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Abstract

This paper describes an approved algorithm for the problems of unequal circle packing – the quasi-physical quasi-

human algorithm. First, the quasi-physical approach for the general packing problems is described in solving the pure

problems of unequal circle packing. The method is an analogy to the physical model in which a number of smooth

cylinders are packed inside a container. A quasi-human strategy is then proposed to trigger a jump for a stuck object in

order to get out of local minima. Our method has been tested in numerical experiments. The computational results are

presented, showing the merits of the proposed method. Our algorithm can be thought as an adoptive algorithm of the

Tabu search. � 2002 Published by Elsevier Science B.V.
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1. Introduction

The background of this research is based on
two different issues. The first issue is industrial
applications. A communication engineer may face
a task to accommodate a bunch of optical fibers
in a tube having a radius as small as possible.
This can also be thought of packing a number of
circular disks with different radii into a round
tray having a smallest possible size. Another ap-

plication is in the shipping industry. When
transporting a batch of pipes of various sizes, one
may want to insert as many small pipes as possi-
ble into a large one. This is generally referred
to as packing of unequal circles (George et al.,
1995).
The second issue is the general packing prob-

lem, in particular, the packing of irregular poly-
gons on a plane. The problem is of theoretical
importance as well as practical significance. Al-
though the circle packing is less complicated than
the packing of irregular polygons, they are both
NP-hard. Results of the circle-packing problem
will form a firm foundation for the further inves-
tigation of the more complicated irregular polygon
problems.
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At a first glance, packing of circles with unequal
radii does not seem too difficult. This, in fact, is
not true. The key lies in making the circumfer-
ence of the round tray as small as possible. In
doing so, a series of adjustments of the small inner
disks have to be performed within the tray, re-
sulting in a huge number of patterns. Only the
pattern with a maximum condensation defines the
minimum size of the circumferential outer circle.
Since the number of possible combinations is
enormous even if there are only a few inner circles,
approaches fundamentally different from the
classic methods must be sought.
Researches on packing equal circles into a

rectangular bin have been documented. Iserman
(1991) presented a series of heuristic solutions to
the problems of equal-circle packing. Fraser and
George (1994) focus on the stocking of cylindrical
paper-rolls, in other words, putting a number of
identical circular bins into a given rectangular box.
Dowsland (1991) treated the problem from a dif-
ferent viewpoint, namely, finding the most suitable
box in order to contain a given number of cylin-
drical objects. Under some simple conditions, the
best solution to this type of problems is a pattern
of square lattice. In more complicated cases,
however, a denser pattern may be obtained by
using some fast heuristic algorithms. Nurmela and
€OOsterg�aard (1997) have obtained the most condense
possible pattern for packing 21–50 circles into a
square.
There are fewer publications discussing the

problems of unequal circle packing. In a discrete
manner, Hochbaum and Maass (1985) consid-
ered the packing of objects with the same shape
but different sizes. In their paper, the smallest
spatial unit is a unit square. For example, a circle
is approximated with a mosaic of many such
small squares. They have discussed packing of
objects with various shapes and sizes, including
the unequal circle problems. The work of Hach-
baum and Maass has an important theoretic sig-
nificance as they have proved that, for the type
of NP-hard problem such as packing of un-
equal circles, there exist highly accurate algo-
rithms with polynomial complexity. Errors in the
solutions obtained by using such algorithms as
compared with rigorous solutions may be less

than any given small positive number. How-
ever, as pointed out by the authors, their algo-
rithm is only of conceptual significance. Even
for a very small real-life example, the compu-
tation may take a prohibitively long time due
to the high order of polynomials. Therefore,
heuristic algorithms with a high efficiency must be
sought.
George et al. (1995) studied the packing of

unequal circles within a square with an application
to the transport of tubes. Several practical re-
quirements have been considered, including sta-
bility of the stock, operability, and the highest
possible utilization of the space, but without
mentioning the algorithmic efficiency. Similar to
other methods involving genetic algorithm, their
method cannot avoid the loss of information while
passed from parent to offspring.
Lubachevsky and Graham (1997) studied the

problem of finding a smallest possible round tray
to contain a number of small circles having a unit
radius. They were able to repeat even improve
some previously obtained best patterns by using a
billiard simulation algorithm that simulates elastic
collision amongst smooth balls. Both the time in-
tervals during which collisions occur and the de-
formation of the balls are assumed infinitesimal.
For patterns of equally sized small circles within
a large outer circle, they have proved that, in
many circumstances, a seemingly ideal pattern of
hexagon is in fact not the most condensed distri-
bution.
In this paper, we present a new method that

mimics human behavior to avoid being trapped
into a local minimum, and call it the quasi-physi-
cal quasi-human (QuasiPQuasiH) algorithm. The
paper is organized as follows. Section 2 gives some
background and establishes a mathematical model
in the form of nonlinear mathematical program-
ming. Section 3 describes the quasi-physical
(QuasiP) method, and the difficulties that arise
when using this method. Section 4 describes the
quasi-human (QuasiH) strategy. Sections 5 and 6
give mathematical descriptions to the QuasiP and
QuasiPQuasiH methods, respectively. Section 7
presents the algorithm. Computation results are
presented in Section 8. The final section concludes
the paper.
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2. Mathematical model of nonlinear programming

