, Mayer and
Butler 1993) for:

(a) bias and precision of the model and its components,
(b) goodness-of-fit of predicted size distributions,
(c) patterns in, and distribution of residuals, and
(d) correlations over time and between components.

5. Identify model components with the greatest influence on predictions,
by

(a) analytical and simulation studies of model sensitivity to
perturbations in parameter estimates (e.g. Liu et al. 1989, Elston 1992),
and
(b) analytical and simulation studies of the propagation of errors in
model inputs (e.g. Gertner 1987a, Mowrer 1991).

These analyses need not be sequential, but all relevant aspects should be
examined in each model component and in the assembled model. Each of
these steps should involve both graphical analyses as well as statistical
indices. The statistical properties of models have been dealt with in Chapter
6 (p. 119), and are not considered any further in this chapter, but this does
not diminish their importance.

Logical and Biological Consistency

Each model component and the model as a whole should be logically
consistent and biologically realistic. Many model properties can be
examined for consistency. Some aspects include (Oderwald and Hans
1993):

1. variables included in, and omitted from the model should agree with
expectations,
2. signs and values of coefficients should agree with expectations,
3. extrapolations outside the range of the development data should be
reasonable,
4. transformations of model predictions should be reasonable (e.g. model
forecasts of future diameters should also provide reasonable estimates of
diameter increments, future volumes, mean increment curves, etc.),
5. contradictions should not be evident in a model, and
6. derivatives, limits, maxima, minima, inflections, etc. should agree with
expectations.

Matrix plots of simulated stand development trajectories showing a range
of property-time and property-property relationships may offer useful
insights into model behaviour, and may provide an efficient way to reveal
discrepancies in model predictions (Leary 1988).
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Fig. 11.1. Matrix plot of model defined by Equations 2.13 and 2.14, showing
age, height increment, height, basal area increment and stand basal
area. Unthinned and thinned (age 12) trajectories are shown. The
dotted line shows mean annual height growth.

Figure 11.1 illustrates such a matrix plot for the simple model defined
by Equations 2.13 and 2.14 (p. 28), showing two simulated stand
development trajectories, one for an unthinned stand, the other for the same
stand thinned when top height reached 10 m (age 12). The dotted line in the
second row of the matrix indicates the mean annual height increment (it is
omitted from other cells for clarity). The matrix plot reveals a lot of
information and gives a good insight into model behaviour, but may become
very large. Here, a simple model for a pure, even-aged plantatio, with just
two equations and three variables produces a 5×5 matrix with a lot of
information to digest (and it could be expanded to 7×7 by including mean
annual increments in height and basal area). Because of the high
information content of these matrices, it is a good idea to examine critical
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parts of the model in more detail, by creating subsets of the matrix with
inter-relationships of particular interest. In this particular illustration, one
might choose to examine the thinning response more closely by
experimenting with different thinning intensities and timings. Further
criticism of this model is left to the reader as an exercise (11.1).

Figure 11.1 illustrates a very simple model of the most simple forest, the
pure even-aged stand. Figures like this can also be compiled for uneven-
aged mixed forests, but the number of cells that could potentially be drawn
in the matrix becomes very large (e.g. tree growth characteristics for
different species-site-competition permutations, and stand growth
characteristics for stands comprising different species and size structures),
and it is expedient to choose a few graphs for close scrutiny. There are a
few principles that may provide a good basis for criticising models for pure,
even-aged stands (e.g. Eichhorn's rule, Langsaeter's hypothesis, etc.; see
Assmann 1961, Wenk et al. 1990), but few such guides exist specifically
for mixed, uneven-aged forests.

Parameter estimates and model forecasts should agree with both
empirical data and current understanding of growth processes. Experienced
foresters and other experts may indicate areas where model predictions are
deficient. Simulations at extremes stand conditions may be particularly
revealing. Monserud (1989) suggested that optimization studies provided
a discriminating test of a model, as his optimizer seemed to be remarkably
efficient at exploiting seemingly minor quirks in the Prognosis model to
arrive at unrealistic solutions. Thus optimization studies coupled with
expert insights may provide a good basis for model criticism. However, a
model should not be rejected simply because it behaves in a counter-
intuitive fashion; it may be our preconceptions that are wrong. Thus
discrepancies should cause a critical reappraisal of the model, the data, and
of preconceptions.

Sensitivity Analyses

A sensitivity analysis attempts to reveal model parameters and submodels
which, when perturbed, cause the greatest fluctuations in model predictions.
These studies may reveal model components with low and high sensitivity,
both of which are of interest. Insensitive components may contribute little
toward model predictions and could be targets for omission from the model
during model revisions. Conversely, it is useful to know about model
components with high sensitivity, because these may have the greatest
impact on model predictions. All model parameters and inputs should be
estimated accurately, but particular care is required with the most sensitive
variables.

In theory, sensitivity studies can be done analytically (e.g. by taking
derivatives), but in practice this may be complicated by the interaction of
various model components and feedback loops. Thus sensitivity analyses
are often carried out as simulation studies in which the parameters or
components are changed to observe corresponding effect on predicted
outputs (í):
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where $ is a parameter estimate (e.g. if a 10% change in a parameter $

$results in a 50% change in the predicted outcome í, the sensitivity S  is 5).
In practice, meaningful sensitivity studies are difficult, as the estimate of

$sensitivity S  may depend on the values of both í and $, so that many
simulations may be necessary to complete the picture. This may be a tedious
undertaking, especially where there are many parameters.

The parameter estimates examined in sensitivity analyses are usually
those estimated by regression (i.e. the $s), but other aspects of the model
may be examined analytically or by simulation. Liu et al. (1989) examined
several other aspects of a yield function for loblolly pine, including

i j(a) factor interdependence M Y/MX MX , which indicates if the2

explanatory variables are complementary (> 0) or competitive (< 0),

i i (b) elasticity of output, (MY/Y)/(MX /X ), which reveals how Y changes

iwith respect to X  when all other Xs are held constant, and

i i j j (c) elasticity of substitution (MX /X )/(MX /X ), which indicates how
readily one input may be substituted for another.

These criteria provide useful insights into model behaviour, but may be
complex to explore fully.

Studies of error propagation (Gertner 1987a, Mowrer 1991) may reveal
model limitations, and are particularly useful in offering insights into the
interaction of errors in the input data and in the simulation. One application
of stochastic simulation studies is to investigate the "quality" of predictions.
Variance approximation provides an efficient alternative to such studies,
and enables the variance of predictions to be estimated deterministically. It
also enables the variance of the input data to be incorporated into the
analysis. Mowrer and Frayer (1986) and Gertner (1987a) used a simple
first-order Taylor series to estimate the errors propagated through growth
and yield projections. The general formula for error propagation is (Mowrer
1989):

Terms involving the variable X estimate the variance in the estimated

Xresponse variable (ì) from propagated errors (S ) in the predictor variables

X(X) and their cross-products, with correlation coefficients R . Terms

$involving the variable $ approximate fixed variance contributions (S ) from

$the estimated regressor coefficients ($) with correlation coefficients R .
These contributions may be obtained from the covariance matrix of the
estimated regression coefficients, and reflect the quality of the various
estimators used in the model. Equations such as these can readily be
incorporated into computer implementation of models and can provide
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concurrent estimates of the variances associated with each variable at any
time during the simulation.

Growth models may contain many assumptions which are not supported
by data (e.g. simulated plot size, maximum number of tree records, record
doubling or tripling, attenuation of re-calibration factor, etc.), which may
influence predicted outcomes, and these assumptions may not be easily
confirmed. If benchmark tests reveal that the model gives acceptable
predictions, then these assumptions are probably reasonable. However, it
remains important for the modeller to know if any of these assumptions are
critical to model preformance, and to be aware of the consequences of
modifying any of these parameters. Such sensitivity tests are especially
critical if the parameters can be modified by users. Users of a model may
wish to vary some parameters (e.g. to improve computational efficiency
during complex calculations), so model testing should include a
demonstration that predictions are not unduly influenced by these
assumptions.

Results of sensitivity tests may reveal parameters critical to model
predictions, and parameters which may be redundant. Knowledge of
sensitive parameters may guide applications (especially extrapolations) and
the planning of model enhancements. Clearly, sensitivity analysis should be
an integral part of model design and evaluation.

Benchmark Tests

Model criticism and benchmarking are two aspects of a range of tests that
should be undertaken to demonstrate the utility and limitations of a model.
The distinction between these phases is based, in part, on the data required
to make the tests. Model criticism can be completed without additional data,
whereas benchmark tests require data (preferably independent data) to
compare model predictions with observed values. This raises some
additional questions about the nature and amount of data used for such
comparisons.

Characterizing Model Error
One of the most efficient ways to examine model performance is to plot
residuals for all possible combinations of tree and stand variables, and to
look for patterns which may indicate serial correlation, dependencies on
initial conditions or on projection length, or other systematic patterns (e.g.
Soares et al. 1994). Such plots may be interpreted visually, but formal tests
are also available (e.g. Draper and Smith 1981, Weisberg 1985). The
common practice of plotting both the observed and predicted values against
time is not recommended as it is rarely particularly revealing (e.g. Mayer
and Butler 1993). It is common to plot observed values (y) against predicted
(í ) values, but in many cases it is more revealing to plot residuals (Q = y !
í ) versus observed values (Fig. 11.2). Notice that plots of Q versus y and Q
versus í are analogous, but the latter involves a re-arrangement of the
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Fig. 11.2. Observed (G) and predicted (�) values plotted directly and as

0 0differences (Q=G!�). Symbols indicate G <50 (#) and G >50 (�)
(see Ex. 11.3).

residuals (Q) which may conceal some trends. In plots like this, it is often
informative to stratify the data and use a different symbol for each stratum.

Errors may depend on projection length or initial forest condition, and
such dependencies can be shown graphically (Fig. 11.3). Many graphs may
be required to screen all candidate dependencies, and preliminary screening
can be done efficiently using stepwise linear regression to reveal variables
for which scatterplots should be prepared. Time should be examined in
three contexts: (i) stand age or time since disturbance (e.g. logging; if
known), (ii) length of projection, and (iii) year of measure. These three
aspects of time may reveal different properties of the model.
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0Fig. 11.3. Residuals vs initial values (stem number N  & site index S), length of

n(n), and age after simulation (T ). Symbols indicate initial basal areas
and dotted line shows trend.

Two simple criteria, when used in conjunction, provide a useful

i isummary of the overall model performance: average model bias ( 3 (í !y

i i ) /n ) and mean absolute difference ( 3*í !y * /n ). These formulae apply at
the stand level and for size or product breakdowns. Average model bias is
a measure of the expected error when several observations are to be
combined by totalling or averaging, while the mean absolute difference
indicates the average error associated with a single prediction. These
statistics may be weighted to reflect the discrepancy in terms of stand basal
area or volume. It may also be useful to express these as percentages (e.g.

i i i i 100 [ 3 *í !y * / *y * ]/n ), but if some observed values are very small (y 6 0),

i iit is preferable to use the alternative 100 [ 3*í !y */n ] / 6y.
Another useful technique is to compare predictions directly with

observed data using a statistic analogous to R², and sometimes called
modelling efficiency:
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This statistic provides a simple index of performance on a relative scale,
where one indicates a "perfect" fit, zero reveals that the model is no better
than a simple average, and negative values indicate a poor model indeed.
However, this statistic suffers all the weaknesses of R² (see p. 125), and a
high "efficiency" does not necessarily mean an adequate model.

Reynolds (1984) pointed out that two different philosophies of model
evaluation can be identified. One approach uses statistical hypothesis testing
and the other uses statistical estimation. Hypothesis tests are appropriate
when the question is whether a model behaves like the real system or
whether a model meets a specified accuracy requirement of the user. In
other situations, however, there is no particular standard for comparison and
the objective is simply to give the user of the model some estimate of how
far predictions from the model will be from actual values. Reynolds (1984)
presented formulae to calculate critical errors which users could use to
judge if a model prediction would meet their requirements. Unfortunately,
these are sensitive to the assumption of normality, and are open to mis-
interpretation.

However, prediction intervals can be calculated even when the
assumption of normality is not reasonable. The usual formula for the
100(1!") percent prediction interval for the mean of k predictions is:

where Q is the difference between predictions and observed values in the
benchmark data, and n is the number of benchmark data. Thus a model user
who makes forecasts for k stands could expect that the mean of these
forecasts would be within this range of the true value with probability
100(1!")%.

The non-parametric equivalent should be used if the assumption of
normality is not reasonable. It indicates the probability that all of the next
k predictions will lie between the smallest and largest values in the
benchmark data:

These formulae are somewhat limited because they only apply to the
projection lengths available in the benchmarking data. Reynolds and Chung
(1986) illustrate how regression analyses may be used to formulate
equations for expected bias and prediction intervals for predictions of
different lengths.
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The error structure and the contribution of each model component to
total error may be more revealing than a mere evaluation of total model
performance. Thus an error budget of variance components of the model
may help to identify weaknesses and define priorities for future research. If
suitable data are available, error budgets may be compiled by successive
simulations using predicted values for only one component and observed
data for all other model components (e.g. Hann 1980, Soares et al. 1994).
Hann (1980) used several simulation cycles to identify faulty components
in his model. His first cycle simulated only increments, and used actual
mortality, harvesting and recruitment and thus resolved that increment
prediction was satisfactory. The second cycle predicted increments and
mortality, and employed actual harvesting and recruitment, and so forth,
until the final test included all the predicted values.

Several researchers have advocated Turing tests in which experts are
asked to discriminate between simulated and real world data, but this is not
a good basis for comparison. If the real and simulated data are sufficiently
alike to offer a realistic test, they should be amenable to statistical testing
which avoids the difficulties with personal bias. Conversely, if the data are
unsuited to statistical testing, it is likely that they will contain certain
identifiable features which may make the distinction easy. Turing-type tests
are not recommended.

Statistical tests

Many statistical tests of model performance have been suggested, but no
single criterion can incorporate all aspects of model evaluation, and it is
desirable to use several simple tests to examine different facets of model
behaviour.

One simple but efficient technique is based on linear regression of
residuals on observed data. Some useful insights into the quality of
predictions may be given by the slope of the fitted line, and a good test for
bias is the simultaneous F-test for zero intercept and slope:

where Q = y ! í and the ,s are the residuals about the regression of the

0 1 observed values on the residuals, , = ($ + $ y) + e.

0 1 A simultaneous F-test for $ = 0 and $ = 1 in the regression of observed

0 1 on predicted data ( y = $ + $ í ) is often recommended, and is effectively
the same as the former F-test, but substitutes í for y. Regressing
observations against predictions is consistent with the statistical notation y
= í + Q, and recognizes that the observations contain natural variation, but
assumes that model predictions are accurate. An alternative view is to
recognize that the model is an incomplete abstraction of reality, and that its
predictions are only approximations. The second view is preferable, and
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thus residuals should be regressed on observed values. These alternatives
may give different results (e.g. for the F-test), and the latter approach is
generally more revealing.

