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From a Gaussian Mixture Model to Additive
Fuzzy Systems

Ming-Tao Gan, Member, IEEE, Madasu Hanmandlu, Member, IEEE, and Ai Hui Tan

Abstract—This work explores how a kind of probabilistic system,
namely the Gaussian mixture model (GMM), can be translated to
an additive fuzzy system. We will prove the mathematical equiva-
lence between the conditional mean of a GMM, and the defuzzified
output of a generalized fuzzy model (GFM). The relationship be-
tween a GMM and a GFM, and the conditions for GMM to GFM
translation will be made explicit in the form of theorems. The work
will then extend to special cases of the GFM, specifically the Mam-
dani–Larsen and Takagi–Sugeno fuzzy models. The possibility of
reverse translation, that is, from a GFM to a GMM will also be dis-
cussed. Finally, we will consider the generality of a GMM, specifi-
cally how it can approximate other distribution functions.

Index Terms—Additive fuzzy systems, conditional means,
functional equivalence, Gaussian mixture models, generalized
fuzzy models, Mamdani–Larsen models, probabilistic systems,
Takagi–Sugeno models.

I. INTRODUCTION

THE mathematical theory of probability was formulated
around 1660 [1]. From that time until the mid-twentieth

century, uncertainty was almost solely modeled in terms of
probability theory. The foundations of probability theory (PT)
was continually developed and refined over a period of three
centuries [2].

In the 1950s, however, alternative theories on uncertainty
began to challenge the monopoly [3] of probability theory.
Most notable of these are fuzzy set theory (FST) [4], [5] and
possibility theory [6]. Zadeh’s paper on fuzzy sets in 1965 [7]
was the spark of a lively debate between proponents of PT
(“probabilists”) and proponents of FST (“fuzzyists”), which
have continued to this day. Initial criticisms, especially by
probabilists toward FST, were sometimes very harsh. Fuzzyists
responded in kind, thus creating a virtual competition between
fuzzy and probabilistic approaches.

At the core of the debate is the relationship between PT and
FST. A survey of literature yields a variety of claims. Some are
indeed valid (i.e., verified through formal mathematical proofs).
Others are more of a reaction to criticisms. Still others are due to
“dogmatic or overenthusiastic point of views” [8]. What follows
is a sampling of claims from both sides of the debate, and where
appropriate, responses from the opposition.
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“FST is just PT in disguise.” Criticizing fuzzy sets as being
nothing but misunderstood, fake or ill-conceived probabilities
were popular by “pure” probabilists in the days of FST’s
infancy. Instances of such literature are by Stallings [9],
Cheeseman [10], and Laviolette et al. [11], with replies by
Dubois and Prade [12], Klir [13] and Zadeh [14]. Cheeseman
[10], for example, was correct in interpreting the membership
function of a fuzzy set as a likelihood function. However, he
asserted, that on such grounds, fuzzy sets are nothing new.
Dubois and Prade concurred that it is possible to interpret FST
in terms of PT. However there are ways of approaching FST
that has nothing to do with PT. In [15], they reviewed two
interpretative settings for fuzzy sets in which the notion of
probability is no longer needed. One can also consult Mabuchi
[16], [17] for a systematic analysis of fuzzy sets and their
possible interpretations.

“PT is a special case of FST.” Predictably, some fuzzyists
reacted to the above claim with this counter-claim. Kosko [18]
concluded in this way when he compared fuzzy relative cardi-
nality with conditional probability. Viertl [19] proposed a hier-
archy in which probabilistic methods represent but an interme-
diate stage in the evolution of uncertainty models, while fuzzy
models represent the highest stage. Another common assump-
tion by fuzzy logic practitioners is to equate probability degrees
with membership grades (see [20] and [21], for instance). Inter-
estingly, this claim, also dubbed the “superset hypothesis” [22],
was debunked by fuzzyists themselves. For example, Dubois
and Prade [12] stressed that membership function can, but need
not be, related to probability. As in the counter-argument for the
previous claim, FST can be related to PT, or they can be viewed
as standing apart from PT. Mathematical objects that behave like
fuzzy sets do exist in PT, but this does not mean that fuzziness
is reducible to randomness [15].