2.1. Preamble

Let us first consider the relationship between
the problems from two different perspectives.
Problem 1 is to find a packing circle of radius r0 in
order to contain a number of given circular bins
with radii r1; r2; . . . ; rn, respectively. Overlaps be-
tween the bins are not allowed. There may exist
more than one solution in which r0 is unique, while
the coordinates of the bins are not. When a solu-
tion is obtained, the program will terminate.
Problem 2 is simply the pure problem of circle
packing, that is, given a round tray of radius r0
and a number of circular bins with radii
r1; r2; . . . ; rn, respectively, find if and how these
bins can be packed into the tray without overlap.
Problem 2 may lead to Problem 1 in the fol-

lowing sense. If Problem 1 is solved, namely, a tray
Cmin with a minimum radius is found, then for any
C that is smaller than Cmin, Problem 2 is insolv-
able. Otherwise, a solution to Problem 2 exists,
and the pattern obtained in the solution to Prob-
lem 1 is a reasonable pattern for Problem 2. On the
other hand, Problem 1 may also lead to Problem 2.
Having shown the interrelation between the two

problem types, we will only concentrate on Prob-
lem 2, the pure problem of circle packing, in the
following discussion.
We now give some initial QuasiH consider-

ations. When packing a container, one always
tends to fill in the corners and sides at an early
stage, rather than put big objects in the middle.
This process can be described in a mathematical
language. An outer circle (the tray) of radius r0 is
first defined. Then, put the smaller circles (the
bins) into it in a descending order in terms of size:
r1; r2; . . . ; rn. For brevity, the same symbol
riði ¼ 1; 2; . . . ; nÞ is used to represent the ith bin, as
well as its circumference or radius when no con-
fusion arises.
The first step is to lay r1 on the bottom, as

shown in Fig. 1. If r1 > r0, the problem is imme-
diately insolvable. Assume k steps have been suc-
cessfully taken, bins r1; r2; . . . ; rk are already in the
tray without overlapping. The ðk þ 1Þth step is to
put bin rðkþ1Þ into a reasonable angular position as

low and as close to the left as possible. The term
angular position refers to the location at which bin
rðkþ1Þ is tangential with another two bins already in
position. Being reasonable means that bin rðkþ1Þ is
inside the tray without overlapping its predeces-
sors. As the number of such reasonable angular
positions is less than or equal to 2C2

kþ1, we choose
the one to make bin rðkþ1Þ at the lowest possible
position.
If there are more than one such position, the left

most one is chosen. Therefore the ðk þ 1Þth step
leads to a unique result. In case a reasonable an-
gular position is nonexistent, the algorithm fails.
If, on the other hand, all the steps up to nth are
successful, a solution is found.
However, this simple QuasiH treatment has its

drawback, namely, the lack of completeness. The
algorithm may fail for some solvable problems.
Fig. 2 shows an example of bearing. If the biggest
bin is first laid on the bottom, the rest cannot be
accommodated.
The remedy is to combine the QuasiP method

that is complete, with the QuasiH treatment that
significantly improves the algorithmic efficiency.

Fig. 1. A circle lays on the bottom.

Fig. 2. Examples.
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The QuasiPQuasiH algorithm has a much better
completeness than the QuasiH method, and a
much higher efficiency than QuasiP method.

2.2. A mathematical model of nonlinear program-
ming

A general problem of unequal circle packing
can be modeled as a nonlinear mathematical pro-
gramming. We will show that one of its sub-
models is a proper representation of the problem
under study, i.e., finding if and how a given
number of bins with different radii can fit into a
given round tray.
The capital letter I represents the set of all bins,

and i an element of I. The radius and coordinates
of the ith bin are ri, and ðxi; yiÞ, respectively. The
Cartesian system is shown in Fig. 3, with the origin
at the center of the tray. Consider the set of all
different bin pairs, expressed as

H ¼ fði; jÞ : i 2 I ; j 2 I ; j < ig:

If the tray is also included in the set, and regarded
as the 0th object that is part of the plane with the
tray of radius r0 removed, a new object set is ob-
tained, denoted by

I� ¼ I [ f0g:

Similarly, the set of all bin pairs in I� is

H � ¼ fði; jÞ : i 2 I�; j 2 I�; j < ig:
With the symbols defined and inspired by the

study of George et al. (1995), the problem is now
modeled as

Minðr0Þ ð1Þ
subject toffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2i þ y2i

q
6 r0 
 ri 8i 2 I ; ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi 
 xjÞ2 þ ðyi 
 yjÞ2
q

