
P ro ce e d i ng s  o f  t h e  8 t h  I n n ov a t i v e  Ap p l i ca t i o n s  o f  Ar t i f i c i a l  I n t e l l i g e n ce  
C o n f e r e n c e ,  P o r t l a n d ,  O r e g o n  A u g us t  5 - 7 ,  1 9 9 6 .   T h e  A AA I  p r e s s .  

Monitoring Frog Communities: An Application 
of Machine Learning 
 
Andrew Taylor, Graeme Watson, Gordon Grigg and Hamish McCallum 
 

Abstract 
Automatic recognition of animal vocalisations would be a valuable tool for a variety of 

biological research and environmental monitoring applications. We report the development of a 
software system which can recognise the vocalisations of 22 species of frogs which occur in an 
area of Northern Australia. This software system will be used in unattended operation to mon-
itor the effect on frog  populations of the introduced Cane Toad. 

The system is based around classification of local peaks in the spectrogram of the audio 
signal using Quinlan's machine learning system, C4.5 (Quinlan 1993). Unreliable 
identifications of peaks are aggregated together using a hierarchical structure of segments based 
on the typical temporal vocalisation species' patterns. This produces robust system per-
formance. 

 
Problem Description 
Since the unfortunate introduction of the Cane Toad (Bufo marinus) to Australia, its 

abundance and continuing spread through northern Australia have been the cause of 
considerable concern. It is a voracious predator taking a wide range of prey. Cane Toads also 
possess poison glands which can kill unwary animals which attempt to prey on them. Although 
there is great public alarm at the effect Cane Toads are having or will have on Australia's native 
fauna, there is actually no conclusive data available establishing a detrimental effect on the 
population of a native species. 

The reason is that censusing populations of most of Australia's native fauna is a difficult and 
expensive undertaking. Biologists have been unable to collect sufficient suitable data to 
properly address the question of the Cane Toad's impact on native fauna. This is very 
unfortunate as its make it difficult to determine the appropriateness, size and nature of efforts to 
control the Cane Toad. 

The censusing of animals which make frequent distinctive vocalisations is more tractable 
but it is still expensive and time consuming. Australia's species of native frogs are one of the 
groups most likely to be affected by Cane Toads and can be aurally censused. However there 
are a number of problems with such an approach. 

The most desirable study location is an area in front of the advancing Cane Toads allowing 
frog population censuses to be obtained before and after the Cane Toads arrival. Unfortunately 
the main Cane Toad front is currently in a remote area of Australia's Northern Territory. This is 
an area whose weather is dominated by a wet season of monsoonal rains. Most of the f rog 
species of the area are only active during this wet season so censuses must be conducted during 
this time. 

Field work during the wet season is difficult as roads are often impassable and extreme heat 
and humidity is combined with intense irregular storms. The activity of most species is 
irregular, depending primarily on rainfall. Some species are active only during particular parts 
of the wet season. As a result, short field trips to these areas are not a reliable method of 
censusing the frog populations. Continuous manual censusing through the wet season is not 
feasible so we have developed automatic methods which will be used to census frog 
populations at a number of sites through the wet season. 
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There are 22 frog species present in our study area. Their vocalisations range in length from 
less than 20 milliseconds to over a second. An example of the spectrogram of the vocalisation 
of a single f rog can be seen in Figure 1. 

Some species repeat their vocalisations incessantly, other species usually make only 
occasional isolated vocalisations. Many of the species tend to call in choruses with hundreds of 
individuals from a number of species present. There is also considerable background noise 
from insects, some species of which have vocalisations somewhat similar to some frog species. 

 
Figure 1: Spectrogram of a Litoria nasuta individual 
 

Rain is another source of background noise which can not be ignored as some frog 
species call primarily during rain. An example of the spectrogram of a frog chorus recorded 
at our study site can be seen in Figure 2. The vocalisations of at least 11 individuals of 6 
species of frog are apparent in this one second spectrogram. There is also noise from at least 
three species of insects present in the spectrogram. Figure 3 contains the spectrogram of a 
chorus with a similar species composition to Figure 2 but with a large number of individuals 
calling. 

Most of the f rog vocalisations function as an advertisement to other members of the same 
species and hence have evolved to be species-specific. Experiments on other frog species 
have shown a variety of properties can be used by frog species to recognise the vocalisations 
of their own species (Gerhardt 19$8). These include call rate, call duration, amplitude-time 
envelope, waveform periodicity, pulse-repetition rate, frequency modulation, frequency and 
spectral patterns. 

The vocalisations of some species have stereotypical properties which are apparently not 
used by members of that species for recognition (Gerhardt I988). Little is known in these 
respects of the frog species in our study area. In any case the properties suitable for the 
wetware of a frog's hearing system and brains may not be the best properties for our software 
and audio hardware. 
 