In addition to overall appraisals, it is desirable to partition data (e.g. by
age, site index or stand density), and examine model performance in each
of several strata (e.g. Mayer and Butler 1993). The most revealing insights
may be obtained by devising strata based on a knowledge of the biological
system, the model and the characteristics of the data. However, the absence
of any visible inadequacies in any particular stratification does not imply
that weaknesses cannot be found in an alternative stratification.

Partitioning Data

Benchmarking in its purest form requires that some data are set aside, or
that new data are obtained for benchmark tests. The most convincing test
would use a set of data drawn from an independent population measured
over a long period, but such data are rarely available. Growth modellers
frequently are faced with the decision of having to partition a data set from
a single population into two subsets, one for development, and the other for
the testing the model. Where ample data are available, this partitioning
causes few problems. However, when data are scarce, there is a temptation
to use all the available data for development, in an attempt to improve the
model. Unfortunately, this diminishes the ability of the modeller to
demonstrate the quality of his model, and ignores the role of falsification of
hypotheses in science.

Statistical principles suggest several guidelines to use when partitioning
the data set, but in practice the choice seems to be largely arbitrary. When
testing a model, the modeller generally hopes to find the model acceptable,
and must avoid the temptation to weaken the tests, for example, by reducing
the number of data available for benchmarking. A half and half split is
popular in many disciplines (Snee 1977), but fewer data are often used to
benchmark forest growth models (e.g. West 1981 and Shifley 1987 reserved
one quarter of their data). Plots established for long periods with regular
remeasurement, particularly those remaining unlogged and without other
disturbance, may prove useful as a discriminating test. If data from a
geographically independent area (but preferably not an outlying extreme)
can be reserved without compromising the range of site and stand
conditions represented in the model, they could provide a convincing test
of the model. Alternatively, data collected by an independent agency could
provide a good basis for benchmarking.

The outcome of benchmark tests can be influenced by the selection of
data: "like" data will provide a more optimistic result than comparisons with
"unlike" data from another population. Thus the most convincing
demonstration of model quality can be made only if the test data are in some
sense unlike the development data. Since growth models are used to
forecast future forest conditions, one way to split the data is on time, and for
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Fig. 11.4. Example of data partitioned using the duplex algorithm (Snee 1977)
into estimation (G) and benchmark (+) subsets. Numbers indicate
sequence in which data were assigned to subsets (see text).

example, to use data collected before 1980 for development, and since 1980
for testing. It is desirable to have test data available to test the model over
the widest possible range of site and stand conditions. Objective procedures
should be used to select these data to minimize the dangers of bias.

Snee (1977) discussed the duplex data-splitting algorithm. This
algorithm splits the data so that the two sets cover approximately the same
region and have similar statistical properties. The duplex algorithm takes a
list of candidate points, standardizes them and computes the Euclidean
distance between all possible pairs. The two points furthest apart are
assigned to the estimation set, the pair with the next greatest separation are
assigned to the benchmark set, and the remaining points are assigned in turn
to the estimation and benchmark set, selected in order of the greatest
distance from the data in the set (see sequence numbers in Fig. 11.4). This
has the effect of creating two overlapping sets which cover different parts
of the data space, thus providing an "unlike" set for rigorous testing. If the
data contain replications or pseudo-replications, the candidate list should
comprise clusters of data rather than individual points, otherwise the two
tests will cover the same space.
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The benchmark data should contain sufficient replications to enable the
natural variability to be expressed. There are really two sources of error to
be found in benchmarking a model: model error and observed data
variability. Nature is not deterministic: two stands apparently with the same
initial conditions may develop differently. Evaluations should employ
sufficient data to provide a reasonable estimate of the expected actual stand
condition.

Resampling Procedures

Suitable data for modelling are scarce, and researchers may be reluctant to
set aside a sufficiently large amount of data for benchmarking. An
alternative is to mimic the use of independent data using resampling
techniques such as cross-validation, boot-strapping and jackknifing (e.g.
Weisberg 1985).

Regression models may take the form: Y = f ( X, $ ) + Q where the error
Q is unknown, f may be non-linear and $ are parameters to be estimated.
Apparent error is computed by applying the fitted equation to the data used
in fitting (e.g. R²) and will normally give an optimistic view of the quality
of a model. "True" error is best estimated by fitting the model to
independent data. However this is often not possible, especially when one
considers how many additional data should be used. Resampling techniques
provide an alternative.

Consider partitioning the data, with half for development and half for
benchmarking. If the resulting model failed to satisfy expectation, would it
be improved by using all the data for development? But then there would
be no independent test. Several re-sampling methods attempt to mimic
independent testing whilst enabling the full data set to be used for model
development.

Half-splitting provides a solution, by fitting with half the data and
benchmarking with the remainder; the roles are then reversed. Each
evaluation provides an estimate of true error which may be averaged. The
entire data set may be used to obtain the final model and estimates of
apparent error. This method provides pessimistic estimates of model
performance but is computationally efficient (Burk 1990).

Cross-validation is the logical generalization of half-splitting. Rather
than deleting half the data, each datum is deleted in turn and the model is
fitted to the remaining n!1 data. Benchmark tests are averaged from the
individual deleted data. If the test statistic is squared error and the model is
linear, the cross-validation estimate of true error is n times the PRESS
statistic computed by many regression packages. The boot-strap and
jackknife are similar to cross-validation, especially as sample size increases,
but are computationally more complex (Efron and Gong 1983).

If liberal amounts of data are available to the modeller, some data
should be set aside to allow an independent check of the model. In data-
poor situations, it may be wise to use a re-sampling procedure. Burk (1990)
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found that half-splitting provided a pessimistic evaluation, and suggested
the use of cross-validation and jackknifing, coupled with tests based on
limited additional data.

One shortcoming of any resampling procedure lies in its dependence on
the data. The sample should adequately represent the variability and other
characteristics of the population of interest, or the resampling procedure
will not provide an adequate test of the model. Unfortunately, these are the
very circumstances under which the model itself should come under
heaviest criticism.

Re-calibration

Re-calibration implies adjusting a growth model so that it provides good
predictions for a new population. This may entail estimating new
parameters for some or all of the equations in the model, or may use a
scaling factor to adjust predictions.

STEMS (Belcher et al. 1982) is one growth model which has been
"transplanted" to several other regions. Most copies have retained all the
computer code and retained the form of all equations. Some have estimated
new coefficients for all or most equations (e.g. Shifley 1987), whilst others
have developed scaling factors to adjust existing equations (e.g. Holdaway
1985). Such scaling factors may comprise a single adjustment for each
species, or may be correlated with some tree or stand variables (e.g. tree
diameter or stand basal area). Smith (1983) applied three different scaling
factors for each species, for each of three diameter classes. This means that
the diameter increment function effectively becomes a discontinuous step-
function and may have undesirable properties for some applications.

Neither single nor multiple scaling factors guarantee a general
improvement in the model, and some tests are necessary to ensure that the
adjustment is adequate for the region over which it will be applied. All
equations used should be appropriate for the new location. Residuals should
be inspected to ensure that the models are sufficient and adequate.

Re-calibration is not a "cure-all", even for existing "good" models.
Attempts to re-calibrate STEMS to Australian forests using a single scaling
factor (e.g. Swain and Turner 1988 for Eucalyptus marginata forest) or by
re-estimating coefficients in component equations (e.g. Goodwin 1988 for
mixed eucalypt forest) have been fraught with difficulty and results to date
have been poor.

The creation of a variant of a growth model for a new locality, may
involve several steps. Firstly, the model should be benchmarked using data
from the new locality to determine if any re-calibration is needed. Given
that some adjustment is necessary, the residuals about predictions should be
examined to see if a single scaling factor would be adequate, or if a more
sophisticated adjustment is necessary. If inspection of residuals indicates
that a simple adjustment to increment rates would provide satisfactory
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predictions (e.g. analogous to a better site productivity), then such re-
calibration may be attempted. However, if a more complex adjustment to
growth patterns is indicated, it may be preferable to abandon re-calibration
attempts and to estimate new parameters for all coefficients in the model.

Self-calibration

The concept of self-calibration appears to have been first applied by Stage
(1973), who used a single, simple correction factor based on increment
cores taken on temporary inventory plots to adjust estimates of diameter
increment. The method was formalized statistically by Meng et al. (1990).
Stage (1973) calculated the deviation (observed ! predicted) in the
logarithm of the tree basal area increment, and added this to the logarithm
of his diameter increment function. He, in effect, assumed that his function
has the correct "shape", and that only the rate of growth needs to be
adjusted using a single parameter. This robust approach may be advisable
if estimates of site productivity are unattainable, or if the climate varies
greatly between the areas from which the development data were obtained
and where it is intended to apply the model. Stage (1973) argued that the
approach accommodates the model to "local peculiarities of site quality,
genetic character and tree vigour", but cautions that "growth functions
should be based on data derived from the area to which the model is to be
applied; the self-calibration feature . . . only partially mitigates that
admonition".

The self-calibration feature in Prognosis has been implemented so that
local adjustments are attenuated over time, and predictions gradually revert
towards that of the standard uncalibrated model. Attenuation is modelled
using an exponential decay function (Wykoff 1986) with the asymptote
midway between 1.0 and the calculated multiplier. The decay rate is such
that it takes 25 years to reach midway between the calculated multiplier and
the asymptote.

A contrasting application is the GROPE model of Alder et al. (1977)
which was to have all its parameters estimated "automatically" by self-
calibration from site-specific data. Such an empirical approach must ensure
that all equations used are inherently robust, and that the data available for
each site are extensive and sound. Although this is intuitively possible,
effective implementation would require an expert system embodying many
concepts of statistics, ecology and silviculture.

Benchmarking after Re-calibration

Benchmark testing of a re-calibrated model poses a special problem. In
Stage's (1973) approach, the model can be thoroughly tested prior to re-
calibration. After re-calibration for a site, two factors should be
benchmarked: (i) the assumption that the "shape" of the basic functions
remain unchanged, and (ii) that the re-calibration process has in fact
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removed the bias evident in the model prior to re-calibration. Whether or
not the basic functions hold for a large range of sites may depend on the
specific functions, on the linkages between functions in the particular model
involved, and on many other factors. Stage (1973) re-calibrated only the
diameter increment function, and assumed that the other functions (height
increment, bark ratio, crown ratio and mortality) would remain unaffected
by "site quality, genetic factors and tree vigour".

The GROPE model (Alder et al. 1977) provides an option for data to be
reserved for benchmark tests of the model, and this is clearly required in an
empirical approach of this nature. The "model fitting cycle" of their model
may be viewed as the normal development phase of model construction, and
predictions should be compared with additional data before the model is
used for forest management applications.

Synthesis

If growth modelling pretends to be a science rather than an art, the models
proposed should be falsifiable. Thus, they must be able to be rejected
through the normal process of experimental testing. Model evaluation is an
important part of model construction, indicating the nature of the forests for
which the model may be expected to yield reliable results, as well as areas
in which further research is required.

The temptation to use all the available data for the development of the
model must be avoided, as it is equally important to have an independent set
of data available for benchmark testing. The need for such testing is not
diminished through the use of "self-calibrating" models.

Exercises

11.1 Criticize the model illustrated in Fig. 11.1 and given by Equations
2.13 and 2.14 (p. 28).

11.2. West (1981) published a growth model for natural regrowth stands
of three eucalypt species in Tasmania. For Eucalyptus obliqua, the diameter
increment is predicted as:

and mortality is predicted as

Criticize the model.
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11.3. West (1981) reserved 21 plots to allow testing of his model. A
summary of these data is given below (n is the number of years simulated,
and � and N$  are predictions of G and N respectively). Benchmark his
model. Is it an adequate model?
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11.4. Equations for growth, death, recruitment and harvesting have been
given for Flindersia pimenteliana (i.e. increment Eqn 8.6 p. 168; survival
9.2 p. 180; harvesting 9.3 p. 183; logging damage 9.4 p. 186; deterioration
9.5 p. 188; defect 9.6 p. 189; recruitment 10.2 and 10.3 p. 199). Condense
these into a transition matrix model and criticize the model. What
assumptions do you need to make? Is the model generally applicable? Could
you use it for both pure and mixed stands? For both even-aged and uneven-
aged stands?

11.5. Formulate the Flindersia pimenteliana equations as a cohort or tree
list model, and discuss assumptions, implications and the general
applicability of the model. You may need the following volume equation:
v = !0.661 + 8.97 g. Is the cohort implementation a better alternative than
the matrix model?
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Chapter Twelve

Implementation and Use

There is little point in developing a growth model unless it is to be used.
The process of model construction may reveal some implications for forest
management, but the greatest benefit will accrue if forest managers use the
model to investigate forest management alternatives. Thus the model should
provide information required for forest management, in a form useful to
forest managers. The information provided should be

1. timely: available when needed, and not outdated when made available,
2. accurate: reasonable estimate of reality,
3. complete: include all the details the user needs to know about the
situation,
4. concise: exclude elements not required by the user,
5. relevant: directly related to the issues under consideration, and
6. appropriate: in presentation for the particular audience.

This requires that the model is implemented in a flexible information
system linked to other resource databases.

To get maximum benefit from a growth model, it should be made
available to all potential users, including forest managers, planners, and
policy-makers in head office, research and in field management. It should
also be made available for education and training at a variety of levels and
times (i.e. pre-vocational and in-service). Field managers should be able to
use the models themselves, preferably in a "hands-on" way. The growth
model should be viewed as a tool to provide better information for forest
management, but must not threaten the experience and judgement of the
manager. To achieve these lofty goals, a growth model must be easy to use,
well documented and integrated with other information systems. The
question is then how the model can be used most efficiently to provide the
information needed for forest management and planning.
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Implementing the Model

To make it accessible to users, a model is usually implemented on a
computer, and the task of implementing and maintaining the computer
program may be simplified if a few simple guidelines are followed. In
essence, the model should be as simple, logical, modular and portable as
possible. Unnecessary complexity invites errors and may offer few benefits.

Model implementation on a computer involves two aspects: logical
algorithms and appropriate data structures. The computer language doesn't
matter, but it is important that the program is clear and logical, so that it is
easy to find and fix errors, and easy for others to see what has been done.
Many pioneering modelling approaches resorted to a variety of "tricks" to
reduce computer storage and execution time. However, the relativities of
computer and staff costs have changed greatly, and it is desirable to build
a model that is easy to maintain, even if it is necessary to sacrifice some
computational efficiency. It is likely that a model may be implemented on
several different computers during the course of its useful life, and this
means that the model should be written in a standard high-level language
without using vendor-specific features.

Models may involve interim components because of limitations in data,
techniques or knowledge. The model should be constructed in a modular
fashion so that each module is, as far as possible, independent of other
components in the system. This makes it possible to refine one component
equation using new data or analyses without altering all other components.

The application dictates the nature of the output required from a growth
model. Initial testing may require detailed output, whereas an analysis of
optimal management regimes may involve many long simulations but
produce only brief output. Thus input-output routines should be placed in
a separate module and should not be embedded in the growth simulation
module. The model should be constructed so that it can be used as a "black
box" which grows the stand for one growth period (generally one year but
sometimes as much as 10 years, e.g. the Prognosis model). This approach
has been used in many growth models and has proved to be a useful and
flexible approach.