P ri þ rj

8ði; jÞ 2 H ; ð3Þ

1 < r0 < þ1; ð4Þ

1 < xi < þ1; 
1 < yi < þ1
8i 2 H : ð5Þ

In these expressions, ri is a known real positive
number, xi; yi, and r0 are unknowns, i 2 I .
In this model, there are ð2nþ 1Þ continuous

deterministic variables and nþ nðnþ 1Þ=2 con-
straints where n is the number of bins, I ¼
f1; 2; . . . ; ng. Constraint (2) ensures that none of
any part of each bin is outside the tray. Constraint
(3) indicates no overlapping, namely, the distance
between any two inner bins cannot be less than the
sum of the two radii. Note that, since ri in (2) is
real and positive, we have r0 P 0 in any set of so-
lutions. If the problem is solvable, the minimum
value of the object function r0 is unique, but the
corresponding ðxi; yiÞ is not. One tray may allow
many different packing patterns.
A set of real numbers r0 and x1; y1; . . . ; xn; yn that

satisfy (2) and (3) is termed a feasible solution. It
is noticed that for a feasible solution, r�0 and x�1;
y�1 ; . . . ; x

�
n; y

�
n , the minimum tray radius r0 has a

local minimum r�0 at x�1; y
�
1 ; . . . ; x

�
n; y

�
n . That is,

minor changes in the coordinates will result in an
increase in r�0. Fig. 4 shows the patterns corre-
sponding to global (left) and local (right) optima,
respectively.
As showed in Fig. 4, for the problem considered

in this paper, local minima phenomenon may oc-
cur, e.g., different circles of the same size are
swapped, main circle is rotated, etc. Theoretical
analysis and numerical experiences show that the
model contains many local minima, and in manyFig. 3. Cartesian system.
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cases, the number of local minima is much greater
than that of global minima. Furthermore, since the
model is nonlinear, it is difficult to solve, even if
the number of bins is quite small. Indeed, the
problem has been proved to be NP hard (see, for
example, Lenstra and Rinnooy Kan, 1979).
If (1) is removed from the nonlinear model, and

let r0 be an arbitrarily given real positive number,
then (2)–(5) form a special type of nonlinear pro-
gramming problems, that is, nonlinear constraint-
satisfied problem. This is just the mathematical
model for our pure problem of unequal circle
packing. The positive number r0 is the radius of
the given tray.

3. Quasi-physical method and its drawback

We now describe a physical reality that is
equivalent to a packing problem. Think of the bins
as cylinders of unit height but with different di-
ameters, and the tray as an infinite plate of unit
thickness and with a round hole of radius r0. Both
the cylinders and the hole are smooth and elastic.
Imagine that the cylinders are packed in the hole
with all axes in parallel. Since all the objects have a
tendency to restore their natural shapes and sizes,
squeezing and collision occur. This leads to a series
of complicated motion. In the end, everyone
reaches a state of satisfaction, without extrusion
and deformation.
It is obvious that equivalence exists between this

physical experiment and our packing problems.
Therefore a mathematical description for the
movements of the cylinders will provide solutions
to the packing problem.

Fig. 5 shows the situation in which the ith cyl-
inder is deformed under the pressure from the 0th
(the tray), j1th, and j2th objects:

~FFi ¼ ~ff0i þ~ffj1i þ~ffj2i: ð6Þ

Assume the positions of these objects are known.
In Fig. 5, there is mutual embedding between the
ith and the 0th, and between the j1th and the j2th
objects. By loosely applying Hook’s law without
affecting the validity of the results in terms of
packing, the three forces in the left side of Eq. (6)
may be considered as proportional to the embed-
ding depths. The directions of these forces are all
toward the centers of the cylinders. So, the forces
can be calculated from the geometry, assuming the
elastic constant is 1.

~ffj1i
��� ��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi 
 xj1Þ
2 þ ðyi 
 yj1Þ

2
q���� 
 ðri þ rj1Þ

����;
~ffj1i
~ffj1i
��� ��� ¼

ðxi 
 xj1Þ~ee1 þ ðyi 
 yj1Þ~ee2
ðxi 
 xj1Þ~ee1 þ ðyi 
 yj1Þ~ee2
��� ��� ; ð7Þ

where~ee1 and~ee2 are unit vectors along the x and y
axes, respectively, in the Cartesian system. Within
a small time interval, the movement of the ith bin
is a small step along the total force,

xðtþ1Þi ~ee1
�

þ yðtþ1Þi ~ee2
�
¼ xðtÞi ~ee1

�
þ yðtÞi ~ee2

�
þ~FFi  e; ð8Þ

where e is a small positive constant. The conse-
quence of this small movement is a reduction of
mutual squeezing. The ‘‘pain’’ is alleviated.
After every bin moves in this manner, an old

pattern ðxðtÞ1 ; yðtÞ1 ; . . . ; xðtÞn ; yðtÞn Þ is said to have evolved

Fig. 4. Patterns. Fig. 5. The ith cylinder.
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into a new pattern ðxðtþ1Þ1 ; yðtþ1Þ1 ; . . . ; xðtþ1Þn ; yðtþ1Þn Þ.
Such a progressive evolution process simulates the
movements of the cylinders. If e is sufficiently small,
a state illustrated in Fig. 6 will be reached, and the
evolutionary movements will eventually cease.
Difficulties occur when the space is reduced. In

this case, the objects may get stuck when the total
forces exerted on the cylinders are zero,

xðtþ1Þ1 ; yðtþ1Þ1 ; . . . ; xðtþ1Þn ; yðtþ1Þn

� �
¼ xðtÞ1 ; yðtÞ1 ; . . . ; xðtÞn ; yðtÞn

� �
:

This means that, although a number of cylinders
are still in pain, they cannot move any further. The
pain may even increase as the iteration continues.
Thus, a solution cannot be found, which in fact
exists.
Fig. 7 shows a jamming situation. Imagine that,

in the left diagram, if one of the two small bins to
the left can take a ‘‘big move’’ to the bottom-right
corner, the process may continue, leading to a
solution. This big move will be referred to as
‘‘jumping out of trap’’ or a jump. The bin jumps

from a hopeless trap to find a more promising
place, starting a new venture.
Physically speaking, a trap is a state in which the

system’s potential energy is at a local minimum. It
is clear that in the QuasiP algorithm, a big jump is
impossible. The only way out is to start from
scratch, and try again. Repeat the process over and
over again, a solution can ultimately be obtained.

4. Quasi-human strategy

As has been shown, the purely physical laws
such as Hook’s do not provide a means for
jumping out of a trap. We now turn our focus to
human wisdom and experience in an attempt to
seek a solution. In a society, people tend to change
their position once they feel unsatisfied. The ones
who are in the most miserable situation want to
change most eagerly. On the other hand, the rich
may also wish to spread their wealth to obtain
some balance. We observe that changes of the
former type happen more frequently than the
latter.
Consider the bins in a tray as a ‘‘society’’. The

situation of the stuck bins that are under heavy
pressure from its neighbors is analogous to the
poor. This implies that we can help the poorest by
picking it out, and randomly putting it back to
somewhere else within the tray. The same can be
done to the rich in order to free some space so that
others may share the resources. We call the former
the strategy of pain relief, and the latter the strat-
egy of resource surrender.
We now present the synthesis of the QuasiH

strategy. The degree of mutual squeezing between
two objects, including the tray and the bins, can be
measured with the elastic potential. This potential
is the integral of the elastic force along the em-
bedding direction. From the previous discussion,
the force is proportional to the embedding depth,
therefore the potential proportional to the square
of the embedding depth (see Fig. 8).

uij � dij ði; j ¼ 0; 1; 2; . . . ; n; i 6¼ jÞ: ð9Þ

In (9), u0j and d0j represent the squeezing potential
and embedding depth between the tray and the jth

Fig. 6. A progressive evolution process.

Fig. 7. A jamming situation.
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bin, respectively. Similarly uij and dij are the
squeezing potential and the embedding depth be-
tween the ith and the jth bins, respectively. The
depths can be calculated from

d0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j þ y2j

q
þ rj 
 r0 if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2j þ y2j

q
þ rj > r0;

0 otherwise;

(

ð10Þ

dij ¼
ri þ rj 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi 
 xjÞ2 þ ðyi 
 yjÞ2

q
if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi 
 xjÞ2 þ ðyi 
 yjÞ2

q
< ri þ rj;

0 otherwise:

8>><
>>:

ð11Þ
Ignoring the constants, the potential of the ith

bin, either the tray or any of the bins, is

Ui ¼
X
k¼0

n

k6¼i

d2ki; i ¼ 0; 1; . . . ; n; ð12Þ

and the total potential of the system is

U ¼
Xn

i¼0
Ui: ð13Þ

It is seen from (10)–(13) that the potential of
each object and the total potential of the system
are explicit functions of the pattern ðx1; y1; . . . ;

xn; ynÞ. Ui can be used to measure the degree of
pain of the ith bin, DPi:

DPi ¼ Ui: ð14Þ
Although the embedding depth is the same for

the two mutually embedded bins, it is considered
that a smaller bin experiences more pain than a
larger one. Therefore a concept of relative pain,
RDPi, is introduced:

RDPi ¼
Ui

r2i
: ð15Þ

From (10)–(12), RDPi is dimensionless.
The first QuasiH strategy is formed when a

jamming occurs in a pattern ðx1; y1; . . . ; xn; ynÞ. The
relative pains of all bins, RDP1;RDP2; . . . ;RDPn,
are calculated. Choose the one having the maxi-
mum pain, and randomly put it into the tray.
Suppose the ith is the one being singled out. The
pattern

ðx1; y1; . . . ; xi
1; yi
1; xi; yi; xiþ1; yiþ1; . . . ; xn; ynÞ
is modified into

