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Abstract 

A GIS compiled by the Departmental Government of Santa Cruz, Bolivia offers data that may 

help to resolve some competing theories of tropical deforestation. The GIS contains many 

attributes relating to land use at two points in time, 1989 and 1994, and allow us to address 

questions like: 

• What has been the impact of past road construction on deforestation and land use? 

• What impacts might be expected from future road construction? 

• What impact do zoning policies such as forest concessions and protected areas have? 

• What influence do cultural factors have on forest clearing and fragmentation? 

We discuss our methodology and report interim results. We seek to provoke discussion on 

appropriate statistical procedures for such analyses. 

 

Introduction 

Tropical deforestation is topical and controversial, and many researchers and agencies would 

like to better understand when, where, and more importantly, why it occurs. Kaimowitz and 

Angelsen (1998) reported the existence of 150 deforestation models, most of which were 

developed since 1990. They found that in all, more than115 different variables had been used in 

these attempts to explain deforestation and that major uncertainties continue to exist about how 

most of these influence deforestation. We take this to be an indication of the inherent 

complexity of the task, the scarcity of decisive indicators, and the limitations of proxy variables 

used in these studies.  

 

Among different possible modeling approaches, Kaimowitz and Angelsen (1998) concluded 

that household and regional-level studies are likely to be more productive than national and 

global studies. They expressed particular enthusiasm for the potential of the growing availability 

of spatial data bases providing insights into the role in deforestation processes of such spatial 

variables as access to markets, land use zoning policies, and ecological conditions. They note 

that such models use relatively reliable data, involve large sample sizes that give model makers 

more degrees of freedom to work with, and are particularly suited for predicting where 

deforestation is likely to occur. In addition, the model’s robustness can often be tested by 

measuring what percentage of the time they accurately predict where deforestation will occur. 

 

This paper presents a spatial econometric model of one particular Latin American region, the 

department of Santa Cruz in eastern Bolivia. Several reasons inspired us to study deforestation 

patterns in that region: 

 

• Deforestation in the Bolivian tropics has historically been limited but has increased rapidly 

in recent years, and it is important to understand why; 
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• Deforestation patterns in Bolivia differ significantly from other areas in Latin America in 

that the expansion of large-scale mechanized agriculture has been more important in the 

former; 

• CIFOR has an on-going international project comparing the effects of different policies and 

social trends on tropical forests in Bolivia, Cameroon, and Indonesia; and  

• The Santa Cruz government (prefectura) had compiled a GIS with much of the data needed 

to examine the influence of different geographic variables on deforestation trends. 

 

Our objectives in pursuing the present study were three-fold. We wanted to 

1) Test some established theories of deforestation, 

2) Improve the capacity to formulate land use policies within the Department of Santa Cruz, 

and 

3) Contribute to a better understanding of factors that determine land use in locations similar to 

those of study area. 

Previous Spatial Econometric Deforestation Models 

Spatial regression models measure the correlation between land use and other geo-referenced 

variables such as: 

• Transportion costs (distance from markets and road, railways, and rivers), 

• Zoning categories (national parks, forest concessions, colonization areas, indigenous 

territories), and  

• Ecological conditions (topography, soil quality, precipitation, and forest fragmentation). 

 

The models focus on land use in a single time period or the change in land use over two or more 

periods. The majority relate the state of the independent variables in the first period to the 

probability that the forest in that location is removed between the first and second periods. 

 

Unlike the Santa Cruz model presented below, most previous models have drawn their data 

from a random sample of locations (points) within a selected region or country. Sample sizes are 

typically several thousand points or more. Chomitz and Gray (1995) used a multinomial 

maximum likelihood model with a random sample of 10,000 data points. Tom Tomich (pers 

comm) examined deforestation rates within a study area of 4.9 million hectares in Jambi, 

Sumatra, by sub-sampling with a 1 km square grid and using a binomial-probit transformation. 

Gerald Nelson (pers comm) made a similar study with raster data by taking a systematic 1% 

sample that yielded 25,000 sample points. He claimed results were "meaningful" because some 

parameters were found to be statistically significant while others were not. 

