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Compatible Deterministic and Stochastic Predictions by Probabilistic 

Modeling of Individual Trees 

Jerome K. Vanclay 
 
ABSTRACT. A single growth model can provide both deterministic and stochastic predictions 

which are compatible. Change may be expressed using probabilistic functions which can represent 

proportions of populations or probabilities for individuals. The former represents determinism while 

the latter enables the stochastic implementation. The same functional relationships may thus be used 

to generate compatible deterministic and stochastic predictions. All components of forest growth 

and change, including diameter increment, can be expressed as probabilistic functions, enabling 

construction of a single model which provides compatible stochastic and deterministic outcomes. 

Users may specify the minimum expansion factor corresponding to the simulated plot size and thus 

control the granularity of predictions. Such a model may facilitate numerical estimation of 

confidence intervals about yield forecasts and sustained yield estimates. 
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One of the important milestones in growth modeling in the 1960s was the realization that growth 

and yield models must be compatible (Buckman 1962, Clutter 1963). Forest managers had a need 

for both growth and yield models (or tables), and it was important that these guides provided 

compatible results. There is also a need for compatible models of different resolution, and Daniels 

and Burkhart (1988) have demonstrated a model that produces compatible results at the stand, 

class and tree levels. 

Precisely the same requirements may be extended to deterministic and stochastic models. 

Stochastic models offer great potential for risk analyses and better appraisal of investment 

options, but predictions from such models must be compatible with the deterministic models used 

in other aspects of planning. Computing capacity and operations research methodology do not yet 

enable stochastic models to be used for all planning and forecasting purposes; many applications 

demand the efficiency of a deterministic model. However, it is possible to design a compatible 

model which can operate deterministically or stochastically, the expectation or many-run average 

of the latter providing results identical to the former. 

This concept of compatibility differs from the work of Buckman (1962) and Clutter (1963), 

who were concerned that yield estimates derived by summing growth forecasts should be 

compatible with direct predictions of yield (i.e., that growth and yield should be predicted from 

the differential and integral form of the same equation respectively). Several studies have 

confirmed the compatibility of forecasts made using alternative stochastic and deterministic 

implementations of the same mortality function (e.g., Ek 1980, Weber et al. 1986), but these 

studies have not been extended to models where stochastic increment and regeneration functions 

are included. 

The Prognosis model (Stage 1973, Wykoff 1986) preserves heteroscedastic variation by 

incrementing individual trees stochastically while the aggregate stand increment is assumed to be 

deterministic. STEMS (Hahn and Brand 1979, Brand et al. 1988) accommodates random error 

through the mortality function and offers the user the choice of deterministic or stochastic 

mortality (Belcher et al. 1982). Gertner (1987) modified STEMS to enable stochastic predictions 

by adding conditional multivariate normal variates to the crown ratio and diameter increment 

predictions. Gertner (1987) also illustrated the use of error propagation methods to estimate 

precision of growth and yield simulations. The error propagation approach is more efficient than 

Monte Carlo methods for estimating precision, but may not satisfy all the possible uses for 

stochastic models. 
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DESIGN CONCEPTS 

Deterministic growth models can be converted to stochastic models by adding normal variates to 

the predictions (e.g., Gertner 1987). However, the use of probabilistic functions offers simplicity, 

and eliminates a number of subjective assumptions inherent in other approaches. The principle 

that allows the construction of a compatible deterministic/ stochastic growth model is the 

realization that a prediction from a probabilistic function can be regarded as a proportion of a 

population (the expected outcome providing the deterministic case), or as a probability 

concerning an individual (the stochastic case). Since all components of growth and change in a 

forest stand can be expressed in terms of probabilities, a compatible deterministic/stochastic 

growth model can be created. 