ðx1; y1; . . . ; xi
1; yi
1;~xxi; ~yyi; xiþ1; yiþ1; . . . ; xn; ynÞ;

where ~xxi and ~yyi are the coordinates of an arbitrary
point within the tray. From this new pattern
computation is carried on, and a jump is per-
formed whenever a jamming occurs until a rea-
sonable pattern is obtained as the solution:

ðx1; y1; . . . ; xn; ynÞ:
In the above, a combination of the pain relief

strategy and the QuasiP algorithm has led to a
simple QuasiPQuasiH algorithm. Experiments
show that this algorithm considerably outperforms
the purely quasi-physical method in terms of
computation efficiency.
However, it has been found that, in some cases

where the space is relatively compact, a same bin is
always chosen to jump in consecutive quasi-
human interventions, leading to an endless loop.
Thus, only the pain relief strategy is obviously
inadequate, and the resources surrender strategy
may come to the rescue.
If a chosen miserable bin is the same as the

previous one, the current choice is abandoned,
but the current jamming pattern ðx1; y1; . . . ; xn; ynÞ

Fig. 8. The synthesis of the QuasiH strategy.

446 H. Wang et al. / European Journal of Operational Research 141 (2002) 440–453



retained. Find the least miserable bin instead, lay
it randomly within the tray, and start over the
QuasiP algorithm again. Thus, a QuasiPQuasiH
algorithm based on two mutually supplementary
strategies is established.
Experiments show that the efficiency of the new

algorithm is substantially higher not only than that
of the QuasiP algorithm, but also the simple
QuasiPQuasiH algorithm that merely incorpo-
rates the pain relief strategy. Endless loops have
never happened in our experiments with the new
method.
In simulated annealing (Kirkpatric et al., 1983),

the object to be optimized also has a large number
of local minima (traps). The philosophy behind
this method and the strategy used are different
from ours. Therefore the results and applicability
with respect to specific applications are also dif-
ferent.

5. Mathematical description of the QuasiP method

From (1)–(13), in the problem of unequal circle
packing, the total elastic potential of the system
composed of a tray and several bins, U, is a known
function of the system pattern with 2n independent
variables:

U ¼ Uðx1; y1; . . . ; xn; ynÞ: ð16Þ
U has the following properties: (i) it is defined
on the entire 2n-dimensional Euclidean space
ð
1;þ1Þ2n, smooth, continuous, and differen-
tiable everywhere; (ii) it is nonnegative, namely,
Uðx1; y1; . . . ; xn; ynÞP 0 in ð
1;þ1Þ2n; (iii) if
Uðx1; y1; . . . ; xn; ynÞ > 0, ðx1; y1; . . . ; xn; ynÞ is not a
solution and, if Uðx1; y1; . . . ; xn; ynÞ ¼ 0, ðx1; y1; . . . ;
xn; ynÞ is a solution. Therefore the packing problem
is converted to a problem of optimization of the
total potential Uðx1; y1; . . . ; xn; ynÞ. The aim is to
find a minimum with a corresponding pattern
ðx�1; y�1 ; . . . ; x�n; y�nÞ. If the potential Uðx�1; y�1 ; . . . ;
x�n; y

�
nÞ ¼ 0, ðx�1; y�1 ; . . . ; x�n; y�nÞ is a solution and, if

Uðx�1; y�1 ; . . . ; x�n; y�nÞ > 0, the problem is insolvable.
There exists an algorithm for the unconstrained

optimization of smooth functions, i.e., the well-
known method of gradient or steepest descends. It
should be pointed out that the evolution of

ðx1; y1; . . . ; xn; ynÞ in the gradient method is consis-
tent with the successive updating of the patterns of
the bins in a tray. The mathematical description of
the gradient algorithm is as follows:
(1) Randomly define a number of initial points
ðxð0Þ1 ; yð0Þ1 Þ; ðxð0Þ2 ; yð0Þ2 Þ; . . . ; ðxð0Þn ; yð0Þn Þ within a circle
centered at the origin, and with a radius r0. This
gives an initial pattern ðxð0Þ1 ; yð0Þ1 ; xð0Þ2 ; yð0Þ2 ; . . . ;
xð0Þn ; yð0Þn Þ. Choose a positive number h as an ini-
tial step size, and a positive number less than 1,
n, as a step shrinking factor. Choose two very
small positive numbers, e1 and e2, as the criteria
for the judgement of gradU being approxi-
mately zero.
(2) Evaluate the potential function Uðxð0Þ1 ; yð0Þ1 ;
xð0Þ2 ; yð0Þ2 ; . . . ; xð0Þn ; yð0Þn Þ. If

U xð0Þ1 ; yð0Þ1 ; xð0Þ2 ; yð0Þ2 ; . . . ; xð0Þn ; yð0Þn

� �
< e1;

a solution is found, and the computation ter-
minates. Proceed if

U xð0Þ1 ; yð0Þ1 ; xð0Þ2 ; yð0Þ2 ; . . . ; xð0Þn ; yð0Þn

� �
P e1:

(3) Calculate vector gradU at ðxð0Þ1 ; yð0Þ1 ; xð0Þ2 ;
yð0Þ2 ; . . . ; xð0Þn ; yð0Þn Þ:

gradU ¼ oU
ox1

;
oU
oy1

; . . . ;
oU
oxn

;
oU
oyn

� 
: ð17Þ

Calculate the absolute value of gradU . jgradU j <
e2 indicates a jamming, and ðxð0Þ1 ; yð0Þ1 ; . . . ; xð0Þn ; yð0Þn Þ
corresponds to a local minimum. In this case a new
point is randomly chosen, and the computation
resumes over again. If jgradU jP e2, a new pattern
is calculated following the gradient method:

xð1Þ1 ¼ xð0Þ1 
 oU
ox1

h0;

yð1Þ1 ¼ yð0Þ1 
 oU
oy1

h0;

..

.
ð18Þ

xð1Þn ¼ xð0Þn 
 oU
oxn

h0;

yð1Þn ¼ yð0Þn 
 oU
oyn

h0;

where the partial derivatives oU=oxi, oU=oyi,
i ¼ 1; 2; . . . ; n, are defined at ðxð0Þ1 ; yð0Þ1 ; . . . ; xð0Þn ; yð0Þn Þ
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in an 2n-dimensional space. Using a vector repre-
sentation,

xð1Þ1 ; yð1Þ1 ; . . . ; xð1Þn ; yð1Þn

� �
¼ xð0Þ1 ; yð0Þ1 ; . . . ; xð0Þn ; yð0Þn

� �

 h0 gradU : ð19Þ

The geometrical implication of (19) is that pattern
ðxð0Þ1 ; yð0Þ1 ; . . . ; xð0Þn ; yð0Þn Þ becomes ðxð1Þ1 ; yð1Þ1 ; . . . ; xð1Þn ;
yð1Þn Þ after moving towards the opposite direction
of the gradient by h0jgradU j.
If the new pattern is better than the previ-

ous one, the process is carried on from the new
position. If not, the step size in (19) may have been
too large. This is because jgradU jP e2 indi-
cates that the potential will decrease so long as the
step is sufficiently small. Therefore, move back to
ðxð0Þ1 ; yð0Þ1 ; . . . ; xð0Þn ; yð0Þn Þ, modify the step size in (19)
into nh0, and start again. If still failing, reduce the
step size again, until a better new pattern is ob-
tained.
From the new pattern, repeat steps (2) and (3),

until a solution is found, or a jamming, in which
jgradU j < e2, occurs. In the latter case, a com-
pletely new round of QuasiP computation should
be initiated from a new initial condition.
Eqs. (6)–(8) describe the movement of the cen-

ter of the ith bin, whereas Eq. (18) describes the
movement of all bins as a whole. These equations
are all well defined. Through rigorous yet not
very complicated mathematical manipulations, it
can be shown that these two methods are con-
sistent except for a positive adjustable constant.
The physical meaning of the negative gradient,
)gradU, in the gradient method is the generalized
force in the system. ð
oU=oxi;
oU=oyiÞ repre-
sents the magnitude and direction of the total force
exerted on the current ith bin.

6. Mathematical description of the QuasiPQuasiH

algorithm: The natural language

We now synthesize the pain relief and resources
surrender strategies into a unified QuasiH packing
strategy, and give a precise description leading to
the QuasiPQuasiH algorithm when incorporated
into the QuasiP algorithm.

Definition 1. In a pure problem of circle packing,
the coordinates of the centers of n bins, x1; y1;
. . . ; xn; yn, at any instant, is called a pattern of the
system.

Definition 2. Under pattern x1; y1; . . . ; xn; yn, the
absolute degree of pain, DPi of the ith bin,
i ¼ 1; 2; . . . ; n, is the elastic potential energy in the
bin:

DPi ¼ Ui: ð20Þ

Definition 3. Under pattern x1; y1; . . . ; xn; yn, the
relative degree of pain, RDPi of the ith bin,
i ¼ 1; 2; . . . ; n, is the elastic potential energy in the
bin divided by the square of its radius:

RDPi ¼
Ui

r2i
: ð21Þ

6.1. The quasi-human strategy

The first jump out of trap. Suppose the system
reaches a local minimum, Plm;1 ¼ ðx1; y1; . . . ; xn; ynÞ,
for the first time. Identify the bin with the highest
RDP, and call it the ith bin. Randomly relocate its
center within the tray while keeping the rest of the
bins at their current positions. Thus, the current
state is changed from

ðx1; y1; . . . ; xi
1; yi
1; xi; yi; xiþ1; yiþ1; . . . ; xn; ynÞ
to

ðx1; y1; . . . ; xi
1; yi
1;~xxi; ~yyi; xiþ1; yiþ1; . . . ; xn; ynÞ:
From the new state, perform a new round of
computation.