 

Some models include all types of locations, others just locations covered with forest during the 

first time period. Typically, the land use information comes from national forest inventories, 

remote sensing and aerial photographs. 

 

The models show land holders are more likely to convert forest to agricultural use where good 

access to markets and favorable conditions for farming make agriculture more profitable and the 

government has not restricted forest conversion (Table 1). Forests close to roads in physical 

distance and traveling time are more likely to be cleared (Chomitz and Gray, 1995; Liu et al., 

1993; Ludeke et al., 1990; Mertens and Lambin, 1997; Nelson and Hellerstein, 1995; Sader and 

Joyce, 1988; Rosero-Bixby and Palloni, 1996). Most studies show that forest clearing declines 

rapidly beyond distances of two or three kilometers from a road, although Liu et al. (1993) 

report significant forest clearing up to around 15 km from the nearest road for the Philippines. 

Similarly, Chomitz and Gray (1995) found that locations closer to urban markets have less 

remaining forest in Belize and Mertens and Lambin (1997) reported that deforestation drops off 

dramatically beyond 10 kilometers from the nearest town in Eastern Cameroon. 

 



Forest fragments have a higher risk of being lost than forests in large compact areas, with 

forests close to the forest edge especially likely to be cleared (Brown et al., 1993; Liu et al., 

1993; Ludeke et al., 1990; Mertens and Lambin, 1997; Rosero-Bixby and Palloni, 1996). In 

addition, areas with higher quality soils (flat, adequate drainage, and high soil fertility) and drier 

climates are also more likely to be cleared (Chomitz and Gray, 1995; Gastellu-Etchegorry and 

Sinulingga, 1988; Sader and Joyce, 1988; Rosero-Bixby and Palloni, 1996). 

 

The effect of roads and environmental conditions may interact. Thus roads may induce greater 

deforestation in areas with good soils and favorable climatic conditions. In Belize, Chomitz and 

Gray (1995) showed that the probability of an area being used for agriculture (rather than being 

retained as natural vegetation) on high quality land next to a road was 50%, whereas lands next 

to roads with marginal soils had only a 15% probability of being deforested. 

 

Mertens and Lambin (1997) noted that variables affect forest clearing differently depending on 

the type of deforestation process. In peri-urban deforestation, forest clearing exhibits a circular 

pattern around the towns, and distance to towns and roads strongly affects forest clearing but 

proximity to forest edge does not. Roads may exhibit a “corridor pattern” of deforestation where 

proximity to roads and forest edges are significant determinants of forest clearing, but distance 

to towns is not. Finally, in areas where diffuse shifting cultivation dominates, proximity to 

forest edge increases the probability of forest clearing, whereas distance to roads and towns is 

less important.  

Deforestation in Santa Cruz, Bolivia 

Department of Santa Cruz extends some 900 by 800 kilometers, and occupies some 35 million 

hectares (Figure 1). Forest cover estimates based on Landsat data are available for 1989 and 

1994 (Morales 1993 and 1996). The total accumulated area of forest cleared by humans prior to 

1994 was about 2.1 million hectares or 6% of the land area, most of it is concentrated within 

about 200 km of the capital city, Santa Cruz. In 1994, some 15 million hectares of forest 

remained, along with some 1.9 million hectares of agriculture and 3.2 million hectares of 

pasture or savanna (an increase of 281 thousand hectares since 1989). Much of the savanna and 

pasture is natural, especially in areas of the Chiquitano Shield, the Pantanal, the Quimome area, 

and in the sub-Andean zone. 

 

Annual deforestation rates have been increasing rapidly since the mid-1980s. Between 1986 and 

1990, CUMAT (1992) found that 38,000 hectares of forest were cleared annually in the 

Amazonian portion of Santa Cruz. That region covers only 61% of Santa Cruz, but accounts for 

a much higher percentage of forest clearing. Approximately 78,000 hectares were cleared 

annually in all of Santa Cruz between 1989 and 1992, rising to 117,000 hectares annually 

between 1992 and 1994 (Morales 1993 and 1996). 

