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Refactoring Object-Oriented Specifications:
A Process for Deriving Designs

Tim McComb, Graeme Smith

School of Information Technology and Electrical Engineering,
University of Queensland, Brisbane, St. Lucia., QLD 4072, Australia.

Abstract

We describe a set of rules for the systematic structural modification of Object-Z
specifications to derive designs that are appropriate for implementation in an object-
oriented programming language. Such a methodology is important for systems that
are sufficiently large to warrant the object-oriented programming approach, but ad-
ditionally require development under strict verification conditions. We demonstrate
that these rules are complete in the sense that from any specification that does not
contain unbounded recursive constructs, any design may be derived which repre-
sents a refinement of the original and also does not contain unbounded recursive
constructs.

1 Introduction

Object orientation is the dominant approach to the development of large-
scale software systems and, indeed, software in general. While diagrammatic
languages like UML [1] are often used to specify object-oriented software,
when strict verification of the implementation is required a formal specification
language such as Object-Z can be more appropriate. Object-Z [2] adds support
for the modularity and reuse constructs offered by object orientation to the
ISO standardised formal specification language Z [3].

Object-Z specifications are appropriate for functional descriptions of systems,
and convenient for abstracting above design details — the classes and class
structure in the specification need not reflect in any way the intended imple-
mentation architecture. However, to implement a system specified in Object-Z
with an object-oriented programming language a design is required. Such a
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design needs to specify the behaviour and data of individual classes, and ad-
ditionally the static structure of the architecture (how the classes are related).

Presently there is little means of moving from an object-oriented functional
specification to a practical object-oriented design in a rigorous manner. The
semantics of Object-Z lend the language to such a methodology though, as
the reference-based treatment of object identity and syntactical inheritance
(there need be no subtype relationship) closely resemble object-oriented pro-
gramming languages like Java [4], CTT [5], and Smalltalk [6].

We have likened the process of modifying an Object-Z specification to intro-
duce design elements to that of refactoring [7], which Fowler describes as the
application of simple rules for the improvement of the design of existing code.
This is because we utilise rules that are similar to the rules used for refac-
toring; except they apply to abstract specifications, and their motivation is
primarily to introduce designs rather than improve existing ones.

Our rules share one important similarity with Fowler’s: they must be equiva-
lence transformations in terms of behavioural interpretation. We have demon-
strated previously that the application of two rules for refactoring specifica-
tions in Object-Z — annealing and coalescence — can derive a vast array of
differing object-oriented designs from abstract specifications [8,9] ' .

The annealing rule effectively splits a class’s state and operations into two
classes — one holding a reference to an instance of the other. The coalescence
rule merges two classes together to create a new class that simulates both.
These two rules both deal with referential structure, and do not cover the
other primary form of object-oriented design structure: inheritance.

In this paper, we fill this gap by formalising rules that permit the modification
of inheritance hierarchies. This incorporates the introduce inheritance and in-
troduce polymorphism refactoring rules. We also generalise the annealing rule
with the rule introduce instances to allow for collections of object instanti-
ations to be introduced, thus significantly improving upon the original rule
which only allowed for single instantiations, and further we allow classes to be
parameterised with the rule introduce generic parameter.

As well as providing arguments for the soundness of the above new rules and
extensions to previous rules, we argue their completeness for the derivation of
all possible designs (structurally speaking) which do not contain unbounded
recursive constructs in Object-Z. That is, through the use of introduce generic
parameter, introduce inheritance, introduce polymorphism, and introduce in-
stances, it is possible to move from any structural design in Object-Z that
does not contain unbounded recursion to any other design that similarly does

L' The reflection rule in [9] is a special application of the annealing rule.



not contain unbounded recursion and that represents a valid refinement [10]
of the original.

Before proceeding with the rule descriptions (Sections 3 to 7) and the com-
pleteness argument (Section 8), we provide an overview of the Object-Z spec-
ification language (Section 2). Afterwards, we conclude with a discussion of
the overall design process (Section 9), related work (Section 10), and future
work in the area (Section 11).

2 Object-Z

Object-Z extends the formal specification language Z [3| with explicit support
for the fundamental constructs of object orientation: classes, objects, inher-
itance and polymorphism. A full description of the language can be found
in [2]. In this section, we provide an overview of the features of the language
relevant to this paper.

2.1 Classes

A class in Object-Z groups together a collection of state variables with their ini-
tial conditions and all operations which may change their values. Such a class
may have one or more generic type parameters. For example, the Object-Z
class Stack[X] in Figure 1 has a state variable items of type seq X (a sequence
where the elements are of the generic type T'). The items sequence is initially
empty. The operation Push concatenates (™) the input item? to the beginning
of the items sequence, and the operation Pop removes the first item! from the
beginning of the sequence, the value of which is output.

The state variables, initial state schema InrT, and operations of a class are
collectively referred to as its features, where the interface of the class is exposed
by the wvisibility list ([). The initial state schema and operations of a class
include predicates constraining the possible values of the state variables. In
operations, a variable decorated with a prime, e.g., z’, denotes the post-state
value of the variable.

The list of variables following the symbol A in an operation is referred to as
the delta-list. This list comprises all variables which the operation may change;
any variables not listed are unchanged.

An operation has an implicit guard determining whether or not it can occur
in a given state. For the Push operation in Stack[X], this guard is true; it
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Figure 1. Example Object-Z specification

can occur at any time. However, operation Pop requires that items contain at
least one element, so its implicit guard is #items > 0.

2.2 Inheritance

Object-Z supports multiple inheritance. A subclass implicitly includes all of
the features of its superclasses, and may also modify or add to these features.
As an example, consider the class BoundedStack[X] in Figure 1 which inher-
its Stack[X].