In summary, a model should be:

1. General and applicable to a wide range of site and stand conditions.
2. Able to simulate effects of the major management options.
3. Realistic, with biologically sound functions rather than empirical
surrogates.
4. Modular with growth modules separate from the management simulator
and input-output routines.
5. Driven by operational inventory data rather than by data that require
prolonged scientific measurement.
6. Diagnostic, allowing users to identify data entry errors and unacceptable
model performance.
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7. Flexible with options to alter simulation of individual processes and
format of reports (e.g. ability to write reports to file or to pass them to
graphics packages).
8. Controlled by the user, with subjective parameters kept to a minimum
and amenable to sensitivity testing by the user.
9. Well-documented and easy to use with clear reports that simplify the
interpretation of results.

It is useful to integrate growth models into inventory reporting systems, so
that plots can be reported as at the date of measure or after projecting to any
future date. Models should also be offered as interactive packages inviting
investigation of "what if . . ." questions. Interactive simulation options that
may be provided could include:

1. Grow the stand a specified number of years, or until a given stand
parameter (e.g. stand basal area, standing or merchantable volume or
average stem size) reaches a specified level.
2. Log the stand, using a harvest simulator, removing all merchantable
stems over a given size limit, or soliciting the user's intention for each
species and size class specified by the user.
3. Treat the stand, applying standard treatment rules, reducing the stocking
of specified species and sizes to a specified residual, or soliciting user's
intention for each species and size class.
4. Undo the last (grow, log, or treat) command.
5. Save the present stand for future reference. This is useful for examining
different harvesting or treatment options for a stand which can be logged,
treated and grown several times, using different strategies.
6. Restore the stand as at last save.
7. Display the current stand as a stand table, using size classes specified by
the user.

A macro facility should also be provided, so that silvicultural regimes can
be defined in a series of instructions, and repeatedly invoked so that long
term consequences can be investigated. Such studies can be done
individually for single stands, or simultaneously for a series of stands.
Whilst such studies may provide useful results, they should always be
investigated further in field trials.

Resource Data for Simulation Studies

Considerable effort may be expended in developing reliable growth models,
but good predictions can only be made if user inputs are also reliable. Thus
users of growth models should take commensurate care in collecting the
necessary input data. Mowrer and Frayer (1986) examined some effects of
errors in initial conditions, and suggested that errors in user-supplied data
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could have a bigger effect on the overall variability of predictions than the
contributions from the growth model.

It is important that sampling should be efficient and unbiased, and this
requires decisions on stratification, plot size and trees to be measured.
These topics are discussed in many inventory texts (e.g. Loetsch et al. 1973,
de Vries 1986, Schreuder et al. 1993, Avery and Burkhart 1994), and the
following is only a brief overview.

The general precaution of data collection applies equally to the
gathering of data for use in growth modelling and resource forecasting:
know your information requirements, and ensure that field and office
procedures contribute towards meeting those needs. This caveat applies to
inventory design, and especially to details such as stratification, plot size
and measurement limits.

Stratification

Improved stratification may be the most efficient way to improve the
precision of resource estimates and forecasts. Precision can be gained by
dividing the population into as many blocks as expedient, even though the
number of random sampling units taken from each may be the minimum of
two (Schumacher and Chapman 1954). Gains in precision are greatest when
the within-stratum variation is small compared with the between-strata
variation, but even geometric blocking (i.e. dividing the resource into
rectangular blocks) may help to improve estimates and forecasts.

Table 12.1 summarizes some options for resource inventory. It takes the
form of a binary key to help users select an appropriate method. Start at
step 1 in the first row of the table and consider the criteria in the left
column; if you think that the central column best describes your situation,
proceed to the next row (step 2). Alternatively, the right column suggests
one possible design that may fit your circumstances and highlights some
possible consequences (in italics). For example, Table 12.1 suggests that if
the requirement is for a reliable estimate suitable for spatial interpolation
(e.g. for site quality or forest type maps), then systematic sampling may be
a good approach to use. If estimates are critical and confidence intervals are
required, it may be better to use stratified random sampling, so that
unbiased estimates of the precision can be obtained. The decision to use
geometric blocking or statistical strata may be based on the availability and
reliability of existing information; complex strata are beneficial only if they
reduce the within-stratum variation relative to the between-strata variability.

Notice that this key encapsulates some dilemmas, reflecting situations
where satisfactory samples may be unattainable. For instance, if resources
are insufficient, it may be appropriate not to attempt any sampling because
objective samples may lack the precision desired, and subjective samples
may be biased. Despite the compact nature of Table 12.1, it summarizes
many important factors influencing sampling design, and readers should
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Criteria Inventory alternatives & possible consequences

Step 1
Nature of estimate
Forest characteristics
Representative selection
Time and resources

Bias
Precision

Critical
Unknown/diverse
Unreliable
Sufficient
Objective 6 Go to 2
Absent
Can be estimated

Unimportant/personal
Familiar or uniform
Reliable
Very limited
Subjective sampling
Unavoidable
Unknown

Step 2
Periodicity
Interpolation
Estimate of precision

Sampling error
Periodic bias

Possible/unknown
Not required
Required
Random 6 Go to 3
Correct estimate
Unlikely

Unlikely or known
Necessary
Unimportant
Systematic sampling
Probably inflated
Possible

Step 3
Pattern in population
Sampling intensity

Inherent risks

Clear or likely
Relatively low
Stratified random 6
4
Misjudge pattern

Absent or unlikely
High
Unrestricted random
Sample clustering

Step 4
Pattern in population

Calculations

Obscure/unknown
Geometrical blocks
Simple

Visible or well known
Statistical blocking
Possibly complicated

Table 12.1. Key to some alternative sampling designs showing selected selection
criteria and some possible consequences (adapted from H.C.
Dawkins, pers. comm.).

consider all the issues raised before commencing an inventory. In many
cases, some form of stratified sampling may be optimal.

Smith and Burkhart (1984) found that stratifying by both site index and
stocking improved the precision of volume estimates by two-thirds over
simple random samples. Site index was the more useful variable, and
sample size had no effect on the relative gains achieved through stratified
sampling. 
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Plot Size

Plots should be of an appropriate size to ensure that results obtained are
realistic, and are not an artifact of sampling. There are two issues: the size
of the plot measured in the field, and the plot size assumed in the model
simulations. Generally, it seems preferable that the three "plot" types used
in modelling should be similar: (i) permanent plots used to fit the model, (ii)
the "plot" simulated within the model, and (iii) the sample unit (e.g.
temporary plot or point sample) used to gather additional resource data for
simulation studies. However, in practice, each of these serves different
purposes, and they need not be the same size or dimensions.

The size of plots used to sample stands for growth forecasts may be
dictated by the need for plots to be homogeneous and representative of the
forest stand, and by practical and financial aspects of inventory. Notice that
data for modelling studies, like model development data, should be drawn
from plots which are relatively homogeneous and in which edge-effects are
minimized. Other inventory applications may attempt to maximize within-
plot variation to reduce between-plot variation and the sampling error, but
this may not provide the best data for modelling studies.

In theory, optimal plot size may be determined from statistical
requirements and the time taken to locate and measure a plot (e.g. Loetsch
et al. 1973, Schreuder et al. 1993, Zeide 1980). However, the optimal size
depends on the purpose, and the size that is optimal for reporting a static
inventory may not be optimal for the provision of input data for growth and
yield studies. In any case, practical aspects may override theoretical
considerations. The need for relatively homogeneous plots may provide an
upper limit on plot size. West et al. (1988) suggested that 0.5 hectares was
about the practical limit in north Queensland rainforests. Even if the forest
exhibits few discontinuities, excessively large plots tend to average out
variations, and may provide less reliable and overly-optimistic yield
predictions. Hann (1980) compared yield forecasts from large (32 ha) plots
with those from one-hectare subplots, and found that the smaller (1 ha) plots
gave more reliable forecasts. The lower limit may be influenced by the need
for representative plots, and the large perturbations that may be caused by
borderline trees in small plots.

The size of physical plot on which data were gathered may have a
considerable influence on resource estimates and forecasts, but predictions
may be less sensitive to the plot size simulated within the model. In many
models, the simulated plot size is fixed (e.g. at 1 ha) and is not accessible
to the user. In other models, the simulated plot size is accessible to the user
and may be varied to maintain consistency with input data, and this may
have a major influence on the variance of stochastic predictions.
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Censored Data

It is important that inventory data be compatible with the data requirements
of the model. Incompatibilities may arise most frequently in the
measurement of small trees. For example, the growth model may predict
recruitment at 10 cm dbh and may require that data inputs include all trees
in the stand exceeding 10 cm diameter. However, some inventory data may
only record trees exceeding 20 cm diameter, and such data are known as
censored data (i.e. trees between 10 and 20 cm dbh have been "censored").
Another form of censorship is the failure to record non-commercial species
during inventory. Censored data may lead to biased estimates of growth and
yield. Randall et al. (1988) investigated the impact of censored data
(omission of trees < 13 cm dbh) on yield predictions, and recommended that
such data be augmented by "average" small tree distributions for that forest
type.

Obviously, it is preferable to co-ordinate inventory design and model
design to ensure that no data censorship occurs, either by ensuring that
measurement limits used in inventory are compatible with the recruitment
threshold used in the model, or by providing a recruitment function with a
variable threshold (e.g. Shifley et al. 1993; but note that some censorship
may remain, since estimates of stand basal area may utilize different lower
limits).

Optimization Studies

Forest managers may be interested in details of the theoretically optimal
management regime, and, for uneven-aged stands, may seek information
concerning:

1. sustainable diameter distributions, maximum tree sizes, and optimal
stocking by species and size classes,
2. the optimal cutting cycle and the best strategy to convert present stands
to that regime, and
3. stand-specific treatment schedules to meet forest-wide objectives and
constraints.

Such information may be obtained from analyses at the stand level, or at the
forest level. Stand level analyses (e.g. of optimal sustainable diameter
distribution, cutting cycle or conversion strategy) are relatively easy to
undertake, but do not indicate the best strategy for a forest comprising many
stands. The optimal single-stand strategy is not necessarily the best
approach to adopt on all stands in a forest. For instance, the need to
maintain a steady supply of timber may preclude the immediate adoption of
an optimal cutting cycle in all stands in the forest estate. Stand level
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analyses may indicate the optimal strategy for a single stand in isolation, but
an optimal schedule for all stands requires forest-level optimization.

A very brief overview of some techniques relevant to mixed forests is
presented here. Comprehensive reviews of optimization studies and
methodologies for uneven-aged forests were given by Bare and Opalach
(1987), Haight and Monserud (1990a,b) and Hof (1993), and readers should
consult these for more details. The purpose of this overview is not to teach
optimization techniques, but to consider some aspects of optimization that
may have a bearing on model design and construction.

It is convenient to distinguish two classes of optimization study. Static
studies may often be inferred from a single equation in a model, and may
assume that many factors not under immediate consideration (e.g.
competitive status of trees) remain constant. In contrast, dynamic studies are
simulation studies that take all factors (included in the model) into account,
and may thus provide a more detailed picture. Haight (1985) demonstrated
that static and dynamic studies may not provide the same results; careful
consideration of the assumptions implicit in each approach is necessary to
determine the appropriate result.

Static Studies

Useful information regarding the stand structure and cutting limits (i.e. size
for harvesting) required to achieve near-optimal production can be obtained
from simple analyses of the component equations comprising the growth
model. Such studies may use a diameter increment function and a volume
equation to determine the current and mean annual volume increments for
a single tree, and thus determine the optimal size for harvesting (i.e. the size
at which the mean annual increment is maximized, if volume is to be
optimized). Such studies generally assume that stand basal area and the
relative competitive status of the tree remain constant, and are thus termed
static studies. Dynamic studies simulate the stand dynamics and provide a
more accurate picture, but require additional resources.

Vanclay (1989a) reported some simple static studies of optimal tree size
for harvesting, and illustrated how the optimum changes with site
productivity and stand basal area. His findings tended to support the
existing harvesting guidelines, but some of the guides were below the
apparent optima (Table 12.2). The guidelines specified that trees exceeding
the cutting limit should be harvested unless they are of outstanding vigour
and form, and that all trees exceeding the "retention" limit should be
harvested, irrespective of vigour and form, unless required as seed trees.
The optimal values for these cutting and retention limits were estimated by
calculating the diameter at which the mean annual volume increment of
individual trees reached its maximum, assuming no mortality for the
retention limit and average mortality losses for the cutting limit
(Table 12.2). The incidence of internal stem defect was not considered, and
may slightly reduce the optimal diameters for some species.
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Species
group

Static optimization study Treemarking
guidelines

Retention
limit

(cm dbh)

Cutting limit when
basal area is

(m²/ha >  20 cm dbh) Retention
limit

(cm dbh)

Cutting
limit

(cm dbh)20 30 40

Large, fast 128 105 101  96 80–100 60–100

Large, slow 143 108 105 101 50–100 50– 80

Small, fast 109  71  64  54 50– 90 50– 70

Small, slow 101  66  60  53 50– 90 50– 70

Table 12.2. Diameter (cm) at which tree volume growth is maximized,
assuming soils derived from coarse granite parent material,
compared with Queensland treemarking guidelines (after
Vanclay 1989a, and Preston and Vanclay 1988).

In all optimization studies, it is important to consider if the apparent
optimum is "true" or is an artifact of the model. This caveat applies
particularly to size class models, where the class boundaries may appear to
attain special significance. Matrix models deserve special attention in this
regard. Their mathematical elegance simplifies optimization studies, and
allows "dynamic-like" studies (e.g. steady state, eigenvalues, p. 47) to be
performed easily, but the stationary and other assumptions (p. 44) cast some
doubts about the validity of conclusions drawn in this way.

Dynamic Studies

Dynamic optimization studies are more complex, but provide a more
realistic analysis of stand dynamics. The growth model's ability to predict
yields corresponding to various stand conditions can be exploited to
compute the stand condition that maximizes some benefit such as log
volume, sawn volume, discounted net revenue or some other criterion,
subject to several constraints. Although many constraints can be
accommodated, a single objective function is required and may prove
something of a limitation. If it is desired to maximize several products,
these must be converted to common units (e.g. dollars or cubic metre
equivalents) and combined into a single objective function. Some agencies
may not be profit motivated, and non-timber benefits may be difficult to
quantify, but this does not eliminate the need for potential outputs to be
appraised in common units. The use of any criteria other than revenue will
lead to lower returns (Adams 1976, Hof 1993). Most optimization studies
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optimize the expected outcome, but some applications may be better served
by maximizing the lower confidence limit. Most research on optimal stand
structures has focused on diameter distributions, but some studies have
examined the question of species composition (e.g. Valsta 1988).

The problem of finding the optimum stand condition may be expressed

0 tas: find the initial stand condition X  which gives rise to the stand X  in t

t 0 0years time, such that the increase X !X  is maximized. The initial state X
may be zero for an even-aged stand which is ultimately clearfelled. Meyer
(1952) expressed this as the stand structure in which "current growth can
be removed periodically while maintaining the diameter distribution and the
initial volume of the forest". Many simple optimization studies rely on the

d,t+1 existence of this "sustainable distribution" (Adams and Ek 1974): N $

d,t d,tN  for all d, where N  is the number of trees in a diameter class d at time
t. This ensures that at any future time, some trees can be removed from each
class to return to the original distribution. Michie (1985) used a matrix
model to develop a more general case which converts any initial stand
structure to an investment-efficient sustainable distribution in a pre-
determined number of harvests.