The ðk þ 1Þth jump. Suppose a local minimum,
Plm;1, is reached after the ðk þ 1Þth QuasiP com-
putation. Identify the bin with the highest RDP,
and call it the ith bin. Choose one of the following
steps if corresponding condition holds:
(i) If the ith bin is not the one chosen in the kth
jump with the highest relative RDP, the ith bin
is relocated randomly with its center inside the
tray.
(ii) If the ith bin is the one chosen in the kth
jump with the highest RDP, then keep the pat-
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tern unchanged, find the bin with the least abso-
lute pain, and call it the jth bin. Relocate the jth
bin randomly with its center inside the tray.
(iii) If the kth jump is performed based on the
least absolute DP, relocate the ith bin randomly
with its center inside the tray.

After a choice is made in the ðk þ 1Þth jump,
proceed the QuasiP computation again with the
new starting pattern.

6.2. The quasi-physic quasi-human strategy

With the above-described QuasiH strategy and
based on the QuasiP algorithm, the following
QuasiPQuasiH algorithm is obtained:
At the beginning, the computation is performed
using the QuasiP algorithm until a minimum is
reached;
If U ¼ 0, a solution is found, and computation
terminates;
Otherwise, process jumps to a new position ac-
cording to the QuasiH strategy and carries on
computation with the QuasiP algorithm;
The process continues alternatively between
QuasiP and QuasiH strategy;
The computation terminates when either a min-
imum with the total potential equal to zero is
reached, hence a solution found, or a prescribed
time limit is exceeded without finding a solu-
tion.

7. Algorithmic description of the QuasiPQuasiH

algorithm: The formal language

In order to implement the QuasiPQuasiH al-
gorithm on a PC, a program is written, which can
be used to verify the proposed method. In the
following discussion, pattern ðx1; y1; . . . ; xn; ynÞ is
denoted by a vector X for brevity.
(1) Randomly define n points, ðx1; y1Þ; . . . ;
ðxn; ynÞ, in a round tray centered at the origin
and with a radius r0, hence an initial patter X.
Let Uold ¼ 0; t ¼ 0; l0 ¼ 0; h ¼ 1;
(2) If h < 10
30, go to (5);
(3) Calculate UðXÞ;
(4) If UðXÞ < 10
6, stop; otherwise calculate
gradU,

(a) If UðXÞ < Uold, Uold ( UðXÞ, X (
X
 ðgradUÞh, go to (2);
(b) If UðXÞPUold, Uold ( UðXÞ, h ( 0:8h,
X ( X
 ðgradUÞh, go to (2);
(5) Find the bin with the highest RDP, and
call it the lth bin, 16 l6 n;

(6) If l ¼ l0; t ( t þ 1;
(7) If t < 1, change the component ðxl; ylÞ in X

into the current randomly defined coordinates,
ð~xx; ~yyÞ, and let l0 ( l, h ( 1, then go to (2);
(8) If t¼ 1, find the bin with the least absolute
DP, and call it the lth bin, 16 l6 n, change
the component ðxl; ylÞ in X into the current ran-
domly defined coordinates, ð~xx; ~yyÞ, and let t ( 0,
l0 ( 0, h ( 1, then go to (2).
Note that, in the program, two minor modifi-

cations to the QuasiP algorithm described in Sec-
tion 5 have been made for the sake of convenience.
First, when a new position is arrived by a small
step using the gradient method, if it is not better
than the previous one, one should go back to the
previous position according to the algorithm in
Section 5. But here, only the step size is reduced
without going back. Secondly, the criterion for the
total potential used here is h < 10
30 rather than
jgradU j6 e2.

8. Numerical experiments

8.1. Measures of algorithmic performance

The proposed algorithm does not possess a
complete computability, but only a partial com-
putability. That is to say, if the pure problem of
circle packing is solvable for a particular instance,
r0; r1; r2; . . . ; rn, the algorithm will produce a solu-
tion in a sufficiently long time; if, on the other
hand, the problem is insolvable, the algorithm
cannot provide such a decision as it being insolv-
able. For any given instance r0; r1; r2; . . . ; rn, it is
difficult for us to tell whether it is solvable. How-
ever, we have a method feasible to some degree.
Firstly, take the instance as solvable and conduct
QuasiPQuasiH algorithm on it. If the QuasiPQu-
asiH algorithm produces a solution, we can say the
instance is solvable of course. Otherwise, in a suf-
ficiently log time, if the QuasiPQuasiH algorithm
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could not produce a solution, we say the instance
is insolvable.
Therefore, the computational examples consid-

ered here are confined to solvable instances.
For a given computational example, one may

ask if it is a hard example, namely an example that
is difficult to solve. In contrast to intuition, ex-
amples with a large n are not necessarily hard. In
other words, the number of bins is not the decisive
parameter. For example, packing of small square
blocks in a large rectangular container is a trivial
problem. Similar cases exist in circle packing.
A hard example in the pure problem of circle

packing has the following three characteristics: (i) it
is solvable; (ii) the tray size is marginal, namely, a
slight reduction makes the problem insolvable; and
(iii) the total elastic potential Uðx1; y1; . . . ; xn; ynÞ
has many local minima at which U is not zero.
It is generally accepted that one criterion for the