In the class BoundedStack|X], the state, initial conditions, and operations
of Stack[X] are implicitly conjoined with those declared in BoundedStack|[X].
The class BoundedStack[X] has an operation Push, as does Stack[X]. The
predicate and delta-list of Push in Stack[X] are implicitly part of Push in
BoundedStack[X]. Hence, Push in BoundedStack[X] adds an element to the
beginning of items, as before, but now has the guard #items < LIMIT.



When a class is inherited, it’s visibility list is not. Hence, any restrictions on
access to features of the class need to be included again when required.

2.8 Objects

Classes in Object-Z may be used as types. Instances of such types are refer-
ences to objects of the class. For example, in the class System, s : BoundedStack|[N]
is a reference to an object of class BoundedStack[N]. In all cases of classes with
generic parameters, the parameters must be instantiated in order for the class

to be used as a type. For the above class definition, s : BoundedStack|[N| de-
clares a reference s to an object of the class BoundedStack|X| with its generic
parameter X instantiated with N.

Adopting a reference-based type for classes allows objects with the same class
and same values of their state variables to be semantically distinguished. The
reference to an object acts as the identity of the object distinguishing it from
all others.

So that objects can refer to their own identity, all classes C' have an implicitly
declared constant self : C'. The value of the constant for a given object is the
reference to that object.

Given the declaration s : BoundedStack|N], the notation s.IniT denotes a pred-
icate which is true precisely when the referenced object is in its initial state.
Also, the notation s.Push is an operation corresponding to the referenced ob-
ject undergoing its Push operation, and s.Pop is an operation corresponding
to the referenced object undergoing its Pop operation.

Promoted operations, i.e., those of the form a.Op, are often combined with
other promoted operations or operations of the class in which they occur. A
number of operation composition operators exist to facilitate this including
those for conjunction /A and choice || [2].

We can also access the state variables of the referenced object using the no-
tation a.rz and a.y. Such access to state variables is often avoided in specifi-
cations, however, to allow for data refinement, i.e., where the state variables
and their types are changed as the class specification is refined towards an
implementation [10]. It is possible to explicitly restrict access to a class’s state
variables (or other features) by adding a visibility list to the class [2].



2.4 Polymorphism

Object-Z supports the standard inheritance-based polymorphism of object
orientation. To declare a reference to an object of a given class C or any of its
subclasses we write ¢ : | C. This notation is only applicable when all subclasses
of the given class have the same number of generic parameters as the given
class, and at least all of the visible features of the given class.

Object-Z also supports a more general form of polymorphism called class union
which is independent of inheritance. Class union allows the declaration of a
reference to an object of one of an arbitrary set of classes. For example, given
classes C and D, the declaration ¢ : C'U D declares ¢ to be a reference to an
object of either class C or class D.

When using either type of polymorphism, only features common to all possible
classes of the referenced object may be accessed. This common set of features
is referred to as the polymorphic core. Due to the restrictions on inheritance-
based polymorphism, the polymorphic core in this case is given by the features
of the superclass.

3 Refactoring rules

Specification-based design in Object-Z presents a separation of concerns. The
internal data and operations of classes can be modified behind their interface
(as abstract data types) through a process of class refinement; but this process
should be considered independently from modifying the composition of classes
to change the structure of the system as a whole. We do not detail any method
of individual class refinement in this paper as such a theory has been presented
previously [10] — rather, we concentrate upon the latter problem of sculpting
the architecture of the system. To this end, some of the refactoring rules make
assumptions that certain local (non-structural) refinements have occurred as
a precondition to applying the rule, usually with the intent of changing the
class into an expected form for the refactoring to take place. Even though this
process plays an integral part in the overarching methodology, we refer the
reader to the technical treatment of class refinement presented in [10].

Class instantiation, class inheritance, polymorphism, and generics (class pa-
rameters or templates) are four object-oriented architectural constructs which
are almost universal. They underpin the paradigm and provide the modular-
ity and reuse capabilities. In this section we provide a transformation rule
to deal with each construct: one to introduce generic class parameters; one
to introduce inheritance; one to introduce polymorphic behaviour; and one
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Figure 2. Introduce generic parameter refactoring

to introduce instantiations of new objects. These rules are equivalence trans-
formations in the sense that the behaviour of the resulting specification is
equivalent to that of the original. Hence, they can also be applied in reverse
to remove structure, thus providing a powerful mechanism for altering design
structure at the specification level.

Sections 4 — 7 describe each of the rules in turn. Interleaved with the presenta-
tion of the high-level rules are some practical rules that are, whilst just being
specialisations and compositions of the high-level rules, nevertheless useful and
perhaps more resemblant of Fowler’s programming language level rules [7].

4 Introduce generic parameter

This section provides a description of the introduce generic parameter refac-
toring rule. Generic parameters in Object-Z allow a type, or a list of types, to
be passed as parameters to a class. The parameters rename the types in the
class definition to be that of the type passed, so with generic class definition
the parameterised types act as placeholders. Refactoring a specification to add
support for generic parameterisation of classes is desirable, as it allows for the
derivation of library components, and increases the reuse throughout the de-
sign as single class may be instantiated many times with different parameters.
The parameterised classes in Object-Z could possibly be implemented using
the support for generics in Java [11] or templates in C*T [5].

In Object-Z parameterisation is defined through renaming [2]. In Figure 2, a
class C' (represented by a named box) that holds references to a type X is
replaced with a class C[Z], where Z is a fresh variable, and each occurrence
of X is renamed to be Z (the notation Z/X is used to signify this renaming).
Further, any reference in the specification to C (references to class instances
are denoted by the class name preceded by a colon, and a closed-headed arrow)
is changed to be to C[X], including references for inheritance.

This refactoring rule only introduces one parameter, but repeated application
can provide as many parameters as necessary. As new parameters are added,
they are appended to the right of the parameter list. For example, Figure 3
represents the result of the rule being applied again to the right-hand side of
Figure 2 making type Y a generic parameter.
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Figure 3. Repeated application of introduce generic parameter
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Figure 4. Introduce polymorphism refactoring

4.1 Soundness

X is renamed to Z by the refactoring rule, which is then renamed back to
X whenever the class is referenced — preserving the equivalence of the trans-
formation. Since Z is just a placeholder, there is no possibility of introducing
type inconsistency.