 

Most deforestation in Santa Cruz is by large mechanized soybean and wheat farmers, small 

agricultural colonists who practice mainly slash and burn rice and maize cultivation, and large 

cattle ranchers (Pacheco 1998). The mechanized farm sector has grown rapidly over the last 

fifteen years, and now accounts for a majority of forest clearing. Most of this growth has been in 

the area east of the Rio Grande River, known as the “expansion zone”. Small agricultural colonists 

have expanded into moister forest areas suitable for rice growing to the north and west of the city 

of Santa Cruz. Forest clearing for pastures is concentrated in northeastern Santa Cruz. 

Data 

Our data were drawn from a GIS produced by the ‘Santa Cruz National Resource Protection 

Project’ implemented by the Government of Santa Cruz with funding from KFW and technical 

assistance from a consortium composed of the IP, SCG, and KWC consulting companies. The 

initial objective of that GIS was to develop a land use plan (PLUS) for the entire department of 

Santa Cruz. Hence forth, we will refer to it as the PLUS GIS. 



 

The PLUS GIS was compiled from several sources. Most data were digitized from 1:250,000 

maps, but some layers were captured at other scales and obtained from other sources. Many 

layers obtained were based on the UTM elipsoid IU661967.  

 

 GIS layers of particular significance for our study included: 

• Land  use in 1989, 1992, and 1994 (i.e., several classes of urban, agriculture, forest, etc) 

• Vegetation, soil types and rainfall data using a standard classification, 

• Details of the road and rail network (including logging/mining roads), 

• Administrative data including urban areas, forest concessions, colonization areas, 

indigenous territories, protected areas, etc. 

 

The land use, vegetation type and soils data were provided in raster form, and were converted to 

vector format. The forest concession boundaries were obtained from the Sustainable Forestry 

Management (BOLFOR) Project. The 1989 land use data were compiled from Earthsat Data 

analyzed by the CUMAT consulting company, and were considering "quite reliable" by Ivan 

Morales (pers comm), the expert who analyzed the 1992 and 1994 Landsat data. 

 

The 1989 land use data delineate forests, deforested areas, savanna and pastures, areas with little 

or no vegetation, water, and urban areas.  The 1994 land use data further sub-divides the 

deforested areas into traditional agriculture, commercial agriculture, mixed agriculture, 

agriculture with forests and forests with agriculture. The 1989 data had a resolution of 1 x 1 km 

(100 ha), whereas the resolution in 1994 was 250 x 250 m (about 6 ha). Some areas were 

omitted from the north-west in the 1989 data and from the east in the 1994 data and these areas 

have been excluded from our study. The cloud cover was minimal in the 1994 images used to 

assess land use, so this assessment is considered more comprehensive than the previous 

assessments.  

 

Despite considerable care and attention to detail in compiling the GIS, there were some 

anomalies that we could not reconcile. Deforestation estimates obtained by calculating the area 

in agricultural land in 1994 that had been forest in 1989 inexplicably provided different 

estimates than when we combined all agricultural lands in 1989, 1992, 1993 and 1994, and then 

subtracted the land already agriculture in 1989. Although the latter approach provided estimates 

consistent with independent estimates by BOLFOR (namely 552,985 ha), the discrepancy is 

unsettling. 

Methods 

An analysis of deforestation of this kind poses many interrelated questions: 

• What should we try to predict: deforestation rate 1989-94 or total deforestation to 1994? 

• Should we use a binomial (forest, non-forest) or a multinomial model that considers the 

various end-uses of former forest land? 

• How should we transform the dependent variable to make analyses tractable and results 

meaningful: is it better to use a logarithm, logistic or probit transformation? 

• What explanatory variables should we consider in our analysis, and how can we minimize 

the correlation between these variables? 

• How can we efficiently transfer the data between  the GIS and the statistics package, while 

minimizing spatial autocorrelation?1 

                                                           
1 Spatial autocorrelation is a common problem with geographic data, since nearby locations are 

more likely to be similar than distant ones. This can lead to inaccurate measures of statistical 

significance. Several methods exist for partially correcting for spatial autocorrelation, although 

none is fully satisfactory (Rosero-Bixby and Palloni, 1996; Chomitz and Gray, 1995).  
 