“PT is superior to FST.” Radical claims along this vein were
put forward by probabilists such as Cheeseman [23], and Lavi-
olette and Seaman [22]. Some, like Lindley [24], went even fur-
ther and claimed that “the only satisfactory description of un-
certainty is probability.” In [22], Laviolette and Seaman criti-
cized how FST handles ambiguity and vagueness as concepts of
uncertainty distinct from probability. Utilizing three examples,
they alleged that FST handles uncertainty less efficiently than
PT. In reply, Klir [13] cited the Cambridge debate [25], where
arguments were presented in favor of vagueness as a distinct un-
certainty from probability. Dubois and Prade [12] showed how
uncertainty can be expressed by ordinal models that are not re-
lated to probability.

It is a relief to note that the “PT versus FST” debate has
mellowed somewhat as of to-date. More likely, probabilists
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and fuzzyists are coming to realize that “probability theory
and fuzzy logic are complementary rather than competitive”
[14]. Like Dubois and Prade [12], we subscribe to a “disjoint
set assumption with multiple optional bridges.” We agree with
them that “instead of considering probability and fuzzy sets
are rivals, it sounds more promising to build bridges and take
advantage of the enlarged framework for modeling uncertainty
and vagueness they conjointly bring us to” [15]. Several do-
mains where FST and PT are conjointly used are fuzzy random
variables [26], statistics with fuzzy events [27], modeling of
linguistic probabilities with fuzzy sets [28], and more recently,
perception-based PT [14], which is a three-stage generalization
of PT, i.e., fuzzification, granularization and natural-language
generalization.

While it is now clear that PT is not FST (and vice versa), we
wish to highlight that it is possible to interpret some aspects of
FST within the framework of PT, and vice versa. The history of
such relationships is already quite long, and we list here several
existing bridges between probability and fuzzy sets ([8], [15])

i) fuzzy sets can be cast in random set theory (see [29]
and [30]);

ii) fuzzy sets can be interpreted as likelihood functions
(see [31] and [32]);

iii) fuzzy sets can be used in statistical inference (see [33]);
iv) fuzzy set connectives can have probabilistic interpre-

tations (see [15]).
In subsequent sections, we will attempt a further contribu-

tion to the bridge from probability to fuzzy logic by explic-
itly demonstrating how a kind of probabilistic system can be
translated into a kind of fuzzy system. The probabilistic system
considered will be one modeled by Gaussian mixtures. Fuzzy
systems are limited to the additive kind, with multiplicative con-
junction and implication operators.

Specifically, we will prove that the conditional mean of a
GMM [34] is mathematically equivalent to the defuzzified
output of a GFM [35]. We will begin with single-input–
single-output (SISO) systems and then extend our proof to
multiple-input–single-output (MISO) systems. We will cul-
minate our work by proposing a number of theorems that
explicitly describe the relationship between a GMM and the
fuzzy systems it translates to.

II. ADDITIVE FUZZY MODELS

Additive fuzzy models found in the literature can be gener-
ally divided into 3 broad types, i.e., the Mamdani–Larsen (ML)
Model [36], [37], the Takagi–Sugeno (TS) Model [38], and the
recently proposed GFM [35]. While having the same IF-part
form, the fuzzy models are distinguished by how the THEN-part
of their fuzzy rules is defined

IF is is

is THEN is (1)

IF is is

is THEN is (2)

IF is is

is THEN is (3)

Each rule is premised on the vector , and
maps fuzzy subsets in the input space to a fuzzy
subset in the output space, . is a fuzzy set sub-
scribed by the input variable in the th rule, and ^ is a fuzzy
conjunction operator.

, found in the THEN-part of ML’s fuzzy rule, is a
fuzzy set with centroid and index of fuzziness . If is
the membership function of , then and are computed
by

(4)

(5)

Equations (4) and (5) are formulas for the area and centroid of
, respectively.

Instead of a fuzzy set on the output space, the TS model has a
varying singleton defined by . This can be linear or non-
linear, and is a function describing the input–output relationship
in a localized input–output space. A linear form of is

(6)

Combining the properties of both the ML and the TS models,
Azeem et al. [35] proposed the GFM with a consequent fuzzy
set of the form . now has a varying centroid,

(in contrast with ML’s static centroid ), while still
maintaining its “fuzziness,” quantified by (in contrast with
the TS’s singleton-type consequent).