5 Introduce polymorphism

Not all inheritance hierarchies need be polymorphic in Object-Z, just as not all
polymorphism must be confined to inheritance hierarchies. In programming
languages like Java it is common to have classes implement interfaces that
provide a mechanism for polymorphism that is not related to inheritance.
This orthogonal treatment of polymorphism both in Object-Z and in some
programming languages warrants a rule specifically for its introduction, rather
than just having it as a by-product of introducing inheritance. We have chosen
to present this rule, introduce polymorphism, prior to discussing inheritance
as the introduce inheritance rule (Section 6) requires the application of this
rule as a prerequisite for constructing hierarchies that are polymorphic.

Figure 4 shows the refactoring rule diagrammatically, where the left-hand side
and the right-hand side are equivalent. The class C' on the left-hand side has
three means of referencing it: by C, or by two aliases A and B which partition
the identity space of C.



The introduction of polymorphism is normally motivated by the identification
of a class (C) that behaves in different ways depending upon how it is used
in context. The rule requires that the designer identify the contexts where the
alternate behaviours are expected, and divide the references between A, B,
and C accordingly.

The introduce polymorphism rule allows for the splitting of these behaviours
into separate classes (A and B on the right-hand side of the figure). To execute
the refactoring transformation, all of the features of class C' (represented by x
in the figure) are copied verbatim to define both classes A and B. The class C
is removed from the specification, but C' is globally defined to be the class
union of A and B — thus providing for the polymorphism. If a designer wishes
to identify and extract more than two behaviours from a single class, then this
can be achieved by repeated application of the rule.

Because C' becomes a class union after application of the transformation, C'
cannot be inherited by any other classes in the specification after this refactor-
ing is applied (this is a restriction of the Object-Z language [2]) — such classes
must inherit either A or B instead.

There is an axiomatic definition on the left-hand side that describes the typing
relationships between A, B and C. The designer must add this to the specifi-
cation as a precondition to applying the rule. The axiomatic definition is not
only important to declare what A and B mean (i.e. that they are aliases for
class C) but if the rule is applied in reverse (see Section 5.2), this axiomatic
definition retains the vital information that relates the types.

References to A expect one behaviour, references to B expect the other be-
haviour, and references to C' encompass references to A and B (a C is either
an A or a B)?. It is expected that these different behaviours are explicitly
guarded. For example, the designer may wish for an operation Op in C to
behave in two different ways captured by the operation schemas « and [,
depending upon its context. The identification of these contexts is achieved
by instantiating C' as A or B respectively. The designer then guards these
behaviours through the use of the self keyword inside the operation: using
Op = ([self € A] N\ «) || ([self € B] \ [3), ensuring that the introduction of
the guards does not affect the behavioural interpretation of the specification
(e.g., whenever a reference to A is introduced, o would have always been the
behaviour of Op prior to the application of the rule).

Although the class definition is copied, the use of these guards becomes crucial
after the application of the refactoring. The designer can substantially simplify
the class definitions A and B by realising that in class A, [self € A] = [true]

2 There need be no distinction between the behaviours of A and B, but this would
render the application of the rule largely redundant.



and [self € B| = [false| are invariant; and likewise in class B, [self € B| =
[true] and [self € A| = [false| always hold. Therefore, in class A, Op simplifies
to . Similarly, in class B, Op simplifies to £3.

It is particularly important to realise that for instances a : A; b : B, it is
never the case that ¢ = b because the identity sets are disjoint (4 N B = @).
If A and B objects need to reside in a common data structure, for example
a set declaration using the class union A U B, then references to C' must be
used.

The labels A, B, and C are representative only: the rule mandates that A
and B are fresh names, and generic parameters are carried across (C[X], for
example, becomes A[X]| and B[X]).

5.1 Soundness

Because the class definition (C) on the left-hand side is copied verbatim to
form A and B on the right-hand side, the references to A and B are not
affected by the application of the rule. Furthermore, C is not affected since
the polymorphic core of A U B on the right-hand side contains exactly those
features of C' on the left-hand side. The class union on the right-hand side
is equivalent to the declarations of A and B and the first predicate of the
axiomatic definition on the left-hand side. The second predicate AN B = &
is maintained by the fact that any two Object-Z classes have disjoint identity
sets [2] .

5.2 “Coalescence”

The reversal of the introduce polymorphism rule is particularly interesting,
enabling two classes to be merged into one class. This allows the designer to
extract common functionality from possibly independent parts of the system
and coalesce it into a single class. As stipulated by the rule definition, these
classes must be identical. However, any classes that are candidates for coa-
lescence can be made identical through the merging of the class definitions
(utilising [self € ...] guards), and the addition of state variables so that each
state becomes the union of the two original class states.

The previously published rule specifically designed for coalescence [8] has been
superseded by the reversal of the introduce-polymorphism rule, as the reversal
of this rule is more generally applicable. For instance, the original coalescence
rule could not be applied where class union was being utilised over the two
classes.

10
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Figure 5. “Generic Coalescence” composition

5.8 “Generic coalescence” composition

The coalescence process can be used to merge classes that are similar but use
different types, into a single class with generic parameterisation of types. This
can be achieved by combining the reverse application of the introduce poly-
morphism rule with the introduce generic parameter rule. Figure 5 illustrates
this process on two classes, A and B, that are the same or similar except for
the use of different types: the specification at step (2) is derived from that at
step (1) by the application of the introduce generic parameter rule (twice),
which is then transformed into the specification at step (3) through coales-
cence. Since class union is not utilised in this situation, A[X] and B[Y] may
be transformed into C[X] and C[Y] respectively, thus forming the result in
step (4). The axiomatic definition defining A and B is removed, as it serves
no purpose (A and B are no longer referred to in the specification).