• How can we tell if we have a problem with multiple or spatial autocorrelation? 

• How can we discriminate endogeneous and exogeneous variables? 

 

Somewhat surprisingly, prior studies offer little guidance on these issues.  

Theory, initial hypotheses and response variable 

Based on economic theory and previous modeling exercises, we hypothesized that the more 

productive land (i.e., Soil type I, with rainfall exceeding 1000 mm) and land with better access 

to markets (lower transportation costs) would be cleared first. We anticipated that zoning an 

area as a forest concession or protected area would impede deforestation, while zoning it as a 

colonization areas would encourage deforestation. In addition, we hypothesized that indigenous 

people have cultural attributes that lead to less deforestation. 

 

Although both the total deforestation to date and the recent deforestation rate (1989-94) are of 

interest, it is the latter that is of most interest, as it is the best indicator of current trends and 

responses to existing policies. Similarly, although the end-use of deforested land is of interest, 

the binomial model is more tractable and simplifies analyses. We examined a simple binomial 

model that considered only land forested in 1989: if deforested during 1989-94 the response 

variable was coded 0, otherwise it was coded 1. This provides a model that could be used to 

predict deforestation during 1994-99, and could be checked by making empirical tests of 

predictions for 1999. To ensure unambiguous regarding deforestation during 1989-94, we 

deleted from our data set all areas that were not forest in 1989, including areas that were 

ambiguously defined in the 1989 classification (e.g., cloud, “no data”, etc.). 

 

Economists often favour the use of logarithmic transformations, as parameter estimates can then 

be interpreted directly as elasticities (i.e., predictor variables are multiplicative, so that a unit 

change in a predictor variable always causes the same percentage change in the response 

variable). This may be helpful when all predictor variables are expressed in the same units, but 

becomes less relevant when the nature of the predictors varies greatly. Statisticians tend to 

prefer logistic and probit transformations for binomial data because standard assumptions are 

better satisfied, and predictions are constrained correctly. The probit and logistic 

transformations are similar in many respects, but my previous experience (Vanclay 1994) 

inclines me to favour the logistic transformation (weighted for polygon area). Fortunately for 

economists, the logistic is very similar to the logarithmic transformation if rates of change do 

not exceed 0.25, so provided deforestation rates remain modest, parameter estimates may still be 

interpreted as elasticities. 

Sampling 

Although some statistics packages claim to be able to interface directly with GIS, it is 

convenient to extract data from the GIS as a simple text file, so that it can be used with any 

statistics package. However, this raises the question of how best to extract the data: should a 

sample of selected points be taken, should polygons form the basis for analysis, or should some 

other alternative be adopted (Figure 2)? 

 

Systematic selection of sample points ensures a compact data set and simplifies analyses, but 

fails to make full use of the available information. A small sample may be statistically 

inefficient, but computationally convenient. A larger sample size makes more efficient use of 

information, but also increases the potential for spatial autocorrelation. Some researchers prefer 

to sample tiles rather than points, arguing that these are more representative in fragmented 

landscapes where correct alignment of the various GIS layers may be problematic. If these tiles 

tessellate the study area (e.g., square tiles rather than circular plots), a complete census may be 

analysed, but this again introduces the possibility of spatial autocorrelation. One way to make 

better use of information while minimizing autocorrelation is to stratify (e.g., forested versus 

deforested, and close to versus distant from town/road), sample strata with different intensities 



(i.e., sample more intensively in strata of particular interest), and weight regression analyses 

accordingly (sometimes called choice-based sampling). Another alternative is to use polygons 

occurring spontaneously within the GIS. Although this may reduce the unnecessary proliferation 

of sample units, layers contributing to the tessellation need to be chosen carefully to ensure 

meaningful polygons and avoid problems with omitted variables. Additional problems may 

occur if some polygons become excessively large, since they may no longer be homogeneous 

(especially with regard to distance to roads and towns) and this may mask relationships. We 

chose to adopt the polygon approach, using polygons based on variables identified in our a 

priori hypotheses (Land use in 1994, Concession, Indigenous, Protected, Colony, Soil type). 