The firing strength of the th rule, obtained by taking the
fuzzy conjunction (denoted by ) of the membership functions
of a rule’s IF-part, is

(7)

where is the membership function of fuzzy set . The
firing strength of the th rule is also represented as a fuzzy set

in the input space. Hence, a fuzzy rule can be written
more compactly as

IF is THEN is (8)

Using the fuzzy implication operator (denoted by ) for
mapping fuzzy subsets from the input space to the
fuzzy subset in the output space , the resultant fuzzy
set has a membership function

(9)

The fuzzy disjunction operator (denoted by ) is used to join
the mapped regions for all rules in the output space. The
aggregated fuzzy set in the output region is obtained from

(10)
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Applying the weighted average gravity method for defuzzifi-
cation, the defuzzified output value is thus given by

(11)

where is the resultant membership function of
in the output space.

Different classes of each of the fuzzy models discussed can
be derived on the basis of choices present in the conjunction
operator, the implication operator and the disjunction operator.
In this work, we shall focus only on the class employing mul-
tiplicative conjunction, multiplicative implication and additive
disjunction. The defuzzified output formulas corresponding to
this class of the ML model, TS model, and GFM are, respec-
tively, obtained from (11) as

(12)

(13)

(14)

III. GMM

Mixture distributions are statistical distributions expressed as
superposition of compound distributions [34]. The most widely
used finite mixture distributions are those involving normal
components.

The Gaussian mixture probability density function (pdf) for
a vector random variable , of dimension , has the following
form [34]:

(15)

where are the independent
mixing proportions of the mixture and are such that

and (16)

is a ( by ) matrix, and
is a ( by ) matrix, in which

and are the mean vector and covariance matrix, respec-
tively. is the -th component multivariate
( -dimensional) normal density, given by

(17)

IV. FROM A GMM TO A GFM—SISO CASE

Consider a dataset with one independent variable, , and one
dependent variable, . Let the dataset be drawn from separate
normal distributions with different means and
covariances . Hence, we can approximate the
joint pdf of by a Gaussian mixture with components

(18)

With , it is possible to estimate the expected value ,
when is given

(19)

The expansion of one term of is given by

(20)

where is the covariance matrix given by

Note that (symmetric matrix), and and
are the determinant and inverse of , respectively.

The marginal pdf of , is given by

(21)
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Since , hence

(22)

The conditional pdf and hence the conditional expectation of
then becomes (23) and (24), as shown at the bottom of the page.
Since the forms of all integrals in (24) are similar, we will
derive the result for only one term, and extend it to the others
(see Appendix A). Substituting (A.2) and (22) into (24), we have

(25)

This is an explicit formula to compute the statistical expectation
of the output of a SISO system, when it is known (or assumed)
that the input and output are jointly distributed according to a
Gaussian mixture.

Note that (25) is similar in form to (14), and both are equiva-
lent if the following conditions are true.

Conditions I:

i) The number of rules in the GFM rule base equals
the number of components in the GMM, i.e.,

for .
ii) The weight of each rule, , is given by the corre-

sponding prior of the mixture model , i.e.,

iii) The regression function in the THEN-part of the GFM
rules is linear, i.e.,

iv) The membership function in the IF-part of the GFM
rules, , is a Gaussian function with mean and
variance , i.e.,

v) The fuzzy system is additive, with multiplicative im-
plication.

These are the conditions under which there is mathematical
equivalence between the output of a GFM and the expected
output of a GMM. What this means is that for any SISO system
whose input-output joint probability distribution is known to be
a Gaussian mixture, there exists, under Conditions I, a fuzzy
system which equivalently models its expected output.

The GMM to GFM translation can be stated concisely in The-
orem 1. We denote the input as and the output as .

Theorem 1: If the input–output relationship of a SISO
system follows a Gaussian Mixture probability distribution as
defined in (18), then the system can be modeled by a GFM
under Conditions I.

Can Theorem 1 be generalized to MISO systems? The
next section attempts to derive the mathematical equivalence
between a multi-input GMM and a multi-input GFM.

V. FROM A GMM TO A GFM—MISO CASE

A MISO system is representative of all possible systems
because

i) by virtue of having multiple inputs, it is more general
than a SISO system;

ii) a MIMO system can be decomposed into several MISO
systems.