Adams and Ek (1974) maximized the stumpage value of stems removed
to restore the initial diameter distribution with the constraints that the
number of stems removed from any size class must always be non-negative,
the specified initial basal area must be maintained, and that the number of
trees in each diameter class must never be less than zero. This simple
analysis led to a considerable increase in predicted value of cut, of both
stumpage value and in volume, over the existing management guides. They
considered five and ten year cutting cycles in their analysis, but did not
consider a variable cutting cycle. The problem of the optimal conversion of
some stand to the optimum stand condition was formulated so as to
maximize the revenue from a specified number of cuts which result in the
specified optimum stand condition after the final cut. They gave an example
where a stand could have been converted immediately to the optimal
condition, but it would have been uneconomic to do so. Their analysis led
to an optimal conversion schedule which maximized the perceived benefits.
Adams and Ek (1974) did not consider the holding cost of the residual
growing stock, so their analysis yielded different results to those obtained
from dynamic present net value studies (e.g. Haight 1985).

Bare and Opalach (1987) assumed that the sustainable diameter
distribution in spruce-fir forests could be modelled by a Weibull
distribution. This assumption enabled computational efficiencies, but such
a uni-modal distribution may be inappropriate for uneven-aged forests.
They found that the "investment efficient" sustainable equilibrium diameter
distribution associated with maximum land expectation value differs from
the maximum managed forest value. These and other studies demonstrate
the interrelationship between management objectives and optimal stand
structures (e.g. Hof 1993).
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Many optimization studies simplify the growth model to provide a
tractable model for their analyses, and this may influence the results. Haight
and Monserud (1990a,b) demonstrated a method for optimizing any-aged
management of mixed species stands using a tree list growth model
(Prognosis) without modification. They did not assume a sustainable
diameter distribution, but allowed any silviculture ranging from selection
logging and shelterwood systems to clearfelling with natural regeneration
or planting. Their formulation of the problem was to define the
n-dimensional vector x(t) as the initial state (i.e. the present stand table) at
the beginning of time period t, and let u(t) be an m-dimensional vector of
controls where n and m are the number of state and control variables
respectively. Typically, x(t) represents the distribution of trees by diameter
and species classes, and u(t) represents the harvest levels for various

jclasses. Each element u (t), j = 2, . . ., m, of u(t) is defined as the proportion
of the trees harvested from diameter and species class j and is constrained

1between 0.0 and 1.0. The smallest size class u (t) is unconstrained to allow

1for planting, and when u (t) < 0 it represents the number of seedlings

1planted, and when u (t) > 0 it represents the number of seedlings thinned.
Let R[x(t), u(t)] denote the revenue obtained in period t, where the resource
is in state x(t) at the beginning of this period before harvesting, and the
harvest and planting control u(t) takes place at the beginning of the period.
Then letting * denote a discount factor (* = (1+r) , where r is discount!1

rate), and T the planning horizon, the optimization problem can be
expressed as

where x(0) is the initial state and G[x(T)] is the terminal payoff function for
the stand in state x(T). The maximization was solved subject to an
n-dimensional difference equation for the stand dynamics which implicitly
represents natural regeneration, tree growth and survival:

, t = 0, 1, . . ., T!1.

The solution to these equations is the control variable set {u(t),

T t = 0, 1, . . ., T!1} that maximizes J [x(0)], the present value of the existing
stand over the T-year planning horizon. Haight and Monserud (1990a,b)
found that even-aged plantation management and uneven-aged shelterwood
systems were both capable of producing the same high level of yield
indefinitely.

Haight and Monserud (1990a) cautioned that optimal solutions to any-
aged management problems may vary considerably depending on initial
estimates for parameters to be estimated. Wide diameter classes and broad
species groups provided more robust results. They stressed that sensitivity
analyses were essential to investigate the sensitivity to starting condition,
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and to ensure that a global rather than a local optimum had been reached.
Optima may also be sensitive to the planning horizon, and long term
simulations (e.g. > 100 years) may be necessary for uneven-aged forests.

Information concerning the sensitivity of the optimum is as important
to the manager as the optimum itself. In many cases it may be difficult or
even impossible to achieve the optimum, and the manager will want to
know how close to the optimum stand condition his forest needs to be to
achieve a near optimal return. The optimum may well be attained over a
wide range of stand conditions, and sensitivity analyses should be carried
out to indicate, for example, the range of stand conditions which return a
yield within five percent of the maximum. The forest manager may then
strive to attain a stand condition somewhere within this range, and may well
exert his own beliefs, based on personal judgement and experience, as to the
best condition for stands under his control.

This brief overview is not intended to be comprehensive, and merely
attempts to give the growth modeller a feel for some requirements that
potential model users may have. Readers attempting optimization studies
should consult standard references (e.g. Leuschner 1990, Hof 1993).

Yield Prediction

Yield forecasts are amongst the most important applications of many growth
models. Several factors need to be considered, to ensure that yield estimates
are not biased. Yield estimates prepared by multiplying the productive area
of the forest estate by the theoretical per-hectare yield usually overestimate
attainable yields. More detailed simulation studies are required to provide
reliable estimates of sustainable yields for a forest estate.

Determining the yield from a single stand with the aid of a growth
model is a relatively simple matter, but extending the concept to the whole
forest estate requires some account to be taken of the distribution of yield
over time. Agency objectives may stipulate a non-declining even flow of
timber onto the market, even though the market may be fickle and the forest
estate far removed from the "normal forest". This generally requires that
some management units may need to be cut before, after, heavier or lighter
than the optimal cutting rules would suggest.

Managers may also wish to capitalize on buoyant market opportunities
by temporarily increasing the harvest. This is possible, as the sustained yield
is only a guide, and variations in cutting cycle length and intensity are
inevitable. Haight (1990) investigated thinning strategies in situations
where prices vary stochastically. When the sustained yield is temporarily
exceeded, the standing crop and its increment is reduced, and production
and future yields may be depressed for some time. Similarly, if the stand
becomes overstocked through "undercutting", production may also be
depressed, although the standing volume will continue to accumulate to the
maximum for the site.
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Simulation studies can assist the manager to find the best path through
the sometimes contradictory requirements of maximizing sustained yield
and achieving a non-declining even flow. Such studies require basic
resource data (i.e. stand table and nett area) for each management unit
within the forest estate and a good growth model.

Averaging Yields from Individual Plots

Hann (1980) observed that yields estimated from individual one hectare
plots were more accurate than an estimate from the mean of these plots.
This suggests that plots should be projected individually before results are
averaged or summed. The easy alternative, projecting the average of all the
plots, may introduce a bias. Suppose that the forest under consideration is
overstocked on about half its area, and understocked elsewhere. Then the
average of the plots will indicate a near optimal stocking, and will forecast
yields higher than the average of the individual projections. However, if the
forest is stratified into a number of units, each homogeneous with respect
to site and stand composition, it should be possible to project the plot
averages for any stratum. Hägglund (1981) also observed that for uniform,
even-aged stands, projections of the stand mean provided the same estimate
as averaged projections of each individual plot. However, these results
apply only to homogeneous, well-managed stands inventoried using
objective and accurate methods, and need not apply under other
circumstances.

Moeur and Ek (1981) compared predictions from individual plots,
averages for homogeneous stands, and averages for forest types. Their study
involved 134 permanent plots each 0.058 hectares, established according to
a systematic design with random starts. The homogeneous stands were
defined from inspection of 1:16 000 scale aerial photographs, and forest
types were classified according to the major overstorey species, as aspen,
red pine or jack pine. Although all their projections overestimated the actual
yield, the best predictions were obtained from the average of the individual
plot predictions, and the greatest overestimates resulted from projecting the
average for the forest type. These findings are consistent with other studies
(e.g. Smith and Burkhart 1984).

In view of the expense involved in developing a growth model and
obtaining resource data, it seems unwise to economize on computing costs
by projecting plot averages rather than individual plots. If time and
computing resources are limited, the average of homogeneous strata may be
projected, but it is preferable to project the individual plots and to determine
the average yield after the projections.
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Cutting Cycle Analysis

Cutting cycle analysis has been extensively used for yield forecasting in
uneven-aged forests, partly because of its ease of application and because
it is the most reliable technique that can be performed without computers.
The basic method (e.g. Davis and Johnson 1987) is to nominate a cutting
cycle length, construct a typical stand table, project this stand to the mid-
point of the cutting cycle, and apply a harvesting rule to determine the
loggable volume. As the actual time of harvesting is not known, the mid-
point of the cutting cycle is used as a compromise. The annual yield is
determined by dividing the loggable volume by the cutting cycle length.

Cutting cycle analysis offers several advantages over alternatives such
as area control (i.e. harvesting an equal area each year on a nominal
rotation). As the method employs the current stand table and a harvesting
rule that approximates field practice, it is able to predict yields available for
harvesting. Continuing the analysis for several cycles indicates the long
term yield, and the viability of the nominal cutting cycle length and
harvesting rule (Fig. 12.1).

The method poses some questions which require subjective decisions
and which may have a substantial impact on forecasts: What if the yields
derived from successive cycles differ? Should the yield be set at the average
of these, should the nominal cutting cycle length be altered, or should the
harvesting rule be changed? Is the "typical" stand employed representative?
The method can be improved by stratifying on site productivity and
standing volume, and by simulating individual plots rather than stratum
averages. Other deficiencies include the assumption of a fixed cutting cycle
for all stands in the stratum, the assumption of harvesting at mid-cycle, and
the implicit assumption that all stands will be cut in the same sequence in
subsequent cutting cycles.

Yield Scheduling

Yield scheduling by heuristic (trial and error) simulation can overcome
many of the deficiencies of traditional cutting cycle analysis. It attempts to
emulate the sequence of harvesting across the resource, and may determine
the most appropriate "cutting cycle" for each individual plot, rather than
using the nominal cycle in cutting cycle analysis. Yield scheduling enables
the user to specify any allowable cut and examine the outcome. In this way,
it reveals for how long a given harvest can be sustained. Heuristic
simulation does not provide the maximum sustainable yield, but takes an
initial estimate by the user and provides information to enable the user to
make a better estimate for a subsequent iteration (Davis and Johnson 1987,
Leuschner 1990).

Grosenbaugh (1955) recognized the deficiencies in the horizontal cut
and cutting cycle analysis approaches, and advocated the recognition of
homogeneous "record-units" which were to be the sole area unit for all
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Fig. 12.1. Harvesting history (1910–89) in Queensland rainforests (Vanclay
1993), and forecasts (1990–2389) based on cutting cycle analysis
(Preston and Vanclay 1988, Vanclay 1994).

mapping, sampling, forecasting and operational work. He also insisted that
yield forecasting should recognize the actual order of working over the
resource. Phillis (1971) reported a trial of Grosenbaugh's "diagnostic survey
technique" in an irregular eucalypt forest, and reported that it was efficient
in producing detailed yield estimates and other information useful for
operational management at a cost comparable to the established continuous
forest inventory system.

Vanclay (1994) gave an example of heuristic simulation with the
NORM model to provide yield schedules for timber harvesting. The forest
resource was partitioned into management units which formed the basis for
management and prediction, and which were further stratified into
homogeneous subunits for efficient sampling. The simulation system
enabled several constraints to be specified, and included the specification
of minimum yields per hectare, species mixes and other criteria, and this
ensured that the predicted harvesting schedule made sense from a
silvicultural and management viewpoint. Some discrepancies between
yields predicted from cutting cycle analysis and yield scheduling were
revealed, and can be attributed to the "half-cycle moratorium" implicit in
cutting cycle analysis, which grows all stands to the mid-point of the cycle
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without simulating any harvests. This means that short-term yields may be
overestimated, even though longer term estimates are reasonable. These
predictions were rather similar to earlier medium-term predictions made
with a much simpler growth model, less precise area data, and fewer static
inventory data (Fig. 12.1). Provided that they are unbiased, model
differences may be minor when combined with area and static inventory
data in a long-term analysis of yields from a large forest area.

Heuristic simulation offers some advantages over the widely-used
alternatives of linear programming and other mathematical programming
techniques. It is conceptually very simple, and easy for forest managers to
comprehend. It avoids many of the problems of mathematical programming
methods, including the need to determine a suitable objective function
(Haight 1987) and end condition (Davis and Johnson 1987). Johnson and
Tedder (1983) discussed several advantages of heuristic simulation over
linear programming, including the ability to portray inventory in greater
detail, shift areas in and out of production more easily, to produce analyses
at lower cost, and to find feasible solutions more easily.

Linear Programming

Linear programming and other mathematical programming techniques have
been very useful and widely used for estimating and regulating timber
harvests from plantations (e.g. Davis and Johnson 1987, Leuschner 1990,
Hof 1993), but have been used to a lesser extent in natural forests.
Basically, linear programming (LP) will sort through a list of choices and
select one that satisfies the specified constraints and maximizes the
objective (e.g. present net value). Thus an LP model requires three
components: a set of decision variables, a set of constraints, and an
objective function. In addition, it requires a matrix generator to formulate
the list of choices, an LP package to solve the matrix, and a report writer to
summarize the results in an intelligible form. Davis and Johnson (1987)
give a good introduction to the topic. Advantages of linear programming
include the ability to examine several alternatives simultaneously, to portray
unusual yield trajectories, to accommodate more constraints, and to find the
optimum.

FORPLAN is one of the most widely used LP models in forestry, and
the USA Forest Service has a legal obligation to use it in forest management
planning (Leuschner 1990). Yet despite this prominence in the field, it is
complex, and is not well documented or used. Perhaps the major criticism
of FORPLAN is that it has become an end in itself, rather than a means to
investigate better forest management (Sedjo 1987). These limitations are
not unique, but are common to many forestry planning systems. FORPLAN
does more than timber harvest scheduling, and its major uses are in multiple
use planning and in resolving conflict (e.g. McKenney 1990). Whilst
FORPLAN and other mathematical programming systems are undoubtedly
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useful, they do not provide an easy option, and considerable skill and
resource information are necessary to use these techniques.

Precision and Sensitivity

It is difficult to estimate the likely accuracy of a yield prediction. As Leary
et al. (1979a) pointed out, there are two sources of error involved:

(a) error in assessing the initial state, and
(b) error in the growth prediction for the plot.

The former is a problem of resource inventory, and is dealt with in standard
texts (e.g. Loetsch et al. 1973, de Vries 1986, Schreuder et al. 1993). It is
significant however, and may contribute the majority of error associated
with predictions (Mowrer and Frayer 1986).

Error propagation studies offer insights into the interaction of these
factors and reveal the overall magnitude of errors in yield forecasts (Gertner
1987a, Mowrer 1991; see p. 210).

Risk Analyses

The use of stochastic models to study future yields raises three questions:

1. How many simulation runs are required in order to give a good
indication of the most likely outcome and its distribution?
2. What is the best measure of the most likely outcome?
3. How should the confidence limits be estimated?