Other attributes (e.g., rainfall, distances to roads, towns, etc) of polygons are assessed at the 

polygon centroid. Large polygons were further fragmented using a regular grid to improve 

homogeneity with respect to distances. 

 

Although spatial autocorrelation is a significant concern, it is only one factor to be considered. 

One aspect of spatial autocorrelation can be minimized by taking care to avoid omitting key 

variables. Even where all relevant variables are included in the model, error terms may remain 

spatially autocorrelated: although this will cause unreliable test statistics, the parameter 

estimates will remain unbiased (see Nelson nd). 

 

Another issue canvassed in the literature is selection bias, and the effect it may have on 

parameter estimates. The classic example of this is the observation that high school grades show 

little impact on college grades, if a sample is restricted to current college students - because 

students into college despite poor school grades probably had something else going for them. 

And it may be that in our study there are some observations on good soils close to a road that for 

some reason remained forested in 1989, perhaps because they are subject to some informal 

protection about which we have no data. It is not unexpected that they remained forested in 

1994, and this may bias our estimates of the impact of roads. There are some techniques that 

attempt to adjust for the selection bias to gauge the real effect of roads (e.g., the 'heckit' model, 

Ken Chomitz, pers comm), but the real issue is the definition of the population to which the 

model applies. 

Explanatory variables 

Two issues are of particular relevance in the selection of possible explanatory variables: 

Multicollinearity: there are many variables of potential interest, and since most are highly 

correlated with other explanatory variables, a parsimonious selection is necessary be 

made to ensure a tractable analysis. We chose potential explanatory variables according 

to our a priori hypotheses, examined the correlation matrix, and monitored parameter 

estimates to avoid problems with multicollinearity. 

Endogeneity: how do we know that roads and towns are not located in places which are good to 

deforest, rather than deforestation occurring because of the proximity of roads and 

towns?  Although it is reasonable to assume that major highways and logging roads are 

exogenous with respect to local suitability for agriculture, it seems likely that tertiary 

rural roads are endogeneous. The problem may be reduced by controlling for 

agricultural suitability and using independent variables from a time period prior to the 

dependent variables. 

 

We computed 20 potential explanatory variables (Table 2) each polygon in the GIS, and 

transferred these to the statistics package S-plus for further analysis. Some transformations of 

these variables were considered, but appeared to contribute little improvement in predictions. 

Table 3 reveals the correlations within the data used in our analyses. It is noteworthy that the 

single best predictor, distance to Santa Cruz, is highly correlated with most other variables. 



Results 

A series of models were fitted with generalized least squares using a logistic model weighted by 

polygon area. At each step, we selected the model that offered the greatest reduction in 

deviance, until at step 6 (see Table 4), no further significant improvements in the model could 

be obtained (P<0.01). All parameter estimates in Table 3 are significantly different from zero 

(P<0.01). The relative stability of parameter estimates as additional terms were included in the 

model confirms that multicollinearity is not problematic in the models presented. 

 

The parameter estimates obtained are not surprising, and are consistent with a priori hypotheses. 

In one sense, this is disappointing - a large amount of work has not revealed anything that we 

did not know already. Perhaps the most interesting result is that indigenous territories are not 

statistically significant, in contrast to our initial expectation that this tenure class might help to 

preserve forest. There is empirical evidence to support our contention that in Bolivia, forest 

concessions do in fact, help to minimize deforestation, in contrast to colonization areas where 

deforestation is higher (Figure 3). 

 

Although we believe our results to be reliable, we stress that these results are preliminary, and 

subject to further examination of our GIS data and to further refinements to our method. Care is 

also required in interpreting the coefficients reported in Table 3. An economist who examines 

on the size of the regression coefficient will observe the apparently high elasticity of forest 

fragmentation, as reflected in the parameter estimate for the Matheron Index. However, a 

graphical analysis suggests a different conclusion - namely that the distance to deforestation is 

the most important factor. These interpretations differ because the Matheron Index varies 

between 0 and 0.05, whereas the distance to deforestation varies between 0 and 100 km. 