Let the input vector to the MISO system be , and the output
be . The first variables form the input vector while the

th variable is the output. We can rewrite the general form of
the Gaussian mixture for the multiple-input case as

(26)

where

for

(23)

and

(24)
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and . Note that is a symmetric matrix, where
.

The marginal pdf of for the th term of is given by

(27)

where is the minor of the matrix , after eliminating the
th row and th column (see Appendix B). Hence,

the marginal pdf of is

(28)

The conditional pdf in (23) becomes

(29)

Now, we compute the conditional expectation of : (24)

(30)

The form of the integrals for all terms in (30) is similar, so we
will derive the result for the th term and apply it to the others
(see Appendix B). Substituting (B.6) into (30), we obtain

(31)

where is a partition of the covariance matrix, , while
and are partitions of its inverse.

Equation (31) does not match any of the defuzzification for-
mulas in Section II. However, if we introduce the assumption
that the input variables are mutually independent (not unreason-
able statistically), then the covariance matrix becomes

for (32)

Note that since the input variables are independent of each other,
their covariances are zero. However, the th row and the

th column are generally nonzero, since we cannot as-
sume that the input variables are independent with respect to
the output variable.

With (32), (31) now becomes

(33)

Comparing (33) with (14), we see that they are equivalent under
the following conditions.

Conditions II:

i) The number of rules, , in the GFM rule base equals
the number of components, , in the GMM, i.e.,

for .
ii) The weight of each rule, , is given by the corre-

sponding prior of the mixture model , i.e.,

iii) The regression function in the THEN-part of the GFM
rules is linear, and is a function of all input variables,
given by

iv) The membership function for each of the IF-part vari-
ables is a Gaussian function, i.e.,

for

v) The fuzzy system is additive, with multiplicative con-
junction and implication.

Parts i), ii), and iv) of Conditions II are exactly the same as
those of Conditions I. Part iii) also bears some similarity, except
that is now a linear function of input variables, instead
of a single input variable. Part v) constrains the conjunctive and
implicative fuzzy operators to the multiplicative kind, and the
disjunctive fuzzy operator to the additive kind.
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To correspond with the form of the system output in (33), the
rule base of the GFM in (3) can be rewritten as

IF is

is

is

THEN is (34)

for .
It is clear that our conclusions for SISO systems also hold

for MISO systems. Provided that Conditions II are satisfied,
the output of a multiple-input GFM and the expected output
of a multiple-input GMM are mathematically equivalent. Thus,
for any MISO system with statistically independent inputs, and
whose input–output joint probability distribution is known to
be a Gaussian Mixture, there exists a GFM that equivalently
models its expected output under Conditions II.

The GMM to GFM translation for MISO systems is formally
expressed by Theorem 2.

Theorem 2: Suppose we have a MISO system with inputs,
where the inputs are mutually independent. If the input–output
relationship obeys a Gaussian mixture probability distribution
as defined in (26), then the system can be modeled by a GFM
under Conditions II.

Theorems 1 and 2 are bridges between a type of probabilistic
system and a type of fuzzy system. In essence, they allow us
to interpret a probabilistic system modeled by Gaussian Mix-
tures from within a fuzzy logic framework. A note of caution
is in order, however. Just because a probabilistic system can be
interpreted as a fuzzy system does not mean it should be. As
discussed in Section I, a fuzzy system is generally not a proba-
bilistic system (and vice versa). It will serve us well not to repeat
the same mistaken conclusions of past debates.

VI. SPECIAL CASES

Azeem et al. [35] showed that the GFM could be reduced
to either the ML model or the TS model. It may follow that
the corresponding Gaussian mixture pdf can also be reduced to
accommodate these special cases. We will now attempt to derive
the pdfs that can be translated into the ML and TS fuzzy models,
and deduce their statistical implications.

A. From a GMM to a ML Fuzzy Model

Recall the defuzzification formula of the ML model given in
(12). Equation (12) is equal to the defuzzification formula of the
GFM if the regression function in (14) is reduced to a constant,
i.e., . We know from the previous derivations that if
a GFM was translated from a GMM, then

(35)

As we can see, in (35) is generally not a constant. How-
ever, it can be made a constant by eliminating all its variables,
i.e., . This can be achieved by setting to be a zero vector.

becomes zero when in becomes zero.