The number of simulations used to derive results published in the literature
varies greatly, ranging from four (e.g. Ek and Monserud 1979) to 5000 (e.g.
Gertner 1987a). If the distribution of yield predictions from the model is
normal, the usual formulae may be used to calculate the mean, the variance
and the required number of simulations. However, if the distribution of
predictions is not normal, non-parametric estimates may be necessary to
determine the most likely outcome and its variability.

In determining whether the distribution is likely to be normal, two
approaches may be used. If, during the evaluation process, rigorous testing
reveals that the distribution is always close to normal, it may be reasonable
to assume that a normal distribution will generally result, and that the
conventional statistics may be used. An alternative is to test for normality
within the computer program during the execution of a series of
simulations. This latter approach is likely to be unnecessarily intensive of
computing resources, and it may be more efficient to assume a non-normal
distribution in all cases. It is better to err on the conservative side, and
assume that the distribution is not normal, particularly where one-sided
long-tailed distributions may arise.

If the distribution is significantly different from the normal distribution,
other approaches need to be used to determine the number of simulations,
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the most likely outcome and its variance. The median provides an unbiased
estimate of the expected outcome, and is given by the (n+1)/2  observation th

of the sample, where n is an odd number and samples are ranked by
expected outcome. Do say nine runs, then keep adding runs (using a power
function such as 2 +1) until no change in the median is observed. For a n

more precise result, keep adding more runs until the difference between the

(n+3)/2 (n!1)/2 two observations either side of the median is small (i.e. Y !Y < *,

iwhere n is odd and Y  are ranked in increasing order).
The variance of the population may be estimated as quarter of the range,

but this test is not robust and performs poorly for non-normal distributions
with long tails (Snedecor and Cochran 1980). A better approach may be to
observe the confidence interval about the predictions directly from the
simulated outcomes rather than from some formula. If, for example, the
ninety percent confidence limits are required, the largest and smallest
observations in 19 samples will give a rough estimate, the second largest
and second smallest of 39 samples a better indication, as will the fifth
largest and fifth smallest of 99 samples. For any continuous distribution, the
probability that all of the next k observations are between the smallest and
largest values in the current sample of size n is (Hahn and Nelson 1973):

The number of samples required may be dictated by two requirements:
the need to gain a reasonable estimate of confidence limits for yield, and the
need to estimate the median prediction with some precision. If reasonable
estimates of confidence limits on the predicted yield are required, 30 or
more simulations may be dictated. However, if concern is for the median,
another approach may be used. Snedecor and Cochran (1980) gave a
formula for confidence limits on the population median which is valid for
any continuous distribution: i, j = {(n+1) ± z %n}/2, where z is the normal
deviate corresponding to the desired confidence probability, and the i  and th

j  observations indicate conservative confidence limits about the median. th

Other nonparametric tests are given in standard texts (e.g. Hettmansperger
1984).

Synthesis

Growth modellers cannot guess, at the time of model construction, all the
possible uses to which a growth model may be put. This is why it is
important to make sure that the model behaves in a realistic way for a wide
range of site and stand conditions, and extrapolates safely to conditions not
included in the development data. Some obvious applications of growth
models have been discussed, and these techniques are likely to become
increasingly important in forest management.
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To fulfil this potential to assist forest managers by providing better
information, growth models must not be made to appear sophisticated and
complex, but must be made available for use on a regular basis as an every-
day tool to improve forest management. In short, that means that the growth
model should be integrated with other information systems, should provide
information in a useful and flexible format, and must be easy to use, well
documented and readily available.

Exercises

12.1. Discuss how you would integrate a growth model into a forest
management information system. What data would you need to set up the
system initially, and what on-going data collection procedures would you
recommend to keep the system up-to-date?

12.2. Using the model defined by Equations 2.13 and 2.14 (p. 28), devise
an optimal silvicultural regime for a loblolly pine plantation. What
assumptions do you need to make to arrive at your conclusions? Are they
realistic? Can you draw the same conclusions from the analogous matrix
model in Fig. 2.5 (p. 29)?

12.3. Use the model in Fig. 3.4 (p. 49) to devise an optimal harvesting
strategy for North American hardwoods. Many matrix models suggest
optima that involve harvesting all stems in each of several size classes. It is
less common for a matrix model to indicate harvesting of a proportion of the
stems in a size class. Is this realistic, or is it an artifact of the model, or of
the linear programming method sometimes used? Discuss.

12.4. Calculate the optimal diameter for harvesting suggested by the five
different growth equations for sugar maple (Eqns 8.1–8.5 and Figs 8.2–8.3,
p. 165–167). You may need the following height–diameter relationship
(Botkin 1994): h = 1.37 +0.378 d +0.00111 d . Illustrate what happens to2 

the optimum as the interval between harvests increases. How would you
take mortality into account? Discuss the impact of assuming (i) constant
mortality, and (ii) size-dependent mortality. What other factors should you
consider to make your calculations more realistic? Discuss any assumptions
that you make.

12.5. Use West's (1981) model (Exercise 11.2, p. 221) to examine
silvicultural options for Eucalyptus obliqua, both in even-aged and uneven-
aged stands. Are your solutions within the realistic bounds you defined in
Exercises 11.2 and 11.3? Discuss any assumptions you make.

12.6 Use the models constructed in Exercises 11.4 and 11.5 (p. 222) to
examine silvicultural options for Flindersia pimenteliana. Do the optima
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differ for the different modelling strategies? Explain. Is the "optimum
silviculture" for this species biologically realistic, or is it an artifact of the
model?
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Chapter Thirteen

Future Directions

We conclude this book by examining what research is needed to enable
models for mixed forests to meet the needs of forest planners and managers
worldwide, and look toward to the future to suggest research avenues that
may provide for the needs of future generations. The lead time needed to
provide data and to develop techniques for modelling may be very long, and
we have a responsibility to future generations to accommodate their needs.
Existing models rely heavily on empirical data gathered in permanent plots
established by our forebears, and we should consider what procedures we
should put into place now to assist our successors.

Some of the most pressing challenges facing growth modellers are to
devise ways to:

1. extrapolate existing models and techniques to sites and species for
which no data are currently available;
2. devise models that can satisfy information required for different
management regimes, including

(a) different objectives (e.g. maintaining biodiversity),
(b) multiple harvests (e.g. timber, fuel, fodder, fruits, resins, etc.), and
(c) alternative silvicultural situations (e.g. agroforestry);

3. enhance the capability of models to provide reliable predictions under
different environmental scenarios (e.g. nitrogen deposition, climate change);
4. integrate forest growth models more completely with other models at
different scales (e.g. global models), with feedback in both directions;
5. develop new statistical procedures to model multi-variate systems more
appropriately;
6. present model output and other resource data in more innovative ways.
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Models for all Forests

It is ironic that the most sophisticated models exist only for the most simple
forest ecosystems (pure even-aged plantations), and that models for the
most complex of forests, the tropical moist forest, tend to be rather primitive
or lacking. The technical difficulties of implementing growth models for
rainforests can be overcome with sufficient time and resources, but practical
difficulties may be less tractable. Limited resources and facilities hamper
the efforts of researchers in the tropics to gather reliable data and build
robust models, and may restrict their work to the simplest approaches.
Complexity does not confer utility, and simple but reliable growth models
may play an important role in demonstrating the consequences of various
harvesting alternatives and the need for effective forest management.
Sophisticated growth models are not always necessary, and some existing
models, if re-calibrated, would be well suited to the task and could be
instrumental in helping to reform tropical forest management. However,
there is ample scope for improving models and extending existing methods
to accommodate changing needs and conditions.

The greatest obstacle is that the present generation of forest-
management-oriented growth models relies heavily on empirical data for
model fitting, and for most of the world's forests, suitable data is simply not
available, and forecasts for these forests can only be made by extrapolating
models developed elsewhere. Careful consideration of functional
relationships, and the use of eco-physiologically-based relationships where
possible, may do much to provide reasonable extrapolations, but the
reliability always remains in doubt. There are two immediate problems
hindering model construction for forests in which no growth data are
available:

1. estimating site productivity, and
2. estimating growth rates of tree species for which no data are available
elsewhere.

Reliable methods for estimating site productivity in uneven-aged mixed
forests rely on calibration to permanent plot data. Environmental variables
and indicator species enable some extrapolation of these estimators, but it
is unwise to extrapolate them long distances geographically without further
calibration, as the chosen indicator species may be replaced by other species
within relatively short distances, especially in moist tropical forests. There
are some suggestions that general characteristics of plant groups (not
necessarily taxonomic groups) known as plant functional attributes
(Gillison 1988) may be useful in characterizing sites, and these may offer
a way to extend the applicability of existing site classification methods. The
application of emerging techniques for direct geocentric appraisal of site
productivity (see Table 7.1, p. 135) is hampered by the shortage of
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environmental data, but new remote-sensing sensors may overcome these
problems and research should continue in this area.

Moist tropical forests may have many species, but few for which
empirical growth data exist, and general principles to extrapolate empirical
growth functions to other species are urgently required. Taxonomy is no
guide, and subjective appraisals of successional status may not provide a
useful insight into growth patterns (see p. 127). Plant functional attributes
may also be helpful in classifying species according to growth patterns, and
may thus provide a basis for extrapolating empirical growth relationships.
Further research on this aspect is warranted.

Different Management Needs

Most existing forest growth models focus on wood production, and are not
concerned with other products that could be harvested or with other aspects
of the forest environment. Notable exceptions include the JABOWA family
of models (e.g. Botkin 1993) and its offspring, which address species
succession, cycling of some nutrients and other aspects.

Increasing and different pressures on forests previously zoned for wood
production will require greater consideration of non-wood products in
management, silviculture and in modelling. The conservation aspects of all
forest areas are becoming increasingly important, and models should
provide details of stand structure and composition in a way that allows
inferences about conservation to be assessed. Some useful inferences
regarding diversity can be made from existing growth models (e.g. Hof and
Joyce 1993, Buongiorno et al. 1994), but greater insights could be obtained
with models specially adapted for this purpose. For instance, models could
provide more details of "habitat" trees (previously known as "defective
stags"; trees with hollows or other suitable nest-sites for birds and animals),
and of keystone or pivotal species that may be critical food sources,
pollinators or other vectors (e.g. Terborgh 1986). It is important to make
such studies, because present objectives may be well-intentioned but
infeasible (e.g. wildlife management constraints on mixed-conifer
silviculture in USA, Haight et al. 1992).

Increasing pressure on existing forests will stimulate greater utilization
and the harvesting of more products including fuel (branches), fodder
(leaves), fruits and seeds, resins and other exudates, etc. This intensive level
of harvesting is already visible in many tropical countries, but is likely to
become even more common. This will place new demands on models,
which may be required to resolve, for example,

(a) what will happen to nutrient dynamics with intense biomass
harvesting?
(b) how many seeds can be harvested before regeneration dynamics are
affected and the species composition of the forest is altered in an
undesired way?
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(c) what is the trade-off between foliage (or exudate) and wood
production
(d) how much fodder can be harvested before lost wood (fuel or timber)
production outweighs the value of the fodder?
(e) how are mortality trends affected by foliage harvesting?
(f) what impacts will high levels of harvesting have on fauna and non-
target flora in the forest?

Traditional empirical models are not intended to resolve these questions and
offer few insights into stand dynamics at this level. Some steps in this
direction have been made in models such as FORCYTE (Kimmins et al.
1990) and LINKAGES (Pastor and Post 1986), which focus on carbon and
nitrogen cycles, but further research is required. It is inevitable that models
functioning at this resolution must become more physiologically-based, but
unlike many of the current generation of process-based models, accurate
estimates must remain a priority. Landsberg (1986) issued a challenge to
forest growth modellers by defining a model as "a formal and precise
statement or set of statements embodying our current knowledge or
hypotheses about the working of a particular system and its responses to
stimuli", and arguing that

When such statements are made in mathematical terms it usually becomes clear that
our knowledge is incomplete and assumptions have to be made about how parts of the
system work. The consequences of these assumptions can be explored, either
algebraically or numerically, and it must be possible to test them, and the model as
a whole, experimentally. (By these criteria, conventional forestry models scarcely
qualify as models; they are not hypotheses but descriptions of observations.) . . ..

Some forest growth modellers may find this assertion (regarding
conventional forestry models) offensive, but the criticism is valid. Many
forest growth models are excessively empirical, and a stronger basis for the
functional relationships used in our models will help to (i) provide a better
understanding of the processes involved, (ii) identify deficiencies in current
knowledge and gaps in our empirical data, and should (iii) lead to models
that extrapolate more safely to new situations. This does not imply that all
model components must be physiologically-based, but rather that we should
include eco-physiological (and other biological) elements when and where
possible, but especially in the key components of models (Bossel 1991).

Increasing pressures will also mean that agroforestry and
unconventional silvicultural regimes will provide an increasing share of
traditional forest products and should also contribute towards conservation
objectives. Growth models exist for some agroforestry situations, but the
emerging need is for a model that performs adequately across much on the
forest-agroforestry-agriculture continuum (e.g. Vandermeer 1989).

Increasing sophistication in temperate forest modelling has tended
toward reductionist models of nutrient cycling and partitioning, but a better
understanding of the tropical forest may require a more holistic approach
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embracing interspecific relationships, including fauna-flora interactions
(e.g. Pannell, 1989, Prance 1992). Conventionally, a spatial model would
account for the placement of trees within a small plot, but a spatial model
for a tropical forest might consider the distance (i.e. kilometres) to the
nearest individual of the same species and the implications for pollination,
pests and disease. The term "ecosystem model" is sometimes used to model
a small plot in great detail, but such a model for the tropical forest may
require a much broader basis, including many fauna-flora interactions, intra-
specific distances, and spatial data on intact forest fragments (What are the
implications of size and distance of undisturbed refuges on pollinators,
predators, pests, etc.?). Nutrient cycles may assume a greater importance in
the moist tropics, where most of the nutrients may be held in the biomass
and where cycling (especially decay) may be much more rapid. This is
fertile ground for more research, and may provide important insights for
conservation planning as well as for timber production.

Environmental Changes

Most empirical models based on permanent plot data implicitly assume that
the future will be like the past, in terms of most environmental factors.
While this assumption may be reasonable for short-term forecasts, the
evidence against it increases steadily. There is strong evidence that levels
of carbon dioxide and other "greenhouse" gasses in the atmosphere are
increasing as a result of human activities, and it seems likely that this will
change climate patterns (e.g. Wigley 1993). There are also substantial areas
of forest affected by acid rain, nitrogen deposition, and other forms of
pollution. These and other changes in the environment are likely to have a
measurable effect on tree growth (e.g. Pretzsch 1992b). Nitrogen deposition
affects tree growth in many parts of Europe, and there are some suggestions

2that human factors (perhaps CO  or other pollutants) are influencing
survival and recruitment in tropical forests worldwide (Phillips and Gentry
1994).