6 Introduce inheritance

Reuse of data constructs and operations in classes is achieved through inher-
itance in the object-oriented programming (and specification) paradigm. The
introduce inheritance rule offers a means through which to build an inheritance
hierarchy from existing classes.

The introduce inheritance rule creates an inheritance relationship between any
two classes in the specification, as long as the addition of the relationship does
not result in a circular dependency.

Figure 6 illustrates the application of the rule to two classes A and B with
features o and [ respectively. It also illustrates the use of the short hand
polymorphism notation |A == AU B.

The rule is most effectively applied to link together classes that contain com-
mon features in order to maximise the potential for reuse, but the classes

11
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Figure 6. Introduce inheritance refactoring

need not share any features at all. This is because the introduce inheritance
rule not only adds the inheritance relationship (indicated in Figure 6 by the
open arrow-head) but also hides every feature of the superclass (the notation
“\a’' indicates that all features o of the superclass A are hidden). The com-
bination of the inheritance and the hiding effectively renders the refactoring
rule an equivalence transformation, as it does not change the meaning of the
specification.

To reuse features of the superclass the designer must make further alterations
local to the subclass to unhide, and perhaps rename, the features inherited
from the superclass ® . If the features of the superclass revealed by the designer
to the subclass are indeed shared features, then these local changes will be
equivalence transformations — but the onus is upon the designer to appropri-
ately select and justify the reuse. Since inheritance in Object-Z is syntax-based,
this justification is often a pattern-matching exercise rather than a theorem
proving one.

The reversal of the introduce inheritance rule removes the inheritance rela-
tionship under the assumption that every feature of the superclass concerned
is hidden. This precondition can be satisfied in any case by copying the feature
definitions from the superclass (that are not already hidden) into the subclass.

6.1 Soundness

The rule converts the reference to the class union A U B on the left-hand
side to | A on the right-hand side when the inheritance relationship is intro-
duced. By definition, |4 == A U B [2| in this case, so this is an equivalence
transformation.

The existence of the inheritance relationship on the right-hand side does not

3 The subclass specifies the hiding and renaming of inherited features in Object-
Z [2].

12



change the meaning of the superclass A on the left-hand side, as no features
are added, altered, or removed. Because every feature of the superclass A
is explicitly hidden from the subclass B on the right-hand side, B is also
equivalent for the same reason: no features are added, altered, or removed.

6.2 “Extract superclass” composition

Extracting a superclass from an existing class in a design is a common refac-
toring [7,12| and it is one example of a transformation that can be derived by
combining the rules we have presented so far.

A designer may utilise guards to distinguish the general behaviour « from the
specific behaviour [ of a class. Then, through the sequential composition of the
introduce polymorphism rule with the introduce inheritance rule, a superclass
can be extracted. Features of the new superclass that the designer wishes to
utilise (rather than redefine) in the subclass can then be removed from the
subclass and ‘unhidden’ in the inheritance relationship. Since the introduce
polymorphism rule copies the class definition, every feature of the superclass
may be unhidden without concern over maintaining the equivalence of the
transformation.

7 Introduce instances

All of the rules presented so far have dealt with the static structure of classes
but not with the instantiation of classes to reference individual objects. The
introduce instances rule addresses this deficit by introducing to a class a set
of instances of itself. When used in conjunction with the introduce polymor-
phism rule (Section 5), the designer can yield elaborate structures of class
instantiations between different class definitions.

Like the other rules, the introduce instances rule is an equivalence preserving
transformation in terms of behavioural interpretation. Previously in the liter-
ature [8,9] the annealing rule was presented that performed a similar function,
however this rule was limited to the extraction of only one instance to a new
class, and consequently did not address the challenges of managing object
construction and disposal. The introduce instances rule is a generalisation of
the annealing rule that allows for the introduction of an arbitrary number of
instances.

A class is identified — in this case A (refer to Figure 7) — which manages a set
containing data elements (3 for which the designer intends to eventually move

13



Figure 7. Introduce instances refactoring

into individual objects of class type B. The rest of the state of A is represented
by «. The notation I - [ denotes the precondition that the designer must
reference the set of data elements using an indexing function in the state (this
function may need to be introduced as a precursor to applying the rule, and
will be further explained in the following section).

The rule operates by adding instances to the class A which are instances of
A itself (so A is self-referencing), but with the class name B introduced to
separate external references to A from the internal (B) references to A. The (3
data elements are replaced to become instances of ‘B’, and all operations that
act upon I - (3 are split up and/or modified to accommodate the change.
Precisely how the operations in A are affected by the rule depends upon their
operation on the state — this is explained in Section 7.2.

The state of A is augmented to include a single 3, and the operations are
potentially split up and then guarded depending upon whether they apply
to a single § or whether they apply to the rest of the state a and I + B.
The name of the class A is changed (in this case to become ('), and these
alternatives then represent different behaviours of C, which can be separated
into distinct classes at a later stage using the introduce polymorphism rule (see
Section 7.4).

Because the state schema of A is changed, it is important to ensure that the
indexing function is not visible. Operations in subclasses of A that have access
to data in 4 must be considered in addition to operations local to A when the
rule is applied.

The determination of how the operations (or parts of operations) need to be
guarded is achieved through the use of classifiers. The definition and interpre-
tation of these classifiers is detailed in Section 7.2, but immediately following
is a description of the indexing function which is used to introduce and manage
the object instantiations.

14



7.1 Indexing function

The introduce instances rule always operates upon sets of data elements, even
if only one instance is to be extracted (this particular case will be discussed in
Section 7.4). A non-visible indexing function must be introduced to manage
this set before it can be extracted into a set of instantiations, because we
must distinguish the addition and removal of elements from the set from the
modification of elements within the set. With just a set, all operations are of
the former category, but with an indexing function over the set this is not
necessarily the case. Naturally, the domain of the indexing function relates to
the identities of objects that are being introduced by the rule.