Mortality functions are routinely expressed as logistic functions (Hamilton 1974, 1980, 

Buchman 1979, Buchman et al. 1983) predicting fractions which may be used as proportions or 

as probabilities. Models such as STEMS (Belcher et al. 1982) exploit this in enabling the user to 

select either deterministic or stochastic mortality prediction. For stochastic mortality, a random 

number (between 0 and 1) is drawn, and if the predicted probability of death exceeds this random 

number the tree dies and the expansion factor is set to zero (otherwise the expansion factor 

remains unchanged). For deterministic mortality, the expansion factor is reduced by the 

proportion predicted by the mortality function. The same mortality function is used for both 

implementations. 

Diameter increment (e.g., Lowell and Mitchell 1987), deteriorating merchantability (e.g., 

Vanclay 1991b) and regeneration (e.g., Ferguson et al. 1986) may also be predicted using 

probabilistic functions. Probabilistic prediction of diameter increment is equivalent to movement 

ratios which indicate the proportion of trees moving to the next size class in stand table projection 

methods of growth forecasting (e.g., Wahlenberg 1941, Davis and Johnson 1987). Lowell and 

Mitchell (1987) have demonstrated that diameter increment and mortality of individual trees can 

be estimated simultaneously using logistic functions. There is, however, a disadvantage with this 

simultaneous approach, as either the remeasurement interval of the data must correspond with the 

projection interval of the model, or the data must be interpolated accordingly. Hamilton (1974) 

argues the advantages of predicting survival rather than mortality, in that the n-year probability of 

survival is the nth power of the annual probability (providing that stand conditions remain 

constant), and this enables data with various remeasurement intervals to be used without 

interpolation. The important principle here is that the transient state (i.e., survival) rather than the 

absorbing state (mortality) should be modeled. The elegant simplicity of Hamilton's (1974) 

approach derives from the fact that there is a single transient state. Lowell and Mitchell's (1987) 

approach poses a more complex problem, as there is more than one transient state. One cannot 

simply modify it by modeling survival in same class, survival in the same or next class, …, and 

survival in any class, using cumulative probabilities and expressing mortality as the 99th state. An 

example indicates the bias in such an approach. Suppose the median increment is 0.5 cm per 

annum, the maximum 2 cm, the class size 1 cm, and there is no mortality. Then for any year, the 

probability of moving not more than 5 classes should equal 1, as no trees could grow more than 5 

cm. But over 10 years, the probability of moving not more than 5 classes should be 0.5, and this 

implies an annual probability of 0.933 (i.e., 0.93310 = 0.50). Thus it may be expedient to model 

movement and survival independently. 

Modeling movement remains a challenging problem because of the several transient states 

required, and several options exist. Increment data can be interpolated to annual movements and 

summarized as a Markov matrix (e.g., Usher 1966, Harrison and Michie 1985) to be used as a 

lookup table in the model. Logistic equations based on annual movements could also be 

developed using Lowell and Mitchell's (1987) approach, but without including mortality. Another 

alternative is to use the actual observed movements, and use the states "remains in same class," 

"moves not more than one class each year," "moves not more than two classes each year," and so 

on. This formulation does not suffer the bias illustrated in the example above, but utilizes only 



part of the information contained in the data. The best approach should utilize the fact a tree 

which moves one class in an n-year period, moves in one of those years, and remains in the 

remaining n - 1 years. This approach becomes quite complex for long intervals, especially if the 

class size is chosen such that trees can move more than one class during a single interval. In view 

of the complexity of the latter, the most viable approach may be interpolation to annual (or other 

suitable inter-al) movements, similar to the approach of Lowell and Mitchell (1987). 

Implementation is simplified if the interval and class size are chosen (sufficiently short and wide 

respectively) to ensure that the probability of trees moving more than one class during a single 

period is insignificant. 