Comparisons of our results with parameter estimates for the Matheron Index in other studies 

should be made cautiously, since we computed the index for a circular neighbourhood within 1 

km of the polygon centroid, whereas many other studies compute the index within a 9 x 9 pixel 

neighbourhood. 

Discussion 

The results we have obtained warrant further examination, in part because of concerns about the 

integrity of the GIS, the adequacy of the sampling scheme, and the high correlation between the 

distance to Santa Cruz and other variables. Two other important factors that may have been 

usurped by the distance to Santa Cruz include rainfall and soils type, and we wish to re-examine 

alternative models which exclude the distance to Santa Cruz. We also wish to examine other 

aspects of soil type, in addition to the 8-point USDA classification. We have details of a number 

of specific soil characteristics, including erosion susceptibility, drainage, salinity, alkalinity, 

depth, nutrient status, presence of hard pans, and other factors. We are also interested to explore 

alternative sampling schemes (see Figure 2). 
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Table 1. Predictors of Deforestation 

Study Country More 

roads 

Closer to 

markets 

Better soils 

&/or drier 

Nearer 

forest edge 

Brown et al. (1993) Malaysia n.a. n.a. n.a. increase 

Chomitz & Gray (1995) Belize increase Increase increase n.a. 

Gastellu-Etchegorry & 

Sinulingga (1988) 

Indonesia n.a. n.a. increase n.a. 

Liu et al. (1993) Philippines increase n.a. n.a. increase 

Ludeke et al. (1990) Honduras increase n.a. increase increase 

Mertens & Lambin (1997) Cameroon increase Increase n.a. increase 

Nelson & Hellerstein (1995) Mexico increase Increase n.a. n.a. 

Rosero-Bixby & Palloni (1996) Costa Rica increase n.a. increase increase 

Sader and Joyce (1988) Costa Rica increase n.a. increase n.a. 

n.a. = not applicable 



Table 2. Variables extracted from GIS for statistical analysis 

Polygon-ID 

Area of the polygon (ha) 

Forest-94 (1=still forest, 0=not forest) 

Concession (1=inside, 0=outside) 

Indigenous territory (1=inside, 0=outside) 

Protected area (1=inside, 0=outside) 

Colonization area (1=inside, 0=outside) 

USDA Soil group (1-8) 

Precipitation (mm, for centroid of polygon) 

Distance to nearest paved road (km) 

Distance to nearest unpaved road (km) 

Distance to nearest forestry/mining road (km) 

Distance to nearest railroad (km) 

Distance to nearest category 1 town (Santa Cruz, km) 

Distance to nearest category 2 town (km) 

Distance to nearest category 3 town (km) 

Distance to nearest category 4 town (km) 

Distance to nearest category 5 town (km) 

Distance to nearest category 6 town (km) 

Distance to nearest non-forest land (km) 

Distance to nearest land  that was deforested prior to 1989 (km) 

Matheron's index for forest/non-forest within 1 km radius of centroid 

 



Table 3. Correlation matrix 
 Forest Conc Indig Prot Colon Soil Rain DR1 DR2 DLRb DLRo DRR DAT DT1 DT4 DNF DDF FA1 MI 

Forest 1.00 0.14 -0.01 0.08 -0.19 0.13 -0.03 0.23 0.23 0.24 0.24 0.16 0.20 0.27 0.19 0.27 0.34 0.01 0.08 

Conc 0.14 1.00 -0.01 0.10 -0.19 -0.01 0.37 0.21 0.12 0.10 0.30 0.24 0.25 0.19 0.08 0.18 0.16 0.10 0.11 

Indig -0.01 -0.01 1.00 -0.06 -0.08 0.07 -0.06 -0.10 -0.09 -0.08 -0.06 -0.01 -0.05 0.06 0.07 -0.11 -0.08 -0.03 -0.05 