The identity function takes the form of data in class A of Figure 8. IDENTITY
and DATA can be defined arbitrarily. However DATA is usually a cross prod-
uct of the state variable types that are going to constitute the variables in the
extracted class — this data type acting as an envelope for the entirety of the
state variables in the new class. Operations need to act upon the data function
in a controlled manner, and may take the form of a local or a delegate opera-
tion, where local operations affect the domain (and thus also the range) of the
data function, and delegate operations affect only the range. We consider only
these two possibilities because any operation that acts upon data can always
be considered as either one of these or a combination of both.

The introduce instances rule replaces the elements in the range of data with
references to instances of the class A, such that data becomes a partial injec-
tion. The state of A is extended to hold a single DATA element in a variable
named state. Since DATA acts as an envelope for the variables that the de-
signer wishes to constitute the new state variable, further data refinements
after the refactoring operation can extract and name the independent vari-
ables.

Guards are introduced into the initialisation predicate to discriminate between
the two uses of the class C: A and B.

7.2 Operation classifiers

Operation classifiers are predicates that are used to determine whether an
operation should be guarded as [self € A] or [self € B| when the rule is
applied. Every operation in the class must be classified to determine if and
how it must be altered to accommodate the changes to the specification. As
mentioned in the beginning of Section 7, the operations are labelled as local
or delegate respectively by the classifiers. If an operation predicate implies the
classifier predicate, the operation then satisfies that classifier. In the next two

15
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Figure 8. State transformation with introduce instances rule

sections we present the local and delegate operation classifiers, and following
that we discuss the situation where an operation satisfies neither classifier and
needs to be split.

7.2.1 Local operations

If the property below holds over the operation predicate P, it is considered
local and must be guarded with [self € A].

P = data U data’ € (_—+_)

16



The notation f € (_-+_) is used to specify the constraint that f is a partial
function. This classifier stipulates that the union of the pre- and post-states
of the data variable must form a partial function. Because we know that data
and data’ are partial functions independently, this classifier is true unless the
predicate P specifies the alteration of the range value of an existing domain
element in data to form data’ (without removing the tuple). This is always
the case for operations that do not affect data, as when data is not in the
delta-list of an operation, data’ = data, so this reduces to P = true, which is
true. Any range elements of data mentioned in an operation classified as local
need to dereference the object upon application of the rule, that is data()
becomes data(i).state.

7.2.2  Delegate operations

If an operation predicate P satisfies the following classifier, it is considered a
delegate operation and should be guarded with [self € B].

P = deltalist = {data} N dom data = dom data’ A ran data # ran data’

where deltalist is a meta-level variable referring to the delta-list of an oper-
ation.

Intuitively, this identifies those operations that exclusively affect data, and
further only modify a range element in data without altering the domain.
These operations should be invoked on the appropriate objects of class B.

The objects that the delegate operation needs to be invoked upon are selected
by identifying which domain values have their associated range values altered.
The operation must be rewritten by the designer into a list of terms, separated
by operation composition operators. In each term, a guard G; narrows the ap-
plicability of a predicate P; to a subset of domain elements, where P; specifies
the relationship between the pre- and post-states of a DATA element. The
following template illustrates this notion, where P;(data’(id)) is a predicate
over the pre-state of the class and data’(id) when the guard G;(id) holds on a
domain element id. The asterisk () is just a placeholder representing any of
the Object-Z operation composition operators, and the notation (Vd | p e q)
is equivalent to (Vd - p = q).

This template can be applied to any operation that satisfies the classifier, be-
cause data’ is the only free variable and further only its range can be modified
(with respect to its pre-state). Since id covers the entire domain of data’ and
each predicate has access to the full state, any aspect of the range of data can
be specified. Note that if a guard always selects exactly one object, by the
one-point rule the universal quantifier is superfluous and can be dropped.
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data : IDENTITY + DATA

bp = [A(data) | (Vid : dom data | G1(id) Pl(data’(id)))] *
[A(data) | (Vid : dom data | Gy (id) e Py,(data’(id))) |

is transformed to. ..

_C
[ (state, Delgate .. Delegatey, . ..)

data : IDENTITY -~ B
state : DATA

Op = [self € A] N
(Vid : dom data ’ G1(id) e data(id).Delegate; x
I
Vid : dom data ‘ Gr(id) e data(id).Delegatey,)
Delegate; =
[self € B] N [A(state) | P1(state/data(id), state’/data’(id))]

Delegate,, =
[self € B] N [A(state) | Py (state/data(id), state’/data’(id))]

‘ A B:PC
AUB=2C
ANB=g

Figure 9. Operation transformation with introduce instances rule

When the refactoring rule is applied, each predicate P; becomes a new op-
eration named Delegate;, these operations being invoked depending upon the
satisfaction of the guards. The template in Figure 9 illustrates how delegate
operations are transformed. In the class C, state/data(id) signifies that oc-
currences of references to data(id) become references to the variable state.
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7.2.8 Unclassified operations (so far)

Unclassified operations need to be split into multiple separate operations where
each can be independently classified, which may be achieved in Object-Z by
the promotion of logical operators to operation composition operators. We
now discuss the only two general classes of operations that are unclassified,
and further discuss how they must be split.

To derive the two cases, we first realise that an operation can never be clas-
sified as both a delegate and a local operation, as the conjunction of those
classifiers is contradictory (there does not exist a P that could possibly satisfy
both). This is because the partial functions data and date’ must have common
domains but differing range members to satisfy the delegate classifier, so there
must exist at least one member in the common domain that maps to different
range members in the respective functions. Thus the union of data and data’
cannot itself be a partial function, which is a requirement of the local classifier.