Many of these effects are too large to be dismissed and should be
accommodated in growth models. Some empirical models can be modified
with scaling factors to account for these changes, but a more mechanistic

2approach seems necessary to account for interactions (e.g. CO ,
temperature, rainfall, etc.) in a reliable way. Some possible effects of carbon
dioxide and other pollutants have been investigated with the JABOWA
model (Botkin 1993), and although results have been expressed mainly in
terms of species dynamics rather than production of wood and other forest
products, it indicates one possible way to deal with environmental change.
The most reliable way to deal with these and other aspects of environmental
change is to incorporate more biological detail. Thus empirical and process
models are likely to develop along convergent paths, with management-
oriented models including more biological data, and process-based models
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employing more empirical data for model calibration to provide more
accurate predictions. The current generation of process-models seems over-
parameterized, creating problems for empirical estimation, and model
simplification or additional process-level data will be necessary to progress
with empirical calibration of process-based models. Conversely, many
empirical models are excessively empirical, and would benefit from
revisions which incorporate some of the knowledge obtained through
experiments with process-based models.

Predictions regarding the impacts of potential climate change on forest
production should be interpreted with caution, as it may be easier to predict
the vegetation response to a specific regime than it is to predict the climate
at a given time. Some studies have focused on plant responses to anticipated
climatic means, but it may be the less predictable extremes (e.g., infrequent
frosts, fires, floods and storms) that shape the vegetation. Climatic change
may act indirectly via subtle changes in nutrient cycling and availability
(e.g. Pastor and Post 1986), or via other feedback mechanisms (e.g. Myers
1991), and more sophisticated models are needed to examine these aspects.

Integration with other Models

Research on climate change relies heavily on general circulation models
(CGMs) which simulate global atmospheric dynamics (energy, momentum
and moisture) in three-dimensions with a resolution of a few hundred
kilometres. The land surface may influence GCM simulations through (i)
carbon uptake and release (photosynthesis and respiration), (ii) surface
roughness which affects energy exchange by friction, (iii) absorption and
reflection of energy, and (iv) evaporation (an energy transfer). With these
few details, climate modellers attempt to examine the implications of
various levels of carbon emissions, on the ecosystem and on mankind. In
practice, there are many more interactions and feedbacks in the biosphere
(e.g. Rambler et al. 1989), and a better understanding of the implications of
climate requires, in part, more feedback loops between models of the biota
and the CGMs. This is unlikely to be achieved in a single model, and the
most fertile approach may be a hierarchical system of semi-autonomous
models (e.g. O'Neill et al. 1986), within which forest growth models will
be an important part. The challenge is to design and build growth models
that can "handshake" with CGMs (probably via an intermediary such as a
global vegetation model) and with models of other scales, providing them
with suitable data and accepting, and responding in an appropriate way to
feedback from them.
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Model Construction and Use

Most models comprise several components which are fitted independently
to data. However, these components and data are related, forming a multi-
variate system, and this should be taken into account during model fitting.
Techniques are available to do this in some situations, but they need to be
further developed and made more accessible to forest growth modellers.
Special difficulties arise with recruitment models where it would be
desirable to estimate logistic (i.e. probability of recruitment) and linear
models (i.e. amount of recruitment, given that some occurs) simultaneously.

Model construction and use draws on many skills, but experts are not
always available to assist model builders and users. Many of the skills and
insights of experienced modellers could be incorporated into expert systems
and made more widely available, and this could be an effective way to
improve models and stimulate more effective use.

Presentation of Information

To have the greatest possible impact, information must be presented in a
suitable format. It should be timely, concise and suitably detailed (neither
too much nor too little detail). This requires considerable flexibility in the
information systems to which the growth model is linked. It also requires
imagination and innovation on the part of growth modellers and information
technologists.

Most decision makers in forestry and other disciplines are inundated
with paper, and much information is destined to be discarded unless it is
presented in the most suitable way. Lobbyists and advertisers are aware of
this, and take great care in presenting material, but many modellers and
resource managers overlook this fact.

The technology exists to link growth models with other resource
information (e.g. geographic information systems, inventory databases)
interactively and to display outputs on a virtual reality (VR) interface.
Model users could wear a VR headset, and take a magic carpet ride over
their forest, stopping to study sites of interest, watching alternative
silvicultural experiments unfold before their eyes, turning back the clock to
try different alternatives, and observing several crop rotations on different
sites to gauge the long-term effects. A VR interface could include non-
visual outputs, allowing users to hear the birds, to smell the flowers, and
feel the microclimate in the forest. Thus users could devise a management
regime through their own experience, in a relatively short time. This may
sound like science fiction, but the technology exists, and we could devise
and implement models in this way if we thought it was appropriate (subject
to sufficient financial and other resources).
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Fancy technology will not improve an inadequate model, but it may
make an adequate model more accessible to others. In particular, effective
presentations may help foresters to give politicians and planners a better
understanding of a situation, of the options for intervening, and of the
implications of any action, and in this way may help to convince them to act
on this information. The point of this example is to promote innovative
ways to report inventory results and yield forecasts. Modellers should work
with information technologists to devise better presentations, so that end-
users can visualize information more easily (see e.g. Tufte 1983, 1990).

Synthesis

The challenge is to develop and enhance models to meet diverse needs, and
to implement them in a flexible way so they can be used within an
integrated system to examine the "big picture". The need to provide for
"safe" extrapolations may be satisfied, in part, by greater use of process-
based (and other biologically-based) relationships within the model.
However, mechanistic models are not a panacea, and we should not expect
them to magically solve the difficulty of accurate forecasts. A recent
meeting of the GCTE (Global Change and Terrestrial Ecology project of the
International Geosphere-Biosphere Programme) Wheat Network compared
predictions from ten different mechanistic models of wheat growth, and
found that their predictions varied three-fold (2.5–8.0 t ha ), even though!1

dates of emergence, anthesis and maturity were prescribed (Steffen 1994).
And this despite a short-rotation species amenable to experimentation !

Levins (1966) cautioned that biological models could not be general,
realistic and accurate, but could only attain two of these goals. Hybrid
models based on the best parts of mechanistic models and re-calibrated to
empirical data (e.g. Sievänen and Burk 1993) may offer one way to
approach these three goals. However, tree growth models will never be
"perfect", as they are abstractions of open systems which are influenced by
factors that cannot be accommodated in our models.

It is unlikely that there will be a single super-model satisfying all these
diverse demands simultaneously, even though it is possible to provide
expert systems offering the user problem-specific access to many different
models within a single software system (Bossel 1991). Dynamic processes
are shaped by the characteristic time-scales of their components, and may
range from minutes (stomatal processes), to years (tree growth and
senescence), to centuries (vegetation response to climate change). Diverse
approaches will always be required, but the ability to integrate (or at least
"handshake" in some way) the alternatives within a larger framework is
desirable. In attempting to accommodate these many demands, we should
not make models too complex. The need is for compact models which
provide a valid structural representation with a few state variables, and
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which provide reasonable predictions over a wide range of conditions
(Bossel 1991).

One of the challenges for modellers is to strengthen the biological and
statistical basis of models and make them more widely applicable. Another
is link them more efficiently with other information systems and provide
information in more effective ways.

Clearly these goals will not be achieved overnight. It is not necessary or
even desirable to try to do everything all at once. On the contrary, it is better
to do a few things well than to do a lot inadequately. But we should remain
aware of the possibilities and benefits of cooperation and integration with
other modelling efforts. Start small, but think big and plan for the future.
Begin with what can be implemented effectively now, but set up the
framework for what should come later, working to an implementation plan,
and consolidating each stage before progressing to the next.

An information broker has an important and influential role. A growth
modeller deals with the future and thus has additional responsibilities, and
should take special care to ensure that model forecasts provide the best
possible information, presented in the best possible way.
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Glossary

Symbols

These symbols are based on the IUFRO standard (van Soest et al. 1965).
Note that capital letters refer to totals per unit area, while lower case
symbols generally refer to individual tree values. Greek letters are used to
denote unknown population values and estimated coefficients in equations.

", $, ( Parameters to be estimated.

leafa Leaf area of a tree (m ).2

b Biomass of an individual tree.

ac Horizontal projection of crown area (m ).2

cf cf wo C Crown competition factor, C =100E(Bc /4)/10 000, the2

potential crown area per hectare, expressed as a percentage.

cf Canopy closure occurs at about C =100, and high values indicate
more competition.

lc Live crown length, the distance from the top of the tree to the
lowest live branch.

rc Crown ratio, the ratio of full live crown length to total tree height.

wc Crown width (m).

woc Crown width of an open-grown tree with the same diameter as the

wo 0 1tree under consideration. Usually estimated as c =$ +$ d . "

)d Change in d (or any other variable) in a specified period. The
notations Md and dd/dt are also used where the function can be
integrated to give a yield equation.

max)d Expected maximum diameter increment (cm y ) for a given!1

species–stand–site combination (i.e. the maximum on the )d vs
d curve).

D Sum of diameters in a stand, D=Ed.
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d Diameter at breast height (1.3 m) or above buttress, over bark, of
an individual tree (cm).

&d Arithmetic mean diameter, &d=Ed/N

cd Binary variable which takes the value 1 if the tree's diameter d
exceeds the specified girth limit for harvesting (cutting), and 0
otherwise.

g g d Quadratic mean diameter, d = %(Ed /N) 2

maxd Maximum diameter that a given species is expected to attain.

0.2d Diameter at one fifth of tree height.
e Natural number, e . 2.71828
Q Error in estimate, Q = Y ! ì.

a eE Environmental factors, including aspect (E ), elevation (E ) and

sslope (E ).
f Form factor, f=v/gh
G Stand basal area G=Eg (m ha ).2 !1

g Basal area of an individual tree g=Bd²/40 000 (m ).2

>dG Basal area of trees larger than the subject tree (m ha ).2 !1

h Height of an individual tree (m).
&h Mean height (m) of trees within a defined area.

bh Breast height, 1.3 m or 4.5 ft above ground level.

maxh Maximum stand height (m), estimated from the biggest trees in
a stand, or as the asymptote of a height–diameter curve.

Th Top height, the average height of a defined number of thickest
trees per unit area (m).

k The constant B/40 000 used to convert diameter to basal area,
g=kd .2

l Index of competition based on the estimated light available to an
individual tree.

ln Natural logarithm to base e.

10log Logarithm to base 10.
M A transition matrix. Bold symbols refer to matrices and vectors.
N Number of trees within a defined area (ha ).!1

rN Number of recruits at a specified threshold size, r, (ha ).!1

n Number of items in a sample.
p Probability that an individual tree will grow to the next size class,

die, be harvested, or experience some other event.
s An estimate of the standard error F.
S An estimate of site productivity.

)dS An index of site productivity indicated by the average growth rate
(adjusted for competition) of individual trees of several selected
species, called growth index (Vanclay 1989c).

hS An index of site productivity based on the mean height of trees in
the stand (m).
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h,dS An index of site productivity given by the expected tree height
(m) at some index diameter, sometimes called site form (Vanclay
and Henry 1988).

h,tS Site index, an index of site productivity given by the expected top
(or predominant) height (m) at some index age.

soilS Binary variable which takes the value 1 when the soil type soil
occurs on the plot, and 0 otherwise.

t Time or age (years).

lt Time since last logging (years).

st Time since last silvicultural treatment (years).
V Volume over bark of all the trees within a defined area (m ha ).3 !1

v Volume over bark of a single tree (m ).3

uv Volume under bark of a single tree (m ).3

X Explanatory variable (sometimes called an independent variable).
Y Response variable (sometimes called a dependent variable).
ì Estimated value of a response variable, Y=ì+e.

sppZ Binary variable which takes the value 1 if the species spp occurs
on the plot, and 0 otherwise.

Common and Botanical Species Names

alder, blush Sloanea australis
alder, buff Apodytes brachystylis
ash Fraxinus spp.
ash, alpine Eucalyptus delegatensis
ash, mountain Eucalyptus regnans
ash, red Alphitonia whitei
ash, silver Flindersia bourjotiana
aspen Populus tremuloides
aspen, lemon Acronychia acidula
bagras Eucalyptus deglupta
basswood, ivory Polyscias australiana
basswood, white Polyscias murrayi
beech Fagus spp.
beech, southern Nothofagus spp.
birch Betula spp.
bleedingheart, native Omalanthus populifolius
bollywood Litsea leefeana
boxwood, Macintyre's Xanthophyllum octandrum
butternut, rose Blepharocarya involucrigera
cedar, eastern red Juniperus virginiana
cherry Prunus spp.
cottonwood Populus deltoides
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cudgerie, brown Canarium baileyanum
dipterocarp Dipterocarpaceae
elm Ulmus spp.
fig Ficus spp.
fir, Douglas Pseudotsuga menziesii
fir, white Abies concolor
gardenia, brown Randia fitzalanii
gum, spotted Eucalyptus maculata
gum, varnished Eucalyptus vernicosa
heather Calluna spp.
jarrah Eucalyptus marginata
kamarere Eucalyptus deglupta
larch, western Larix occidentalis
laurel, cinnamon Cryptocarya cinnamomifolia
laurel, ivory Cryptocarya angulata
laurel, rusty Cryptocarya mackinnoniana
mahogany, American Swietenia spp.
maple Acer spp.
maple, Queensland Flindersia brayleyana
maple, red Acer rubrum
maple silkwood Flindersia pimenteliana
maple, sugar Acer saccharum
meranti Shorea spp.
milkwood, hard Alstonia muellerana
oak, blush silky Bleasdalea  b leasdalei ,  Opis th io lep is
heterophylla
oak, brown silky Darlingia darlingiana
oak, brown tulip Argyrodendron trifoliolatum
oak, northern silky Cardwellia sublimis
pine, cypress Callitris spp.
pine, hoop Araucaria cunninghamii
pine, jack Pinus banksiana
pine, klinkii Araucaria huntsteinii
pine, loblolly Pinus taeda
pine, lodgepole Pinus contorta
pine, maritime Pinus pinaster
pine, Mexican Pinus patula
pine, ponderosa Pinus ponderosa
pine, radiata Pinus radiata
pine, red Pinus resinosa
pine, Scots Pinus sylvestris
pine, shortleaf Pinus echinata
pine, slash Pinus elliottii
pine, white Pinus strobus
quandong, tropical Elaeocarpus largiflorens
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rapanea Rapanea achradifolia
redwood Sequoia sempervirens
rubber tree Hevea braziliensis
sal Shorea robusta
salwood, brown Acacia aulacocarpa, A. mangium
salmon bean Archidendron vaillantii
satinash, Kuranda Syzygium kuranda
satinash, white Eungella Syzygium wesa
spruce, white Picea glauca
sterculia, tulip Sterculia laurifolia
stringybark, messmate Eucalyptus obliqua
tamarind, brown Castanospora alphandii
tamarind, pink Toechima erythrocarpum
vitex Vitex acuminata
walnut, blush Beilschmiedia obtusifolia
walnut, yellow Beilschmiedia bancroftii
wattle Acacia spp.

Terminology

These definitions are based largely on the IUFRO-SAF standard (Ford-
Robertson 1977), except where otherwise indicated.

Accretion: survivor growth plus the increment on trees that died between
the first and second measures. Also called gross growth of initial
volume.

Accurate: how close an estimate is to the true value, thus implying
precision and freedom from bias.