These ideas can be implemented in diameter class models (e.g., Ek 1974) and individual tree or 

tree list models (e.g., STEMS, Prognosis). Implementation in diameter class models simply 

involves replacing the movement ratio. For individual tree and tree list models. each record is 

considered a class, and implementation is analogous to the diameter class model. Instead of 

incrementing tree diameter through fractions of a millimeter, movement by standard (e.g., one 

centimeter) increments can be modeled probabilistically. As inventory data have finite precision 

(e.g., operational resource inventory in Queensland records diameters only to the nearest 

centimeter), there need be no loss of precision, and the heteroscedacity evident in the growth data 

would be preserved. Thus, in deterministic mode, a proportion of trees comprising each record 

would increment one centimeter each year (i.e.. the record would split into two new records). In 

stochastic mode, one or several random numbers could be drawn to see if the entire or 

corresponding several parts of the record would increment one centimeter. Where individual tree 

and tree list models involve few individual tree characteristics (e.g., species and diameter only), 

implementation is easy, and "housekeeping" to recombine similar records allows computational 

efficiency. However. models employing many individual tree characteristics (e.g., species, 

diameter, tree height, height to crown base, etc. ) become computationally intensive as the 

number of tree records increases, and recombining of records is impeded by different 

combinations of these tree variables. 

The use of probabilistic equations overcomes the subjective implementation of swindles such 

as record tripling. The Prognosis model may employ a swindle which effectively estimates the 

average of many replications without actually conducting the replications. The Prognosis swindle 

triples each tree record, the new records having 15, 60, and 25% of the original expansion factor, 

and an increment of µ-1.549σ, µ-0.1423 σ and µ+1.271σ respectively (Stage 1973). The share of 

the increment assigned to each new tree record is derived from the normal N(µ, σ) distribution, 

but the decision to triple (rather than to double or quadruple) and the 15:60:25 apportionment is 

rather subjective. Other models double records, apportioning 50:50 with 0.8 and 1.2 times the 

predicted diameter increment for Callitris forest (Vanclay 1988), and 75:25 with 0.9 and 1.3 

times the predicted diameter increment for tropical rainforest (Vanclay 1989a). While the relative 

increments were gauged from the data, the apportionment (50:50 and 75:25) was subjective. 

Probabilistic modeling of diameter increment avoids these subjective decisions. 

Other subjective decisions are inherent in the simulated plot size and in various housekeeping 

routines used in many deterministic growth models. Many growth models simulate on a per 

hectare or per acre basis, irrespective of the plot size of the user's data. Models may invoke 

housekeeping routines to reduce the number of tree records (e.g., the COMPRESS option in 

Prognosis, Wykoff 1986), and these may or may not be under user control. Other models avoid 

the proliferation of tree records by modeling increment deterministically (without doubling or 

tripling) and mortality stochastically (e.g., STEMS when expansion factor <1/ac, Belcher et al. 

1982). These inherent plot sizes and housekeeping routines may significantly influence predicted 

outcomes, yet are often inaccessible to the user. Kimmins et al. (1990) argued that such 

calibration "twiddle knobs" should be kept to a minimum, and where inevitable should be 

controlled by the user, not hidden in the code. The approach outlined below offers one way to 

give that control to the user. 



 

IMPLEMENTATION 

By allowing the user to specify two parameters, a single per hectare growth model becomes 

flexible enough to efficiently produce deterministic and stochastic results consistent with any 

simulated plot size. These can be specified by the user at run time, so that consecutive simulations 

can alternately be stochastic and deterministic, with varying plot sizes, using the same model with 

identical functions to ensure compatible results. 

One number (m) specified by the user indicates the minimum expansion factor, and thus 

reflects the plot size being simulated (or the resolution required), and controls the proliferation of 

minute proportions during deterministic operation. Thus for high resolution large plot 

simulations, m should be small, while for lower resolution or smaller plots, m may be large. 

The other number specified (n) determines the maximum number of random numbers that will 

be drawn for any tree record. If the expansion factor exceeds n × m, the simulation will 

deterministically employ the predicted proportion of the class rather than taking repeated 

stochastic events. In Prognosis, Stage (1973) assumed that the stand-level aggregate of many 

stochastic projections of individual trees would be deterministic. The converse is used here: there 

are computational advantages in using a deterministic outcome rather than taking repeated 

stochastic outcomes where a large number of trees is represented by a single record. 