Proof: Recall the expressions for and in (B.1)
and (B.2). We have already imposed the constraint that

when . To force (and, therefore, ) to be-
come a zero vector, we impose another constraint on , where
we set and to zero vectors. Then, becomes a diag-
onal matrix

(36)

The inverse of diagonal matrix is also a diagonal matrix, with
the entries of having the inverse of the entries of [39, p.
368]. Hence

(37)

which gives and as zero vectors. The proof ends here.
In view of (36) and (37), (35) becomes . So, we

obtain the condition

(38)

which will replace part iii) of Conditions II for the special case
of an ML model.

Note that is the vector of covariances between the input
variables and the output variable. When becomes zero, this
implies that the output variable is independent of the input vari-
ables. This is generally not a good statistical assumption.

We propose the following corollary describing the statistical
properties of a system that translates to a ML model.

Corollary 1: If the input–output relationship of a system fol-
lows a Gaussian mixture pdf and if its inputs and output are mu-
tually independent of each other, then the GFM in Theorem
2 can be reduced to a ML model such that for the th rule,
the regression function in the THEN-part is a constant, given by

, which is the Gaussian mean of the output. All
parts in Conditions II, except part iii), remain unchanged.

B. From a GMM to a TS Fuzzy Model

Recall the defuzzification formula for the TS model given in
(13). Comparing (13) with (14), we see that they are equal if all
the weights of the GFM, , equals unity. This is not possible for
GMM to GFM translation, since the weights in the GFM corre-
spond to the priors of the GMM, and the priors are constrained
by (16). However, a simple algebraic manipulation of (14) will
also yield (13), and yet satisfy the constraint. If we set in (14)
to for all , we obtain

which equals (13). Note that is the number of rules and
, which satisfies the

constraint on the priors.
So the TS model, being a special case of the GFM, is further

related to a special case of the Gaussian Mixture pdf with equal
priors. This relation can be stated formally with Corollary 2.
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Corollary 2: If the input–output relationship of a system fol-
lows a Gaussian mixture pdf of equal priors, with each prior
being , where is the number of Gaussian components,
then the GFM in Theorem 2 can be reduced to a TS model with
equal weights (or unweighted TS model). Barring part ii), all
other parts of Conditions II remain unchanged.

VII. DISCUSSIONS

A. Reconstructing the GMM From a Given Fuzzy System

We have seen from Theorems 1 and 2 how a system whose
inputs and output are Gaussian mixture jointly distributed can
be modeled using the GFM. Now, we are interested to investi-
gate the reverse case. Suppose we begin with an additive fuzzy
system whose rule base is known, is it possible to derive the cor-
responding GMM?

Let the output of a fuzzy system be given by

(39)

Note that was derived from the rule base of an additive
fuzzy system with multiplicative conjunction and implication
operators.

We also expand (33), the equation of the conditional
mean of a GMM by zooming in on the portion of the re-
gression function shown in (40) at the bottom of the page.
To reconstruct the GMM, we need to find the values of

, and . Comparing (39) and (40), we can write the
following set of simultaneous equations (note that ):

(41a)

(41b)

(41c)

(41d)

(41e)

Equations (41a)–(41c) can be solved directly but (41d) and (41e)
require further manipulation. If we substitute (41e) into (41d),
we obtain

It is possible to solve for since the values of
are known from (41b)

(41f)

This leaves us with , and . Looking at
(41e), we see that we have a set of equations in un-
knowns. Hence, there does not exist a unique solution for these
unknowns. In other words, these unknowns can take several
possible values.

If we let , where is an arbitrary value, then (41e)
yields

The solution for , and can be written in
vector form

(41g)

Hence, we conclude that the reverse translation, i.e., the GFM to
GMM translation is one-to-many. In other words, it is possible
to reconstruct the GMM given the GFM, but the GMM is not
unique.

What we have discovered here is surprisingly analogous to
how fuzzy sets relate to random set theory. Quoting Dubois et
al. [8, p. 351]

“ for a given [membership function] , there ex-
ists some random set (not unique), such that the one-
point-coverage function of , namely
is precisely F. In general, without additional assumptions
on the membership function F, we know that F corre-
sponds to the one-point coverage function of more than one
random set.” (emphasis ours)

B. THEN-Part Membership Functions

Both and appear in the THEN-part of fuzzy rules, and
are defined in (4) and (5). Recall that , in the context of this
work, is only valid for the ML model, while is valid for both
ML and GFM models.