An unclassified operation P must therefore adhere to neither classifier:

P = — (deltalist = {data} A dom data = dom data’ N
ran data # ran data’) A = (data U data’ € (_+_))

= (demorgan)

P = (deltalist # {data} V dom data # dom data’ V
ran data = ran data’) A\ data U data’ & (_+_)

If we rewrite this single classifier as a disjunctive series of implications, we
derive three potentially overlapping classifiers:

(1) P = deltalist # {data} A data U data’ & (_—+_)
(2) P = dom data # dom data’ A data U data’ & (- _)
(3) P = ran data = ran data’ A data U data’ & (——+_)

By observing the third classifier in this list, we can infer that the domains of
data and data’ are not equal in this case, because otherwise data = data’ and
hence data U data’ € (_ -~ _) — a contradiction. We extend Classifier (3) to
reflect this fact:

(3) P = ran data = ran data’ A dom data # dom data’ A dataUdata’ & (_+_)

Hence, any P that satisfies Classifier (3) also satisfies Classifier (2), as Classi-
fier (3) is a stronger predicate. Thus we remove Classifier (3) as it is redundant.

Both remaining classifiers require the operation to be split. We shall discuss
Classifier (1) and Classifier (2) individually, and then discuss the case when
both classifiers are satisfied. We refer to Classifiers (1) and (2) as the delta-list
partitioning and domain partitioning classifiers respectively.
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7.2.3.1 Delta-list partitioning classifier The classifier for delta-list par-
titioning is:

P = deltalist # {data} A data U data’ & (_+_)

In this case P is an operation which needs to be a delegate, but it cannot
because other variables are referenced in the delta-list besides data. The solu-
tion to this is to split the operation, which is generally achieved by promoting
logical operators to operation composition operators and introducing commu-
nicating variables [2| where necessary. We will now present an argument that
an operation which satisfies this classifier may be split apart in the general
case.

Given that data U data’ & (_—+_), it follows that data # data’, so data must
be a member of the delta-list. Because A # {data}:

P = deltalist D {data} A data U data’ & (_+_)

We define L to be A\ {data} and because of the proper superset relation,
we know L # &. L represents the local variables that the operation changes
excluding the data variable. Part of the operation needs to be delegated (that
which changes the range of the data variable), and part must remain local (that
which refers to the post-state of any variable in L). Clearly these concerns do
not overlap as they apply to different variables, so such operations can be
partitioned by the variables they change into one part that satisfies the local
classifier, and one part that satisfies the delegated classifier.

7.2.3.2 Domain partitioning classifier The classifier for domain parti-
tioning is:

P = dom data # dom data’ A data U data’ & (—+_)

In this case part of the operation needs to be delegated (that which changes
a range member such that data U data’ € (-+_)), and part must remain local
(that which adds or removes mappings such that dom data # dom data’). In a
similar fashion to the delta-list partitioning classifier, we present an argument
that an operation which satisfies this classifier may be split apart in the general
case.

For the domains to differ, members are either added, removed or both. We refer
to the subset of the domain that identifies these introduced /removed members
as d, which is defined using symmetric difference § = dom dataA dom data’
(symmetric difference is defined as SAT = (SUT)\ (SN T))
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Because dataU data’ ¢ (_—+ _), members in the domain of both data and data’
must change mapping from that in data to different range members in data’.
The domain members that change mapping are represented by p. Because the
members must exist in both domains, the following property holds over p:
p C dom data N dom data’

It follows that 0 and p must be disjoint 6 N p = &. This indicates that oper-
ations that adhere to this classifier may be split with respect to the domain
members they act upon in data: one operation will satisfy the local classifier,
one operation will satisfy the delegate classifier, where no domain member
appears in both operations.

7.2.3.3 Simultaneous delta-list and domain partitioning Where both
classifiers are satisfied by a predicate, the operation can be split as per the
delta-list, and then by the domain. That is, the local variables in the delta-list
(excluding data) may to be moved into a separate operation, and then the
original operation that includes data needs to be split again such that the
activity over the domain of data is separated between that which is local and
that which must be split into a delegate operation.

7.8 Soundness

The indexing function of A is introduced as a precondition to applying the
rule and must not be in the visibility list, thus the changes to the state schema
of A do not affect the interface of the class, except to extend it with 5%.

Below, as a notational convenience, we will refer to the class C where self € A
as Uy, and the class C where self € B as Cg. We also use the notation A.data,
etc, to denote the variable data of class A.

Because this rule changes the structure of the state, we require some mapping
between the state schemas of classes A and C4 to show behavioural equiva-
lence. Since we move the elements in the range of data in A to each become
a variable state in an instance of Cp, we therefore require that A.data(i) =
Cp.data(i).state.

Given this mapping, the initialisation schema and all local operations in A
and Cj are equivalent. This can be seen by expanding the definitions in C}y
according to the definition of the dot notation in Object-Z [2|. For delegate op-
erations, we also need the condition that there is no possibility of interference
between instances of Cg. That is, before the application of the rule, changes to

4 Widening of the interface in Object-Z is allowable under refinement [10].
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*

Figure 10. Introduce polymorphism rule applied for “Generalised Annealing”

A.data(i) could not affect A.data(j) when i # j. The partial injection ensures
that this remains true for Cy after the application of the rule (since no object
aliasing is possible). Since all operations can be classified as either local or
delegate, there are no other types of operations that need to be considered.

7.4  “Generalised annealing” composition

The combination of introduce instances and introduce polymorphism yields
instantiation relationships from a class to a new class (see Figure 10). The
previously published annealing rule [8,9] is a special case of this process. The
annealing rule extracts a set of variables from the state of a class and intro-
duces a single instance to a new class which held those extracted variables in
its state. This is still a convenient specialisation in itself as it strongly resem-
bles the well established Extract Class refactoring [7] — often the introduction
of more than one instantiation is not required. But the composition of the
introduce instances refactoring with introduce polymorphism can create an
arbitrary number of instantiations of the new class.

After the two rules are applied, we expect the classes would be substantially
simplified to remove the unused parts of the states of A and B that are dupli-
cated as a result of the introduce polymorphism rule.