Applicat ion Description 
Automatic recognition of animal vocalisations would be valuable for a variety of biological 
research and environmental monitoring applications but it is an area which has seen little 
work and only preliminary results produced (Milts 1995), (Fristrup & Watkins 1995), (Taylor 
I995). 

One animal is an exception. There is a huge body of work devoted to distinguishing the 
complex vocalisations of Homo sapiens. This is usually termed speech recognition. 

 



 
Figure 2: Spectrogram of a Frog Chrous 

 
Figure 3: Spectrogram of a Frog Chorus 
 

The frog vocalisations we wish to recognise are much simpler than those of humans. Their 
recognition would be an easy problem if it was conducted under similar conditions to that of 
most successfully deployed speech recognition systems: a single cooperative individual dose 
to the microphone in a quiet environment (Deller, Proakis & Hansen 1993). 

None of these conditions are met in our problem domain. Instead we must recognise 
simpler vocalisations but under much more difficult conditions. 
 

Attributes 
This has led us to adopt a different and simpler approach to that typically employed in 

speech recognition. Our system makes no attempt to segment or isolate individual 
vocalisations. It works entirely from the spectrogram of the incoming audio signal. A Fast 
Fourier Transform is used to produce a spectrogram of the signal with time-frequency pixels 
which are roughly 1 millisecond by 50 hertz. 

Each time slice of the spectrogram is examined for pixels which contain more energy than 
any nearby (in frequency) pixels in the same time slice. There may be zero or more local 
peaks in a single time slice. If there are also local peaks at similar frequencies in several 
preceding and succeeding time slices then it is assumed the peak is part of a vocalisation and 
it is passed to the next stage of the system to be individually classified. Figure 4 contains a 
call with the local peaks marked. 

Our system will examine each of the 40 local peaks in Figure 4 individually and classify it 
as belonging to a particular species. Information from the spectrogram surrounding the peak 
to provide attributes for classification. The information used includes the frequency of the 
peak, the relative frequency of nearby peaks in preceding and succeeding time slices and the 



relative height of pixels nearby in the same time slice and in preceding and succeeding time 
slices. There are a great number of way attributes might he constructed from this information. 

 

 
Figure 4: Local peaks of a Litoria inermis Call 

 
During development we constructed a set of approximately 70 possible attributes and used 

a greedy search similar to what (John, Kohavi & Pfleger 1994) term forward selection to 
choose a subset of 15 of the attributes for the system to employ. 
 
 

Training 
Quinlan's machine learning system, C4.5 (Quinlan 1993), is used to construct the 

classifier. C4.5 is a supervised learning system which, given a set of classified cases and a 
number of attributes for each case as training data, produces a decision tree to classify further 
cases. The training data for C4.5 was extracted from vocalisations of each of the 22 species in 
our study areas. These vocalisations were high quality recordings of single individuals. These 
had been gathered in previous biological research and were not from our study area. A 
number of vocalisations were selected manually from each recording for use in training. This 
ensured only vocalisations from the required species were present in each piece of raining 
data. These vocalisations totalled 5 to 20 seconds of sound for each species. 

We also introduced as training data sounds from Cricket species which occur in our study 
area. These have relatively similar qualities to frog vocalisations and it assisted system 
performance if these could be explicitly classified. 

The decision tree produced by C4.5 has approximately 5000 nodes. Here is small fragment 
of the tree. 

 
 

We automatically translate the decision tree to data suitable far inclusion in a C program. 
The identifications of individual peaks is, of course, unreliable as effectively only a tiny 

fragment of sound is being examined. The error rate in local peak classifications approaches 
50%. 



 
Voting 
Our system aggregates these unreliable identifications to produce reliable recognition of 

vocalisations. The model used is simple. If within a certain time period a threshold number of 
local peaks are identified as belonging to a given species then a vocalisation of that species is 
assumed to be present. 

The obvious time period to choose is the typical length of the species' vocalisations. We 
could not obtain suitable system performance by attempting to recognise vocalisations within 
the typical period of some species' vocalisation, mainly because some species have very short 
vocalisations. We remedied this by adopting a hierarchical structure of time segments based 
on the typical temporal patterns of the species vocalisations. 

For example, a species, might have a vocalisation typically lasting 300 milliseconds 
containing a number of 30 millisecond "notes" and it might usually produce 4 or more 
vocalisations in 3 seconds. Our system models this with 3 levels of segments. The level 0 
segments will be 30 milliseconds long. If a threshold number of local peaks occur in that time 
period then the species is regarded as present in that level 0 segment, in other words we 
assume we have recognised a single "note" belonging to the species. 

The level 1 segment will be 300 milliseconds long. If a threshold number of level 0 
segments are identified as containing the species within that time period then the species is 
regarded as present in the level 1 segment, in other words we assume we have recognised a 
single vocalisation of the species. 

Similarly the level 2 segment will be 3 seconds long and a threshold number of level 1 
segments will be required to regard the species as present in the level 2 segment and hence 
reliably identified. 