In determining the action to take for each cohort, the expansion factor is compared with the 

user's specified values of m and n × m. If the expansion factor exceeds n × m, the predicted 

proportion of the expansion factor will advance, die or deteriorate (except that when n = 0 and 

expansion factor <m, movement probabilities are accumulated until 1.0 is attained, when the tree 

size is incremented, to avoid further splitting tree records with expansion factors <m). If the 

expansion factor is less than m and n>0, a random number will be drawn, and the fate of all the 

trees in that cohort depend upon the relativity between the random number and the predicted 

probability. If the expansion factor lies between m and n × m (n > 0), then several (expansion 

factor/m, rounded up) random numbers will be drawn, and each m (or part thereof) trees in the 

cohort will be treated stochastically. 

Regeneration may also be predicted stochastically or deterministically using probabilistic 

equations. If the model is in deterministic mode (n = 0), probabilities are accumulated until unity 

is reached and regeneration initiated. In stochastic model (n > 0), random numbers are drawn to 

determine the incidence of regeneration in any year. 

When n = 0, the model will behave deterministically for any minimum expansion factor (m). 

With n = 1 and m small, results will also be near deterministic with high resolution, similar to 

some existing deterministic models (e.g., Prognosis and STEMS). When n > 0, the model draws a 

random number for each m (or part thereof) trees represented in each class and takes the 

stochastic outcome. When m is large, the resolution of the predicted outcome is more granular, as 

is appropriate when simulating a small plot. Parameters m and n may take any positive value. The 

choice of m and n influence computational efficiency, and for stochastic simulations, n may be as 

small as 5, as little increase in variability is observed as n increases. 

The serial and seasonal correlation of tree growth is well established and should be 

accommodated when drawing random numbers during stochastic simulations. Stage (1973) 

preserved random variables associated with each tree record, so that appropriate serial correlation 

could be maintained during the next simulation cycle. Within the present framework, appropriate 

serial correlation can be achieved by assigning a random number ri*. to each record for the 

duration of the simulation, drawing a random number r*j for each cycle, and taking a third random 

number rij for the interaction of individual and season. The final variable for determining the 

stochastic action to be taken should be a weighted average of these three random numbers, 

weighted appropriately for the species and location. Preliminary analyses for natural forests in 

Queensland suggest that appropriate weights may be 0.6, 0.2, and 0.2 for tree, year, and 

interaction respectively. 



EXAMPLE 

The Queensland rainforest growth model (Vanclay 1989a) has been extensively modified to 

enhance its accuracy, flexibility, and scope (Vanclay and Preston 1989), and is now being further 

modified to accommodate the proposals outlined above. Previous versions have employed a tree 

list approach with each tree record indicating species, size (cm diameter), expansion factor 

(number/ha), and merchantability (veneer log, sawlog, useless). The new version is similar, 

except that size is expressed as an integer. The new growth function is a logistic function 

predicting movement to bigger size classes and replaces the previous diameter increment 

function. Mortality, deterioration, and regeneration were predicted using logistic functions which 

could be employed without alteration. Serial and seasonal correlation have not yet been 

implemented in the model. 