8 Completeness

The four rules we have presented are minimal in the sense that they each
operate upon orthogonal aspects of the object-oriented paradigm: no rule (or
sequence of rules) can perform the function of any other rule. However, the
question as to whether these rules are complete, such that they can be utilised
in conjunction with individual class refinement to derive any design will be
discussed in this section.
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Refactoring
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Refinement i [l
c = D

Figure 11. Design reduction and construction

Since each rule is an equivalence transformation, we seek to demonstrate their
completeness by applying them in reverse to reason about which structures
they can reduce. If a sequence of rule applications exists that can reduce a
design down to a single class, then this design can be constructed from a single
class by the forward application of the rules. By using a commuting argument
(see Figure 11), we show that if a designer wishes to refactor a design D to
a design D’ that is a refinement of or equivalent to D, and both designs D
and D’ can be reduced to a single class C' and C’ respectively, then D’ can
be derived from D through the application of the refactoring rules and class
refinement [10]. Provided we can demonstrate that any possible design can be
reduced to a single class, this entails that any design can be refactored to any
other design.

It is not possible to argue this in the general case with the four rules presented
in this paper. The reason for this is an artifact of the introduce instances rule:
it is impossible to create systems with unbounded recursion.

Unbounded recursion refers to a design where a class, either directly or in-
directly, instantiates itself such that nested instantiations may extend recur-
sively to an arbitrary (unbounded) depth. It is possible to create a class that
instantiates itself by applying the introduce instances rule, but the process
of introducing instances explicitly partitions the behaviour of the class (each
operation is classified, and the classifiers do not overlap). This creates a single
level of ‘recursion’, and repeated application of this process provides for fur-
ther nesting, but this is always bounded as the state and functionality of the
class cannot be split ad infinitum. A design which specifies a potentially in-
finitely long linked-list data structure, for example, cannot be derived through
refactoring as it would require the rules to be applied an infinite number of
times.

In this section we present an argument for the rules’ completeness, but defer
the treatment of constructing and reducing recursive specifications in Object-
Z to Smith [13,14] where a theory of fixed-points is applied to reason about the
translation between recursive and non-recursive specifications. The possibility
of using refactoring rules to derive such designs is an area of future research.

We progress in four stages, relating to each of the four rules presented in
this paper. Initially we remove the generic parameterisation of classes, then
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we remove every inheritance relationship. We then collapse the referential
structure and polymorphism down to a single class which references only itself
— the total number of object instantiations in the specification being preserved.
In the final stage, we remove this self-reference and reduce the total number
of object instantiations down to one. The following sections deal with each
reduction process in turn.

8.1 (Generic parameterisation reduction

The removal of all occurrences of generic class parameterisation in a specifica-
tion can be achieved by the introduction of new classes for each and every way
the class parameters are instantiated. Renaming is performed, with respect to
the context (parameters), for each introduced class — the explicit renaming
removing the need for parameterisation. This process exactly corresponds to
the reversal of the ‘generic coalescence’ process discussed in Section 5.3.

8.2 Inheritance structure reduction

Once all generic parameterisation of classes has been removed, inheritance
relationships must also be taken out of the specification. This is achieved
through the reverse application of the introduce inheritance refactoring. How-
ever, a precondition to applying this rule in reverse is that every feature of
the superclass is hidden from the subclass — clearly this is not going to be the
case for an arbitrary Object-Z specification. It is a straightforward, syntactic
process to satisfy this precondition in any inheritance relationship by copying
down definitions from the superclass that are not hidden from the subclass,
and renaming such operations in the same manner as they are renamed by
the subclass (if they are renamed at all).

Once this ‘flattening’ of definitions has been performed on every inheritance
relationship in the specification, the reversal of the introduce inheritance rule
can be applied to remove every inheritance relationship. It is worthwhile not-
ing that, as per the definition of the introduce inheritance rule, this process
converts all inheritance-based polymorphism (|) to class union.

8.8 Polymorphism and class structure reduction

The only design structure that remains in the specification after the last three
steps is the instantiation relationships between classes, which may include
polymorphism through the use of the class union operator.
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The coalescence process (the reversal of the introduce polymorphism rule)
effectively takes two classes and creates a single new class that performs the
functionality of both. It is this refactoring that we base our reduction strategy
for polymorphism and class structure. As a precondition, the classes need to
be identical before this rule can be applied. However, any two classes may
be made identical by guarding all of the operations depending upon the class
that they originally belong to (see Section 5) and then copying their definitions
between the two classes; renaming where necessary to avoid conflicts. The state
variables may also be copied between the classes to form a common state
that contains both state schemas. Again, some renaming may be necessary to
ensure that there are no naming conflicts.

This process of making local changes to each class to capture the features
of the other class will change the polymorphic core (see Section 2) if either
class is involved in a class union declaration. Since the polymorphic core of a
set of classes is the intersection of the features of the classes participating in
the union, and the alterations required to satisfy the precondition of applying
coalescence only add features to classes, the polymorphic core is only encom-
passing potentially more features. This does not affect the behaviour of the
specification, because these added features could not possibly be referenced
(as they were not previously in the polymorphic core).

Given that coalescence can be applied to any two classes in the specification,
it follows that the refactoring can be repeatedly applied until there is only one
remaining class in the specification. Although only a single class remains, there
is no change whatsoever to the total number of object instantiations in the
specification — the single remaining class simulates every class in the original
design, and instantiates itself for every object instantiation that existed before
the reduction process began.

Hence, all that remains is a single class containing references to itself. Because
of the coalescence rule, these self-references are actually to disjoint subsets of
the remaining class’s identity space (expressed through the axiomatic relation-
ships). These subsets correspond to the different classes in the original design,
which were themselves all disjoint subsets of the global identity space [2] —
this process has made the semantics relating to disjointness of class identity
sets explicit.

8.4 Instantiation reduction
We remove the references from the single remaining class to itself through the

reverse application of the introduce instances rule.