Allometric: a relationship which maintains constant proportions so that
Y = "X  or ln Y = ln " + $ ln X (e.g. the volume of a cube is the cube of $

its side, irrespective of its size).
Anamorphic curves: a series curves or equations scaled so that each is a

simple constant times the base curve. For example, the high curve might
be 1.2 times the average, and the low curve might 0.8 times the average
(cf. polymorphic).

Basal area of a tree (g): the cross-sectional area of a tree stem (including
the bark) at breast height. The basal area of a stand (G) is the sum of the
cross-sectional areas at breast height of all trees on a defined area.

Bias: the difference between the expectation of a sample estimator and the
true population value, systematically distorting results. May arise in
sampling, measurement or estimation due to poor calibration of an
instrument (e.g. a stretched tape), or by favouring (perhaps
unintentionally) one outcome over others.

Binary variable: a variable that takes the value zero or one.
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Breast height: standardized point for measuring trees, usually 1.3 m or
4.5 ft above ground level, depending on the country.

Cohort: a group of individuals which are similar in some respect. For
modelling, a cohort of trees would normally be the same species, and
have similar size.

Continuous forest inventory (CFI): a method of dynamic sampling using
permanent plots which are often systematically located and invisibly
marked so that they are treated the same as the rest of the forest.

Crown competition factor: an index of competition based on the potential
open-grown crown area of a tree, expressed as a percentage,

cf wo cf C = 100E(Bc /4)/10000. Canopy closure occurs at about C = 100,2

and high values indicate more competition (Krajicek et al. 1961).
Crown ratio: the ratio of full live crown length to total tree height.
Cutting cycle: the planned, recurring lapse of time between successive

harvests in a forest stand.
Dbh (d): diameter at breast height (1.3 m or 4.5 ft, depending on country)

over bark. Trees with buttresses are usually above the buttress instead
of a breast height. Dbh and other diameters may be measured with a
calliper or a diameter tape.

Deliquescent: tree growth habit usually found in "broad-leaved" trees,
where the stem is not continuous from the ground to the tip of the tree,
but merges into the crown either gradually or abruptly. Cf. excurrent =
coniferous.

Diameter tape: A tape measure graduated in B units (e.g. cm) so that the
diameter may be read from the tape when it is placed around the
circumference of the stem.

Dominant: one of 4 crown classes (dominant, co-dominant, intermediate,
suppressed) based on relative status of forest trees. Dominant trees have
their crowns in the upper part of the canopy and are largely free-
growing.

Dynamic inventory: inventory on successive occasions to detect change,
usually by sampling with permanent plots.

Even-aged: forest stand composed of trees of approximately the same age
(i.e. generally the maximum range in age should be less than 10 years).

Expansion factor: the number of trees (per hectare or per plot) represented
by a single record during simulation by a tree list model.

Experiment: A planned inquiry to obtain new information or to confirm or
refute an hypothesis or the outcome of a previous experiment, using a
formal procedure (the experiment design) to control factors which may
influence the outcome.

Explanatory variable: a variable which is used as a basis to predict other
details which may be more difficult to measure. E.g. diameter may be
an explanatory variable in a volume equation to predict tree volume.
Also known as an independent or regressor variable.
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Extrapolation: prediction beyond the range of the calibration data (cf.
interpolation).

Fecundity: the number of individuals produced for each mature tree in a
matrix model (cf. recruitment).

Forest: a plant community predominantly of trees and other woody
vegetation, growing more or less closely together.

Girth: the measurement around the stem of a tree or log. When you
measure a tree with a diameter tape, you measure the girth to get an
estimate of the diameter.

Growth: the change in size of an individual or stand of trees (cf. yield).
Harvesting: refers to both logging (felling and extraction of timber) and

thinning (felling in an immature crop primarily to stimulate growth of
the residual trees). I refer to thinning in immature pure, even-aged
stands, and to logging in uneven-aged mixed stands.

Heterogeneous: implies that members of a sample or population differ to
a greater or lesser extent, in respect of some or all parameters of interest
(cf. homogeneous).

Heteroscedastic: heterogeneous variance.
Homogeneous: implies that all the members of a sample or population are

similar in respect of some or all of their parameters. E.g. homogenized
milk is treated so that it retains the same composition throughout (i.e.
the cream doesn't float to the top). Cf. heterogeneous.

Ingrowth: individuals entering a size class in a size class model (cf.
upgrowth, recruitment).

Interpolation: prediction within the range of calibration data (cf.
extrapolation).

Inventory: measuring and recording the number, size, condition, etc. of one
or more species in a forest, generally above a specified size limit, either
by total enumeration, or by sampling using plots.

Light-demanding: tree species which are intolerant of shade and require
sunlight to grow satisfactorily.

Logging: felling and extraction of timber from a forest.
Markov assumption: that the transition probabilities in a Markov chain

depend only on the state of the system and not on any external factors
or past events.

Markov chain: a representation of a system as a finite number of discrete
states.

Mixed forest: forest comprising two or more species, generally with the
major species comprising <80% of a stand.

Model: a simplified representation of some aspect of reality (not to be
confused with the normative meaning of the word, something worthy
of being imitated). Specifically in a statistical context, a model is a
formalized expression of a theory. Generally, a growth model may
include a series of mathematical equations, the numerical values
embedded in those equations, the logic necessary to link these equations



282 Modelling Forest Growth and Yield

in a meaningful way, and the computer code necessary to implement the
model on a computer.

Movement ratio: the proportion of individuals in a class advancing to the
next size class, calculated as expected increment divided by class width
of a size class model (cf. upgrowth).

Natural basal area: the maximum or limiting basal area which an
undisturbed stand will tend towards. This limit may be site-specific, so
it serves as a measure of site productivity.

Natural forest: forest established by natural regeneration (cf. plantation).
In this book, refers to forests managed with selection harvesting systems
which maintain an uneven-aged structure.

Parameter: a quantitative characteristic of an individual or population. E.g.
the mean, variance, and constants describing an equation fitted to data.

Pioneer: a plant species capable of invading bare sites and persisting there
until displaced by succession. Thus early successional stands may be
dominated by these species. Typically, these species have seeds that are
light and easily dispersed by wind or animals, and individuals are often
fast-growing and short-lived.

Plantation: a forest established artificially by sowing or planting (cf.
natural forest). This book assumes that plantations are even-aged and
single species, even though this is not always true in practice.

Point sample: a form of sampling with probability proportional to size
(PPS) using a horizontal variable radius plot defined by a central point
and an angle gauge.

Polymorphic curves: series of curves of different shapes (cf. anamorphic).
Typically used for modelling height growth, when these curves increase
monotonically and do not cross.

Precise: the degree to which estimates are clustered about their own
average, or the repeatability of a measurement or estimate.

Predominant height: the average total height of a specified number of the
tallest trees per unit area. Often determined as the mean of the tallest
tree on each of several non-overlapping sampling units. Cf. top height.

Pure: stand composed principally of one species (i.e. over 80% by stem
number, basal area or volume).

Qualitative variable: a variable that may take n+1 possible values (e.g. 1,
2, 3; A, B, C; or dominant, intermediate, suppressed; etc.), and which
is represented in regression analyses by a set of n binary variables z,

i with z = 1 when the qualitative variable takes the value i, and zero
otherwise.

Rainforest: evergreen forest at least 30 m high, rich in epiphytes and
woody lianas, occurring in areas where temperature, humidity and
rainfall are high throughout the year (e.g. over 18°C and over 100 mm
rain each month, see e.g. Whitmore 1990).
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Recruitment: trees that have entered a particular size category, usually the
smallest in the model, during a specified period. Also known as
ingrowth, especially in size class models.

Regeneration (natural): renewal of a forest stand by self-sown seed or
vegetative means including coppice, suckers and lignotubers. Artificial
regeneration included sowing and planting.

Response variable: a variable predicted from one or more explanatory
variables. Also known as a dependent variable.

Sample: a subset of a population used to estimate characteristics of that
population.

Serial correlation: correlation between successive observations on the
same sample unit. E.g. if a tree grows faster than average during one
period, it is likely to continue to be faster during subsequent periods, so
errors from the expected growth trends (e=y-í) will generally be
positive.

Shade tolerant: tree species able to survive and grow under shade.
Silviculture: the science and art of cultivating forest crops (cf. agriculture).

More specifically, the theory and practice of controlling the
establishment, composition, structure and growth of forests.

Site class: an objective classification of site productivity into several classes
(cf. site quality).

Site index: the top or predominant height of an even-aged forest stand at a
specified index age, often estimated for stands of other ages using a
height–age curve.

Site productivity: the potential of a specified species and site to produce
wood. Note that it is the inherent capability of the site, which may not
be achieved by all silvicultural regimes. Site index, site quality and site
class are approximate measures of the true site productivity.

Site quality: a subjective appraisal of site productivity, often by a visual
assessment into relative (i.e. good-poor) classes (cf. site class).

Stand: a group of trees having sufficient uniformity in composition and
spatial arrangement to constitute a silvicultural entity or sampling unit.

Stand table: a table showing the number of trees by species and diameter
classes, generally per unit area of a stand.

Static inventory: inventory on a single occasion to record the present state
of the forest.

Stationary assumption: assumption that the transition probabilities in a
Markov chain do not change over time.

Stratum: a subdivision of the population which is more homogeneous with
respect to the variable of interest than the population as a whole. Plural
is strata.

Survivor growth: growth on trees that are alive (and above a specified
measurement limit) at both the first and second measures on a
permanent plot. Does not include recruitment. Differs from accretion in
that it does not include increment on trees that died between the two
measures.
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Thinning: the felling of trees in an immature stand, primarily to stimulate
growth of the residual trees. May include both non-commercial (the
thinned trees may be too small or defective to have any commercial
value) and commercial thinning.

Top height: the average total height of a specified number of the thickest
trees per unit area. Cf. predominant height.

Total height (h): the vertical distance from the ground to the highest point
on the tree.

Uneven-aged: stand composed of intermingling trees that differ markedly
in age.

Upgrowth: individuals moving from one size class to another in a size class
model (cf. movement ratio, ingrowth).

Usher assumption: defining the states of a matrix model or Markov chain
so that individuals can progress at most, one size class during a single
time-step.

Variable: a characteristic that may vary from one individual in a population
to another, and which relates to some property of the individual. E.g.
height and diameter of trees.

Variance: a measure of the variability of a sample or population.
Voucher specimen: a plant sample taken to assist identification, for

lodgement in an herbarium. Specimens should, if possible, include
several leaves joined to a branchlet, any fertile material (buds, flowers
and fruits), and any other distinctive parts (e.g. bark). These should be
pressed, dried and mounted on paper, or preserved in alcohol. All parts
should be clearly labelled with tree and plot numbers, location, date and
collector.

Yield: the final size of an individual or group of individuals at the end of a
given period (cf. growth).

Yield class: a measure of site productivity based on the maximum mean
annual volume increment.
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Solutions to Selected Exercises

Chapter 2

2.1. It is unlikely that whole stand models will prove useful in forests
where there are many tree species and sizes, unless users are happy to have
the species lumped into a few groups. The main limitation is that the stand
has to be adequately described with a few parameters, both for input to the
model, and as model output (estimates of these parameters at some future
date). If suitable however, the data requirements are not too demanding, and
models can be built from remeasured plot data in which the individual trees
are not identified. Of course, it is preferable that individual trees are
identified, are this will help to reduce errors.

2.2. The formulae for volume growth are:

2.3. Your graphs for total height (h) and stand basal area (G) should look
like the ones in Fig. S.1. You should also have drawn the increment curves.
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    Fig. S.1.     Fig. S.2.

2.4. If you concluded that the chance of the spinner collecting his payout
was (0.25) , then you're wrong and you presumably didn't construct the3

Markov chain. Your chain should look like Fig. S.2, and your matrix and
steady state should be:

Notice that the columns in both matrices sum to one. There are two
absorbing states, the spinner collecting (state 4) or defaulting (5) on his
payout. The spinner has a 0.125 chance (column 1, row 4) of collecting
when he begins, and once he has thrown some pairs of heads, his odds
improve.

2.5. Your transition matrix should look like this:

Notice that the columns sum to one, and that there are no absorbing states
(i.e. no entry is exactly 1.0). The plantation area in 10 years is expected to
be 6274 ha, estimated by doing:
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You can find the eventual areas by repeatedly squaring the matrix to find
the steady state. You should get 0, 21, 34 and 45% in forest, plantation,
agriculture and other land uses respectively. This equilibrium emerges
between 2  and 2  cycles, so it may take 640 years to appear.7 8

2.6. The vector of probabilities is [0.2177, 0.2539, 0.3822, 0.1462].

Chapter 3

3.1. Six alternatives are summarized in Table S.1.
(a) The simplest alternative is to assume that each tree continues to grow for
the next 25 years at the same rate observed during the last 5. This is likely
to be an overestimate, as we might anticipate increasing competition.
(b) The simplest form of stand table projection uses a single movement ratio
estimated as the mean increment divided by the class width (0.423). It too
is likely to overestimate, and it proliferates fractions of trees. Remember to

5initialize your stand table with the d  data. Notice that you lose some
precision when you form the stand table. Assuming that all trees are at the

5 5 class midpoint gives d = 28.8 and G = 1.58, while the true values are 29.0
and 1.56 respectively.
(c) A better result is obtained by computing a movement ratio for each class.
I used the following ratios [0.387, 0.500, 0.457, 0.380, 0.326, 0.266, 0.206,
0.146]. The first 4 values are based on the mean class increment, the others
from extrapolating the linear trend [0.500, 0.457, 0.380] and estimating the

iratios as 0.655!0.006d . A more conservative alternative is to assume "no
data, no growth" (cN). Note that you should use increment of the coming
period, not of the past period, so there are data only for four classes (and 10
observations in class 1). These predictions can be made with stand table
projection or a matrix model.
(d) Some authors recommend the use of actual movements rather than ratios
estimated from increments. This gives [0.500, 0.400, 0.333, 0.333], and the
0.333 looks like an asymptote, so I used it for the other classes too (but give
results for the "no data, no movement" assumption in dN).
(e) If you plot the increments against tree size, you will see a pattern (Fig.
S.3). This is no surprise, as I synthesized the data using )d = d/3 ! d /180, 2

and added some random noise. If you fit this equation to the data, you get
)d = 0.336d ! 0.00568d , close to the original function. We can use this to 2
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    Fig. S.3.

M ethod of
projection

Stems in size class (midpoint in cm dbh) 6d
(cm)

G
(m )2

15 25 35 45 55 65 75 85

Initial stand table in
year 5

5  8  4   3   1  29.0 1.56

a) Same growth
rate

6   5   5  5 50.1 4.36

b) Single
movement ratio

0.3 1.7 3.8  5.1  4.6 3.1 1.7 0.6 49.9 4.51

c) M ovement ratio
for each class

0.4 1.2 3.3  5.9  5.6 3.2 1.1 0.2 49.4 4.34

cN) No data, no
movement

0.4 1.2 3.3  5.9 10.2 46.5 3.74

d) Actual
movement from
class

0.2 1.8 5.2  5.8  4.3 2.4 1.0 0.4 47.1 3.99

dN) No data, no
movement

0.2 1.8 5.2  5.8  8.1 44.5 3.43

e) Increments from
regression

11  10  48.8 3.98

f) Regression with
serial correlation

3   9   9  48.9 3.94

Table S.1. Stand table projection with different assumptions.

predict increments for each
individual tree. Notice that the size
distribution tends to "bunch up",
because the trees grow more slowly
as they get bigger.
(f) Trees do not grow at the rate
predicted in (e), but show some
variation. This prediction assumes
that the relative difference between
observed and expected increments
during the first period is maintained
during the next 25 years.