The model uses 41 equations to predict the diameter 'increment of the 400-odd species 

recognized on inventory plots in north Queensland. The equations are illustrated for Flindersia 

pimenteliana, the most abundant species in the permanent sample plot database used to estimate 

the equations. The diameter increment function previously used to simulate the growth of this 

species was (Vanclay 1991a): 

Log(DI + 0.02) = -0.2354 -0.06056DBH +0.9673Log(DBH) 

+0.08851SQLog(DBH) -0.9366Log(SBA) 

- 0.02684OBA + 0.1415PS (1) 

where DI is diameter increment (cm/ann), DBH is tree diameter (cm), SQ is site quality (Vanclay 

1989b), SBA is stand basal area (m2/ha), OBA is overtopping basal area (m2/ha) defined as the 

basal area of stems whose diameter exceeds that of the subject tree, and PS is a dummy (0, 1) 

variable which, for this species, takes the value 1 if the plot is located on soils derived from recent 

alluvial, volcanic, or granitic parent materials, and zero for soils derived from sedimentary or 

metamorphic parent materials. 

The same attributes are useful for predicting probability of movement. The following logistic 

equation was fitted using maximum likelihood estimation:. 

Z = +0.7378 -0.1079DBH +1.987Log(DBH) 

+0.1455SQLog(DBH) -1.994Log(SBA) 

-0.03548OBA +0.4221PS (2) 

and 

P{Int[DBH0 + (DBHn - DBHo)/n] > Int[DBH0]} = (1 + e
-z)-1 

where P is the probability that a tree completes a centimeter of growth within that year (i.e., 

grows from <x to ≥x cm diameter, where x is an integer number of centimeters), DBH0 is the 

initial diameter, DBHn is the final diameter, n is the number of years, and Int rounds down to an 

integer value. One further advantage of this approach is that the logistic equation is more robust 

in the presence of outliers and decrements in the data, enabling data to be used in estimating 

Equation (2), which Vanclay (1991a) had withheld from linear regression analyses for Equation 

(1) (e.g., DI≤ -0.02). 

 

TABLE 1. Effect of varying values of m and n. 
Stand basal area (m2/ha) of Plot 01/88/0079 after 100-year simulation. 

Mean (and standard deviation) of 100 simulations with 

Minimum 

expansion 

factor (m) n= 0 n = 1 n= 5 n = 20 

100. 42.2 (0.0) 41.5 (6.0) -† - 

10. 42.2 (0.0) 41.9 (3.7) 43.0 (3.7) - 

1. 42.3 (0.0) 42.7 (1.3) 43.0 (1.7) 42.5 (1.4) 

0.1 42.1 (0.0) 42.8 (0.5) 42.6 (0.7) 42.6 (0.7) 

0.01 42.1 (0.0) 42.6 (0.6) 42.7 (0.5) 42.8 (0.6) 

† These combinations ineffective as maximum expansion factor <50 during simulations.  Previous 

deterministic tree list model (Vanclay and Preston 1989) prediction: 42.3 



  
FIGURE 1. One-hundred-year simulations for plot 01/88/0079 

 

 

Table 1 shows the effects on simulated future stand basal areas, of various values of 

parameters m and n. The plot (01/88/0079) used for this example was a 100 meters square (1.0 

ha) and measured all trees over 40 cm diameter. In addition, five point samples (2 m2/ha BAF) 

were used to sample trees over 10 cm (but less than 40 cm) diameter. A total of 108 trees of 33 

species were sampled. Mean predictions are quite similar for a range of m and n, and compare 

favorably with predictions made from a previous deterministic model (Vanclay and Preston 

1989). The minimum expansion factor (m) has a major influence on the variability of predictions, 

while the number of random numbers drawn for any tree record (n) has relatively little impact on 

predictions (Table 1). Standard deviations are likely to be underestimated due to the absence of 

seasonal and serial correlations in the present model. 

Figure 1 shows 100-year predictions for this plot, made with m = 1 and n = 5. The 5th, 50th, 

and 95th percentiles are the smallest, median, and largest of 19 simulations and give a 

nonparametric 90% confidence interval for predictions. These were obtained by ranking 

outcomes at each 10-year interval, and individual simulation runs may vary between these limits 

(e.g., run 7, illustrated with the dashed line). The mean and 90% confidence intervals derived 

from the standard deviation are also shown. The parametric and nonparametric confidence 

intervals are in reasonably close agreement. 
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