Because the coalescence process introduces guards based upon which class the
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Figure 12. Original example Object-Z specification

behaviour and data belonged to, the single remaining class is compartmen-
talised in a very specific way — there is no overlap of guards. It is a precon-
dition of applying the introduce instances rule (in reverse) that the features
are strictly compartmentalised by these guards (see Section 7). This compart-
mentalisation is what we mean by ‘bounded recursion’. Thus assuming that
no unbounded recursion exists in the specification, the self-references can be
removed by the reverse application of the introduce instances rule. The situa-
tions where this is not possible are a result of a class instantiating itself, either
directly or indirectly, where a feature f of the class has the ability to reference
the same feature f through the self-instantiation. The most common example
of this phenomenon are specifications which include an operation which refer-
ences itself recursively through another object. A full treatment of this kind
of unbounded recursion, including a method for translating between recursive
and non-recursive specifications, is presented in [13].

Apart from recursion, we need to consider cardinality. The semantics of Object-
Z dictate that the total set of object identities is countably infinite [2, p28§],
so the introduction of an indexing function by the reversal of the introduce
instances refactoring rule is not restrictive.

9 Design process

The process of deriving a design from an abstract specification is as much a
product of the designer’s imagination as it is a consequence of the refactoring
rules. The example specification illustrated in Figure 1 was derived from the
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specification in Figure 12. For brevity of presentation, we cannot show every
step, but instead hope to provide the reader with a high-level impression of
the practical application of the rules by listing the sequence in which they
were applied. Apart from the local class refinement steps along the way, this
sequence was: generalised annealing composition (to tease apart a separate
class dedicated to the stack); introduce generic parameter rule (to make the
stack class contain generic items); and lastly extract superclass composition
(to form the stack generalisation of the bounded stack).

10 Related work

There has been much work on the formalisation of refactoring rules at both
higher and lower levels of abstraction than Object-Z offers, with accompanying
arguments for soundness and completeness.

At a higher level of abstraction than Object-Z, early work in the area of
transforming object-oriented architectures using graph rewriting rules was pre-
sented by Bergstein [15]|. This treatment considers two concerns: construction
classes/relationships (instantiations) and alternation classes/relationships (in-
heritance). The refactoring rules we present differ from this work as our trans-
formations are not necessarily object preserving (the introduce instances rule
allows for new objects of classes to be created via the transformations). Also,
we address two additional concerns — generic parameterisation and polymor-
phism, and describe all rules in the context of a full specification language.

At a lower level of abstraction than Object-Z, much work has been presented
for refactoring at the programming language level. Mens et al. [16] also utilised
a graph-based approach with sophisticated dependency analysis (using syntax
and static semantics) to model and formalise refactorings at this level, but
much of the preliminary work on refactoring originated in William Opdyke’s
PhD dissertation [17]. He describes refactoring with behaviour preservation
based upon preconditions, which Fowler 7] built upon (and popularised) to
form a methodology to improve the design of existing code.

Kerievsky [18] has presented a set of heuristics for refactoring towards design
patterns [19] which compliments our approach, illustrating the effectiveness of
using refactoring as a technique to introduce design architecture. Previously
in Object-Z, the annealing and coalescence transformations have been utilised
to derive design patterns [9] such as Observer, Proxy, and MVC (Model-View-
Controller). Kerievsky’s work reinforces the practicality of this approach.

Borba et al. [12] base a set of algebraic laws for refactoring on a weakest
precondition semantics in the ROOL language — which is an object-oriented
programming language similar to Java, but with a copy semantics. These
refactoring rules are proved to be both sound and complete, but since it is
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applied to a programming language it is not helpful for deriving designs from
specifications which is our primary motivation.

However, later work by Gheyi and Borba |20] presented a set of rules for
refactoring the Alloy specification language. To a large extent this represents
a complementary approach, but their laws do not intuitively map to the object-
oriented paradigm — with our approach the designer uses the rule and language
construct that fits with the aspect of object-orientation that they wish to
capitalise upon.

Goldsack and Lano [21,22] described an annealing rule (and coined the term)
for the VDM™™ specification language which is analogous to the annealing
rule previously presented for Object-Z [8] (refer to Section 7.4). The introduce
instances rule extends this annealing concept significantly by generalising the
rule to allow for the creation of an arbitrary set of instantiations.

Kim and Carrington formalise a meta-model of the Unified Modelling Lan-
guage [1] (UML) in Object-Z |23] and translate between Object-Z and UML
using the meta-modelling approach [24]. They have recently proposed [25] the
use of Object-Z as verification and validation tool for Model-Driven Architec-
ture [26] (MDA) in UML. This is a practical target for our theory. Refactoring
approaches that are based in UML have been presented in the past [27,28,29]
but some do not preserve semantics, and UML is reasonably difficult to trans-
form in a consistent manner because of its multiple diagrammatic represen-
tations. It is this weakness that forms a strong motivation for Kim and Car-
rington’s work, as an Object-Z view of a UML model can be transformed such
that consistency and semantics are always maintained.

11 Conclusion and future work

We have presented four rules for the purpose of refactoring an object-oriented
specification with the aim of deriving a design, and argued that the rules
are complete for architectures that do not contain unbounded recursion. The
work is motivated by the need in some circumstances for a rigorous approach
to software design that is tractable from an abstract specification, and relates
to the current trend towards Model-Driven Architecture [26] in the software
engineering discipline.

The rules are intuitive in the sense that they are directly related to the core
aspects of the object-oriented paradigm: generics, polymorphism, inheritance,
and objects. We believe that the well-established programming language refac-
toring rules [7] are intuitive (not just behaviour preserving), which has con-
tributed to their popularity and success; the rules we have presented follow
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that philosophy.

Apart from describing refactoring rules for introducing (and removing) un-
bounded recursion, future work in this area is directed towards the study
of rule compositions to achieve sophisticated architectures, and the possible
description of design patterns at the specification level through sequences of
refactoring rule applications.
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