These are all estimates of the future stand structure, and we do not know
which is closest to the truth, which remains unknown. Estimate (f) may be
one of the better estimates, but it is likely to overestimate since it is based
on growth at a relatively low stand basal area and extrapolated to a stand
with twice the density. The trends observed in Table S.1 may be specific to
this particular case and to the pattern of diameter increments assumed.
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    Fig. S.4.

    Fig. S.5.

However, the tendency for size class models to propagate fractions is
general (cf. the single-tree approaches a, e and f).

3.2. If you attempted this exercise,
you will have had to decide what to
do with negative numbers in your
stand table. I have re-set any negative
numbers in the state vector at every
time step, but have allowed "negative
recruitment". If the number in the
smallest class is non-zero, and the
basal area is high, a single projection
will reduce the number more than
can be attributed to mortality and
upgrowth, because a negative amount
of recruitment is being added to it. This is difficult to avoid unless the
matrix is split into its two components (Eqn 3.1) and that detracts from the
mathematical elegance of the matrix method. So I have allowed negative
recruitment, and regard it a limitation of the model. Figure S.4 illustrates
the undisturbed development of a stand. Three lines trace the total number

gof trees (n), the stand basal area (G) and the mean diameter (d ). All three
curves increase to an asymptote, crash rather abruptly, and begin to increase
again. This example was made using 40 trees in each size class, but similar
patterns appear from many starting states.

There is not much evidence of
convergence to a steady state. The
authors suggest that undisturbed
development tends toward an all-
aged stand with an equal number of
trees in each size class. Figure S.5
illustrates how stand basal area
develops, starting from a state with
40 trees in each size class. The
trajectory starts in the centre, spirals
outwards, and soon converges into a
closed loop which would appear as a
wave in Fig. S.4. The same sort of loop appears for many starting
conditions, both inside and outside of the loop.

The model is convenient, but rather simplistic. It may provide
reasonable short-term predictions for stand conditions similar to those in the
database on which it was calibrated, but extrapolations in space and time
need to be interpreted with caution. It is rarely possible to assert that any
model is "good", but we can say that a model is adequate for certain
purposes.
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3.3. The top row of the matrix (fecundity) is positive, so recruitment will
be positively correlated with stand density (i.e. open stands will have little
regeneration, while dense stands will have lots of regeneration); not a very
realistic proposition. If you make projections from any starting condition,
you will find a steady decline in tree numbers and stand basal area; the
steady state is a zero vector and the eigenvalue is 8 = 0.97. You cannot
simulate a sustainable harvest with this model, as for all stands, recruitment
is insufficient to replace mortality.

Chapter 4

4.4. Your answer should contain the following concepts:

Definitions
Each tree_record has a species, diameter, expansion_factor.
The tree_list may contain many tree_records.
A lookup_table indicates the species_group used in each function for

each species.
Another lookup_table gives the equation coefficients for each

species_group.

Functional Code
For each tree in the stand:

Look up the species_group for the diameter increment equation.
Increment the diameter by adding a prediction from the diameter

increment equation for this species_group.
Look up the species_group for the mortality function.
Reduce the expansion factor by multiplying by the survival rate

predicted by the mortality function for this species_group.
Next tree.
Add some tree_records for recruitment, setting diameter to the

threshold, and predicting species and expansion factors.
If harvesting is simulated this year:

Reduce expansion factors of big trees to account for harvesting.
Reduce expansion factors of small trees to account for damage.

End harvesting.
Return to main program.

This is a very simple outline, but contains the important concepts of a tree
list model. It represents a model with a one-year time step, invoked from
another program which handles all input and output. This model would be
invoked repeatedly to get multi-year predictions. Harvesting could be
handled in a separate module. The model could be improved by allowing
record splitting to account for variability in diameter increment. The
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    Fig. S.6.

definition of a tree_record could also be expanded to include other tree
characteristics (e.g. height, merchantability, etc.).

Chapter 5

5.4. You cannot solve this question by simulation studies (e.g. with
Equation 2.1, p. 19), because your results will depend entirely on the
assumptions you make, and you cannot predict what variation will occur in
the real data. One plot should remain at 17 m ha , and another could be2 !1

near the optimum (11 m ha ). There is little point thinning below about 32 !1

m ha , where trees are effectively open-grown. If your main interest was2 !1

to fit an equation like 2.1, one reasonable solution might be plots at 5, 7, 11,
15 and 17 m ha  (the equation is constrained to pass through the origin,2 !1

and is linear for small values of G, so there is not a big need to sample
there). Remember that treatment should be consistent across plots (i.e. do
not thin some from above and others from below, but thin all the same
way), or results may be confounded.

Chapter 6

6.1. Current annual increment:

Mean annual increment:

It is quite difficult to determine the
intersection of the CAI and MAI
curves analytically, but if you plot
them (Fig. S.6) you can see that they intersect near t = 42.

Periodic annual increment (10-year period):

6.2. You should find R² = 0.95 with the linear model Y = !22 + 11 X.
The R² does not tell you everything about a model !

1 2 36.3. Using ten random values (0<X<1) for each of X , X  and X , and 20
trials, I found R² ranged from 0.5 to 0.995 with a median of 0.9 (i.e. half my
R²s were $0.9). This should be a good warning that R² is not a good
indicator of the quality of a model !
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6.4. The data were generated artificially, but are based loosely on

>dequations by Vanclay (1991b). The potential explanatory variables d, G
and G were generated on a grid with random perturbations. Expected
diameter increments were generated from the equation

(S.1)

and the response variable )d was generated by adding a random element so
that the )ds varied by about 40% above and below the expected values. It
is clear from Equation S.1 that the increments were calculated only from

>ddiameter d and basal area in larger trees G , so the stand basal area G
should not be required in the fitted model. I fitted the model

and obtained a good fit with the following estimates:

0 1 2 3Parameter $ $ $ $

Estimate
Standard error

!2.07
0.82

!0.117
0.011

1.11
0.30

!0.0390
0.0073

These estimates are significant (P#0.01) and lie within one standard error
of the original values used in Equation S.1.

Your model should be rather similar. There is clearly some correlation
between basal area G and increment )d, but it contributes little to the model
after the inclusion of the terms above. Try it, and you will find it is not
significant, and has the wrong sign (+ve, suggesting that tree growth should
increase as competition increases !). You can see from Fig. 6.6 that the
suggested model fits the data well, and can be extrapolated safely.

6.5. The correlation coefficients (r) are

Variable >dd G G

>dG
G
)d

!0.70
!0.21
+0.10

+0.75
!0.66 !0.72

It is noteworthy that these simple correlation coefficients do not reflect the
utility for modelling, as we have already seen in Exercise 6.2. The
correlation for d is small because it is a curvilinear relationship (see Fig.
6.6), rather than a simple straight line. This problem may be avoided with
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h,dPlot )G rN S

2
6

0.12
0.17

!0.06
!0.03

14
14

1
4

0.21
0.16

+0.01
+0.01

17
17

3
5

0.24
0.25

+0.04
+0.05

19
19

Table S.2.

    Fig. S.7.

partial correlations, but it's easier and better to plot the data, model and
residuals.

Chapter 7

7.2. If you simply calculated
mean basal area increments for each
plot (Table S.2), you may have had
difficulty assigning plots to three
productivity classes. You also failed
to notice the big range in initial
basal area, or didn't think about the
effect that this might have on
increments. Have a look at Fig. 2.2
again.

I fitted an equation to the individual remeasurements:

and computed the mean residual for
each plot (rN=3{)G!)�}). These
give a better indication of site
productivity, and adjust for stand
basal area.

The data were synthesised from
Equation 2.1, and the values of site
form used to generate the data were
14, 17 and 19. The data and original
equations are illustrated in Fig. S.7.
The data do not fit these lines exactly
because some random variation was
simulated. The equation given above generates a line similar to that for

h,d S =17, but is a little more curved.

7.3. Visual inspection quickly reveals that species B and C are correlated
with site productivity. Discard species A and G because they are very rare
and common respectively. Note that species D and E contain the same
information (D=1!E), so ignore one of these. Four species are left, and it
is easy to see that species B occurs only on the poor sites, and C only on
good sites. Since the site form of these six plots is known (see above), the
following prediction equation can be formulated

Visual inspection is easy here because there are few species and few
plots. If there were more plots and species, you could calculate, for each
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species, the mean site form of plots where the species occurs, and the mean
site form of plots where it is absent, and look for species that maximized the
difference between these two means.

If you tried to use regression analysis to find the solution, you may have
had problems with multicollinearity (e.g. A+F=G). You can reduce these
problems by some preliminary screening (e.g. remove rare and common
species).

Chapter 8

8.1. The parameter estimates are:

0 1Model $ $ R² Furnival
index

PRESS

)d

1d
)g

0.508
0.508
0.829

0.0258
1.0258
0.0386

0.8742
0.9999
0.9865

0.0342
0.0342
0.0347

0.0153
0.0153
0.0155

1Notice that although the )d and d  models are effectively the same

1 0 1 0 1(d = d+)d = d+($ +$ d) = $ +(1+$ )d ), their R²s are very different. The
equivalent calculation for basal area increment gives conflicting results (e.g.

0 1 0 )g = 2kd)d = 2kd($ +$ d), with k = 7.853×10 , suggests $ = 0.798 and!5

1 $ = 0.0406, which differ from the regression estimates), because the models

)g )d 1imply different error structures (e = 2kde ). The )d and d  models are
equally good, and the )g model is slightly inferior. You can see this from
the Furnival index or the plot of residuals, but not from R². The Furnival
index and the PRESS have been adjusted for units (i.e. divided by 2k&d ), and
since they both represent the sum of errors (standard error and prediction
error sum of squares respectively), smaller values are better.

8.2. Inspection of residuals (and the Box-Cox transformation) indicate
that a logarithmic transformation is required to stabilize the variance. The
following is one possible solution:

Compare it with your own solution.

8.3. Residuals indicate a logarithmic transformation. One possible model
is:
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    Fig. S.8.

This differs substantially from
Howard and Valerio's (1992) model
(they used "=50), but seems to fit the
data better (Fig. S.8, dotted lines join

r% data with same G , dashed lines
show Howard & Valerio's model,
solid lines are the above equation).
Heavy logging is unlikely to
stimulate the growth of the largest
trees, as they are likely to suffer
damage from logging or exposure, so
the response implied in the above
equation is biologically reasonable.

Chapter 9

9.1. Insufficient information is given to correct for the varying
measurement intervals. One good description of these data is

Notice that this implies an average mortality slightly less than 1% per year,
and that mortality is lowest for trees of about 50 cm dbh, and increases for
smaller and larger trees.

9.2. We cannot calibrate a model to predict the proportion of cut stems
that are merchantable, because of insufficient data and too much noise in
the data. The average (87% merchantable) is as good as any.

The proportion of trees harvested can be predicted as

and the incidence of damage can be predicted as

Notice that the former (harvest) refers to the proportion of trees in the initial
stand, while the latter (damage) relates to the proportion of trees in the
residual (initial!harvest) stand.

Chapter 10

10.2. The trick is to recognize a class for the newly-dead trees, so that for
example, the stand table might contain small trees, big trees and newly-dead
trees. Assuming that both movement and mortality are 10%, and that every
death will give rise to one recruit, the Usher matrix will be
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and a simulation commencing with 10 trees in the smallest class will lead
to:

Cycle 0 1 2 3 4 5 6 4

Small
Big
Dead

10
0
0

8
1
1

7.4
1.7
0.9

6.82
2.27
0.91

6.366
2.725
0.909

6.002
3.089
0.909

5.711
3.380
0.909

4.545
4.545
0.909

Notice that there are always 10 trees in the stand (counting the newly dead),
and that it takes an additional cycle for the recruits to appear in the stand
table. The newly-dead is not an absorbing state, so it does not indicate the
total deaths, but merely the deaths in the current cycle. Since it is a Markov
matrix (columns sum to 1), a steady state exists, and the system quickly
converges.

10.3. The data were generated using Equations 10.1 and 10.2, and display
the characteristic dichotomy (none, some) that suggests a two-stage
approach should be used:

There are insufficient data to build more complex relationships, but both
these equations provide good estimates of the effect of stand basal area (G
and lnG respectively; there are not enough data with small G to fit lnG in
the probability equation). These equations indicate the 5-year relationships;

0the annual relationships will have different estimates for $ .

Chapter 11

11.2. The model can be implemented with different time-steps, and West
(1981) observed that time steps longer than 5 years lead to biased estimates.
Simulations up to age 80 allowed some trees to grow to excessive sizes (the
likely maximum attainable diameter seemed to be 130 cm), and West
(1981) remedied this by imposing a maximum growth rate of 2 cm/y.

Oderwald and Hans (1993) examined this model, and questioned why
site index did not enter the prediction equations, and why growth increases
with stand density (see Chapter 6, p. 106, for more discussion of this issue).
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    Fig. S.9.

Mortality is not density-dependent, and mortality estimates become negative
for ages over 88 years. Negative increments were possible for some trees at
low stockings.

11.3. West (1981) reported several tests and concluded that his model
produced accurate estimates of future conditions of stands for simulations
up to 21 years in length. Reynolds (1984) also examined these data and
found no evidence of bias in the model. He computed the prediction interval
for future basal area as !0.19±8.66 m ha , which implies that users may2 !1

be 95% confident that in a single future prediction, the error will lie in the
interval !8.85 to +8.47 m ha . Figures 11.2 and 11.3 are based on West's2 !1

data.

Chapter 12

12.1 See Vanclay (1994) for a discussion of these issues.

12.4 There are many ways to
examine optimum cutting limits. One
way is to do it analytically (e.g.
Exercise 6.1), but it isn't easy to do
this. The time-of-passage approach is
easier, and should give a reasonable
result it the class width is small. The
result will depend on the assumptions
made. Fig. S.9 uses 1 cm size classes
and assumes that d=1 at t=0 and that
v=$d h. The numbers 1–5 refer to2

Equations 8.1–8.5 respectively. Four
of the equations suggest very similar optima, while Eqn 8.5 suggests a
higher cutting limit because of the way this growth curve approaches the
asymptote )d more slowly. Recall that Eqns 8.4–8.5 were calibrated to Eqn
8.1 in the range 5#d#90, and note that the MAI curves agree closely in this
range. You should not attempt to judge which equation is "better" since
three of the equations were not fitted to data but were simply fitted to
approximate equations 8.2 and 8.3. But you should note the similarities and
differences between the equations.

Mortality may be taken into account by adding an additional column to
your calculation, indicating the cumulative probability that a tree will
survive to that size. This probability can be used to reduce the expected
volume in each size class of the time-of-passage calculation. Mortality, and
longer cutting cycles will tend to reduce the optimal cutting limit (e.g. Table
12.2).
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