In practice, it was only necessary to specify the three level hierarchy described above for a 
few species. For most species, a one or two level hierarchy was sufficient. These hierarchies 
are based on the typical calling patterns of an individual but, in practice, perform well even 
when multiple individuals are present. This temporal structure could, in principle, be acquired 
automatically by the system but, in practice, it is was much easier to provide it manually. 

It is much more desirable for our system to fail to recognise a vocalisation (a false 
negative) than to incorrectly indicate the vocalisation of a particular species is present (a 
false positive). It is crucial then to choose thresholds such that false positives are unlikely. 
Recent work in recognising individual humans from their vocalisations, usually termed 
speaker recognition, has examined similar problems at some length; for an overview see 
(Gish & Schmidt 1994). We were concerned the assumption involved in this work would not 
be sufficiently valid in our domain so we instead adapted an empirical process. 

It is easy to provide large amounts of training data which does not contain the 
vocalisations of a given species. This does require the time consuming manual extraction of 
vocalisations that positive training data does. The thresholds for a particular species is 
estimated by applying the local peak classifier to negative training data and examining how 
often peaks are (incorrectly) classified as belonging to the particular species. 

 
Hardware Platform 
Our monitoring stations are to be setup at the start of each wet season and dismantled four 

months later at the end of each wet season allowing the data to be collected. They use a 
rugged single board PC-compatible computer designed for industrial applications. The 25mhz 
Intel 486 CPU allows approximately 25classifled, i.e 15 seconds of sound takes 
approximately 1 minute to process. The speed is limited by the signal processing, not the call 
recognition. Power is supplied by a solar panel. Every 5 minute period, details of the frog 
species heard in that interval are logged to flash memory. The monitoring stations also log 



rainfall, temperature and humidity data. Data in flash memory should survive most modes of 
system failure. 

 
Application Use 
Our systems will be deployed at 12 sites next wet season. We can report testing on field 

data. This wet season we collected 29 recordings of f r o g  choruses in our study area. The 
recording ranged in length from 3 to over 30 minutes. An inexpensive dynamic microphone, 
similar to that employed in our stations was used for these recordings. The recordings were 
made are as varied conditions as possible. The distance to the nearest frog varied from 2 to 70 
metres. Significant amounts of noise are present in some recordings from insects, rain and 
human speech or other human activity. 

As the time of each recording it was noted what species were present. These were placed 
into two categories: species which were conspicuous to the human ear and species for which 
were not. Some species were placed in the second category because they made only a few 
isolated vocalisations during the time of the recording, others because their vocalisations 
were difficult to discern because they were distant or obscured by other species or both. Each 
recording contains 1 to 10 species. The number of species in each track placed placed in 
category 1 varies from 0 to 4. 

In total the 29 recordings contain 9 different species which occur on at least 1 track in 
category 1. Another 7 species occur in the recordings but only as category 2.  It was felt 
successful recognition of the category 1 vocalisations was a minimum requirement for our 
system. 

 
System Performance 
For all 29 recordings our system recognised the category 1 species with two exceptions. 

One species, Uperoleia lithomoda was never recognised. It has extremely brief vocalisations 
which sound like stones being clicked. A single Uperoleia lithomoda vocalisation, centred at 
3 khz, can be seen just over 0.5 seconds into the spectrogram in Figure 2. We are currently 
investigating remedying this. 

During our fieldwork collecting the recordings, it became apparent that it was very 
difficult for humans to separate the vocalisations of three of the species in our area. The frogs 
themselves of these species are also difficult to separate in the field. This makes collection of 
accurately labelled training and testing data difficult. In particular, even if you positively 
identify one species as dominating a chorus it is very difficult to exclude the presence of 
individuals of the other two species. 

We have lumped these three species together in our system. Fortunately, this is acceptable 
for our project's purposes because of ecological similarities between these species. The 
lumped species was successfully recognised whenever it occurred in category 1. 

System performance with category 2 species was varied. In approximately one third of 
cases category 2 species were recognised as being present in recordings. We are actively 
examining improving this performance. In one instance, a frog species was recognised as 
present even though the nearest individual was more than 70 metres distant. This exceeds the 
performance of the first author. 

There were several misidentifications (i.e. false positives) of one species and one 
misidentifications of a second species. We have since remedied this by modifying the 
temporal segements used far recognising these species. 

We believe the above results demostrate the software component of the system will be 
successful. 

 
 



Application Development and Maintenance 
Application development has taken approximately two man months spread over 12 

months. Some soft-ware from previous work was employed. The system could be trained for 
a new set of frogs in less than 1 day but performance evaluation and tuning would probably 
require up to a week. 
We hope eventually to encapsulate and distribute the training software so biologists can 
construct their own identification systems. We also hope to apply the techniques to other 
taxa, including bats and cetaceans.  
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