Prot 0.08 0.10 -0.06 1.00 -0.07 0.08 0.05 0.31 0.19 0.20 0.37 0.20 0.29 0.12 0.02 0.30 0.24 -0.01 0.00 

Colon -0.19 -0.19 -0.08 -0.07 1.00 -0.14 0.09 -0.20 -0.18 -0.18 -0.18 -0.15 -0.15 -0.34 -0.28 -0.21 -0.22 -0.10 -0.13 

Soil 0.13 -0.01 0.07 0.08 -0.14 1.00 0.02 0.04 0.14 0.16 0.15 0.16 0.17 0.23 0.18 0.07 0.13 -0.09 -0.08 

Rain -0.03 0.37 -0.06 0.05 0.09 0.02 1.00 0.05 -0.04 -0.09 0.11 0.14 0.08 -0.06 -0.18 -0.05 -0.06 -0.15 -0.15 

DR1 0.23 0.21 -0.10 0.31 -0.20 0.04 0.05 1.00 0.46 0.46 0.67 0.04 0.22 0.48 0.32 0.59 0.48 0.13 0.17 

DR2 0.23 0.12 -0.09 0.19 -0.18 0.14 -0.04 0.46 1.00 0.97 0.22 0.42 0.69 0.23 0.26 0.56 0.60 0.15 0.19 

DLRb 0.24 0.10 -0.08 0.20 -0.18 0.16 -0.09 0.46 0.97 1.00 0.26 0.43 0.71 0.26 0.28 0.57 0.62 0.16 0.19 

DLRo 0.24 0.30 -0.06 0.37 -0.18 0.15 0.11 0.67 0.22 0.26 1.00 0.21 0.27 0.42 0.04 0.37 0.32 0.08 0.12 

DDR 0.16 0.24 -0.01 0.20 -0.15 0.16 0.14 0.04 0.42 0.43 0.21 1.00 0.79 0.16 0.10 0.21 0.34 0.01 0.05 

DAT 0.20 0.25 -0.05 0.29 -0.15 0.17 0.08 0.22 0.69 0.71 0.27 0.79 1.00 0.21 0.17 0.35 0.45 0.07 0.10 

DT1 0.27 0.19 0.06 0.12 -0.34 0.23 -0.06 0.48 0.23 0.26 0.42 0.16 0.21 1.00 0.88 0.45 0.45 0.14 0.17 

DT4 0.19 0.08 0.07 0.02 -0.28 0.18 -0.18 0.32 0.26 0.28 0.04 0.10 0.17 0.88 1.00 0.45 0.43 0.15 0.17 

DNF 0.27 0.18 -0.11 0.30 -0.21 0.07 -0.05 0.59 0.56 0.57 0.37 0.21 0.35 0.45 0.45 1.00 0.67 0.20 0.25 

DDF 0.34 0.16 -0.08 0.24 -0.22 0.13 -0.06 0.48 0.60 0.62 0.32 0.34 0.45 0.45 0.43 0.67 1.00 0.14 0.21 

FA1 0.01 0.10 -0.03 -0.01 -0.10 -0.09 -0.15 0.13 0.15 0.16 0.08 0.01 0.07 0.14 0.15 0.20 0.14 1.00 0.85 

MI 0.08 0.11 -0.05 0.00 -0.13 -0.08 -0.15 0.17 0.19 0.19 0.12 0.05 0.10 0.17 0.17 0.25 0.21 0.85 1.00 

 



Table 4. Parameter estimates 

Model Intercept Santa Cruz 
(km) 

Deforest.n 
(km) 

Log Road 
(km) 

Colony Matheron Concession 

1 1.10 0.0144      

2 0.63 0.0059 0.31     

3 0.41 0.0036 0.32 0.0082    

4 0.58 0.0031 0.32 0.0082 -0.46   

5 0.41 0.0029 0.32 0.0081 -0.44 14  

6 0.35 0.0029 0.32 0.0076 -0.39 14 0.35 

 



Figure 3. Effect of land tenure on deforestation rate 
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Figure 2. Sampling options 
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