We see that both and are dependent on , i.e., the
THEN-part membership function. To establish a connection be-
tween and the GMM, we introduce an extra condition.

Condition III: The THEN-part membership function of the
th rule, , is equivalent to the output marginal pdf of the
th component of the GMM.

(40)
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What follows is a consequence of Condition III. The mar-
ginal pdf of the output is computed from the GMM as

(42)

Hence, the th component of is

(43)

Equating with and substituting into (4), we obtain

(44)

imposing that the area under a Gaussian curve is unity. The result
in (44) agrees with part ii) of Conditions II for both the GFM
(Theorem 2) and the ML model (Corollary 1).

Now, substituting with in (5), we obtain

(45)

The result in (45) agrees with part iii) of Conditions II for the
ML model (Corollary 1).

So, we see that (4) and (5) will yield and similar
to their respective counterparts in the conditional mean of the
GMM, if is taken to be the marginal pdf of the output
(i.e., Condition III is satisfied). The results in (44) and (45)
are another rung in the bridge between the GMM and additive
fuzzy systems.

C. Generality of a GMM

In this section, we turn our attention to systems modeled by
probability distributions other than GMM. Are Theorem 1 and
Theorem 2 applicable in such cases, or are they just limited to

a narrow class of systems? This question is concerned with the
generality of a GMM which, in this specific context, refers to
whether a GMM can be used to approximate other distribution
functions. This is just a function approximation problem. We are
trying to decompose an arbitrary function (i.e., the probability
distribution of interest) into Gaussian components.

Function approximation with Gaussian mixtures is, in fact,
far from impossible. Park and Sandberg [40] proved the uni-
versal approximation property of radial basis function (RBF)
networks. An RBF network is just a linear superposition of
RBFs, of which Gaussian functions are a type. Jorge and
Ferreira [41] zoomed in on approximation by superposition of
Gaussians, while imposing distinct or weaker restrictions on
the functions to be approximated (for example, continuity is
not required).

Putting these results together lead us to conclude that a GMM
can approximate any probability distribution to arbitrary accu-
racy, provided that.

Conditions IV:

i) The number of components, , is sufficiently large;
ii) the parameters of the model (i.e., ) are chosen

correctly.

Therefore, Theorem 1 and 2 can be applied to a system with
any probability distribution, provided that

i) its probability distribution is known;
ii) the GMM approximating this distribution function sat-

isfies Conditions IV.

VIII. SIMULATION RESULTS

We present a brief example to illustrate the use of Theorem
2 using the gas furnace data from [42]. In this gas furnace,
methane was combined with air at a feedrate of in order
to obtain a mixture of gases with carbon dioxide, the concentra-
tion of which is . Successive pairs of 296 observations of

were read off from the continuous records at 9 s
intervals.

We selected , and
as the input variables affecting the present output .

The first 250 vectors of the form
obtainable from the gas fur-

nace data were used to fit a Gaussian mixture density function
with four components. The remaining vectors were reserved to
validate the resulting fuzzy model. Training of the five-vari-
able GMM using the expectation maximization (EM) algorithm
yielded the following values for the model parameters, shown
in Table I.

Invoking Theorem 2, we can construct a MISO fuzzy
system with four rules. We denote the IF-part variables by

and the THEN-part variable by . For
the first rule,

i) the weight of the rule is 0.0720;
ii) the membership functions for each of the

IF-part variables are
,

and , respectively;
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iii) with the invariance covariance matrix shown at the
bottom of the page, the regression function of the
THEN-part is

Carrying out similar procedures for , and ,
we obtain the following GFM rule base:

IF is
is
is
is

THEN

IF is
is
is
is

THEN

IF is
is
is
is

THEN

IF is
is
is
is

THEN

To quantify the performance of the resulting GFM, we use
the performance measure found in [43], which is a form of the
mean squared error function. The performance measure is
expressed by the formula

(46)

where
total number of data vectors;

;
.

For the training data set (the first 250 data vectors),
, which is a very small value and for all practical

purposes, zero. The GFM has indeed been accurately fitted to
the training set. Fig. 1 plots the target output (solid line) and the
model output (dotted line). Due to very small values of model
error at each point, the dotted line has been almost completely
hidden by the solid line.

When the inputs of the validation data set (i.e., the remaining
data not used in training) were fed to the resulting GFM, we
obtained . The performance measure is inferior
compared to that of the training data set, but this is expected
when the GFM is made to predict the output of validation data.
Fig. 2 plots the target output and predicted output. As can be
observed, even with validation data, the GFM has captured the
characteristics and nuances of the “gas furnace” input–output
relationship. The shape of the predicted output plot follows the
target output plot reasonably well.

It is, of course, possible to increase the prediction accuracy
of the GFM. This may be achieved in a variety of ways, for
example, by increasing the number of training iterations of the
EM algorithm, or by increasing the number of rules in the GFM
rule base, or by enlarging the set of training vectors.

IX. CONCLUSION

We have derived the conditions under which there is math-
ematical equivalence between the expected output of a proba-
bilistic system modeled by Gaussian Mixtures, and the defuzzi-
fied output of a GFM. Theorem 1 explicitly describes the GMM
to GFM translation of an SISO system. Theorem 2 deals with
the more general MISO case. For the ML and TS fuzzy models,
they are related to special cases of the GMM, as stated by Corol-
laries 1 and 2.

A natural overflow of our findings is a new way of training a
fuzzy model, as was illustrated with the simulation example. In-
stead of estimating the parameters of the fuzzy rules directly, we
can estimate the parameters of a GMM first (using any popular
density estimation algorithm, such as EM), and then invoke the
relevant theorem to translate the GMM into its corresponding
GFM.

By interpreting a fuzzy system from a probabilistic view-
point, a myriad of statistical tools becomes available at our dis-
posal. For example, by using the fact that the number of mixture
components is equal to the number of fuzzy rules (see Condi-
tions II), the problem of finding the number of rules translates
to finding the number of mixture components.
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TABLE I
ESTIMATED PARAMETERS OF A 4-COMPONENT GMM USING THE EM ALGORITHM

Fig. 1. Plot of target output (solid line) and model output (dotted line) of the training data set, and the corresponding model error.

Our work here primarily focused on systems modeled by
Gaussian mixture probability distributions. However, it is a
simple matter to show that mixture of distributions other than
Gaussian (for example, triangular, trapezoidal, etc.) will result in
other shapes of IF-part membership functions. Moreover, the uni-

versalapproximation property for thesuperpositionofGaussians
guarantees that any distribution function can be approximated as
Gaussian mixtures.

Finally, we have also demonstrated the reconstruction
of the GMM from the GFM, and showed that the GMM is not
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Fig. 2. Plot of target output (solid line) and model output (dotted line) of the validation data set, and the corresponding model error.

unique. Several distinct sets of GMM parameters can be de-
rived from a single GFM. This means more than one GMM can
translate into the same GFM, i.e., GFM to GMM translation is
one-to-many.

Before we close, we reiterate a caution given elsewhere in this
paper. Just because a probabilistic system can be interpreted as
a fuzzy system does not mean it should be. In general, a fuzzy
system is not a probabilistic system. It will serve us well not to
repeat the same mistaken conclusions of past debates.

APPENDIX A

Expansion of one integral term in (24) yields

Completing the square for the integral on the right-hand side,
we obtain

(A.1)
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Defining a Gaussian distribution
, and substituting into

(A.1), we have

(A.2)

APPENDIX B

We represent the elements of the covariance matrix as
and the elements of its inverse as . Accord-

ingly, we have

(B.1)

Note that since is a symmetric matrix, hence .
Therefore, the inverse is

(B.2)

Hence, , or rather

becomes

(B.3a)

Note that like is also a symmetric matrix. (By a theorem
in [39, p. 370], the inverse of a symmetric matrix is another

symmetric matrix). Hence, and
. Then, (B.3a) becomes

(B.3b)

Completing the square for the integral of (B.3b), we obtain

(B.3c)

We define a Gaussian distribution

and substitute into (B.3c) to obtain

(B.3d)
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By theorem [44, Eq. (A.2.4g) ]

(B.4a)

We can also write

or

(B.4b)

Translating this into our notation

(B.4c)

Substituting (B.4c) into (B.3d), the latter becomes

(B.5)

is the th cofactor of , which is also the
determinant of . Hence, (B.5) can be finally simpli-
fied to

(B.6)
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