evaluation of algorithm performance is the time
taken when solving a given instance, r0; r1; r2; . . . ;
rn: the shorter, the better.
In this paper, r0, together with the pattern of the

bins, r1; r2; . . . ; rn, forms an approximate solution
to the circle packing problem. The approximate
solution r0 to the problem of circle packing
r1; r2; . . . ; rn, is likely to be somewhat greater than
the theoretical minimal radius r�0. Nonetheless, the
results are usually satisfactory if positive error
r0 
 r�0 is small enough. For an approximate so-
lution r0, the magnitude of it is an important cri-
terion in judging the algorithm performance.
Therefore, in comparing different algorithms

for solving problems of circle packing, both speed
and quality of solution are important measures of
their performances. The difference r0 
 r�0 repre-
sents the precision of an algorithm for the instance
r1; r2; . . . ; rn.
In order to evaluate the precision of different

algorithms, hard examples are used. However,
rigorous solutions ðr�0Þ are usually unavailable for
such examples. At present, even some seemingly
simple problems do not have rigorous solutions.
An example is the packing of 19 circles with equal
radius. Since a compact and symmetrical pattern is
available, we believe that the minimum radius of
the outer circle is r�0 ¼ 4:863703 . . ., assuming the
radius of the 19 identical circles is 1. However, it

still lacks a proof (see, for example, Lubachevsky
and Graham, 1997). Therefore, instead of r�0, we
can only use the smallest possible radius, ~rr0, that is
obtainable manually by average human beings, as
a reference in our quality evaluation.
In the mean time, there are known special pat-

terns that are compact and symmetrical. These
provide some useful instances with rigorous solu-
tions. Fig. 9 shows such an example, in which
r1 ¼ r2 ¼ r3 ¼ 100, and r4 ¼ r5 ¼ r6 ¼ 48:26. The
solution is r�0 ¼ 215:47, which can be shown using
elementary geometry. These examples may also be
used in the evaluation of the algorithm.
To our knowledge, no systematic discussions on

the evaluation of algorithmic performance for the
pure problems of circle packing, including both
speed and solution quality, have been documented
in the literature. Therefore, we can only compare
the proposed QuasiPQuasiH algorithm with the
previous QuasiP in order to show the merits of the
QuasiH strategy. Nonetheless, a reference is made
to the theoretical formulas on the computational
complexity in Hochbaum and Maass (1985).

8.2. Results

A total of 20 examples are used in this work for
the purpose of algorithm evaluation, in terms of
both speed and quality. These include four equal
circle problems and 16 unequal circle problems.
The number of bins ranges from 3 to 50, and the
ratio between the smallest and the largest bins
from 1 to 15. It is believed that these examples are
representative in the problems under study since
the circle packing is tackled as a series pure
problems of circle packing.

Fig. 9. An example.
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Three algorithms are compared. They are (1)
Hochbaum and Maass (1985), (2) quasi-physical,
and (3) quasi-physical quasi-human.
The Hochbaum–Maass algorithm is a purely

theoretical method that is complete. It has a defi-
nite measure of complexity in terms of time:

t � 2

e

� 2

 jxjð2=eÞ
2

;

where jxj is the length of solutions, e is the allowed
relative error. We were unable to conduct a nu-
merical experiment using their algorithm because t
becomes prohibitively large for a not-too-small e
(for example, 0.1).
For each of the examples, a series of computa-

tions were carried out until a satisfactory r0 is
obtained. The satisfaction is based on two criteria:
(i) a better result is impossible with a manual
method, and (ii) neither can QuasiPQuasiH pro-
ceed any further for a smaller r0.
In the computation, an approximate solution r0

is first sought for each example. Thus a solvable
pure problem of circle packing, r0; r1; r2; . . . ; rn, is
established. On each example, both the QuasiP
and QuasiPQuasiH methods are tested five times,
respectively. The total number of computation is
then 20� 2� 5 ¼ 200. Every time an initial con-
dition is randomly set.
The computer used in the experiment was a

Pentium 233 MHz. The programming language C
was used. Table 1 gives the results of four repre-

sentative instances. These are chosen because they
are the relatively difficult ones in which slight re-
duction of r0 would lead to insolvable instances.
Fig. 10 and Table 1 show the geometry, each

being a result of a successful computation with the
proposed QuasiPQuasiH algorithm.

9. Conclusions

A novel algorithm, QuasiPQuasiH, based on
physical analogy together with human behavior

Table 1

Computation results of Fig. 10

M r0 ri Execution time (in seconds)

QuasiP QuasiPQuasiH

7 60 r1 ¼ r2 ¼    ¼ r7 ¼ 20 1.87, 0.05, 0.05, 0.11, 0.05 0.04, 0.04, 0.04, 0.04, 0.02

50

159.32 r1 ¼ r2 ¼    ¼ r50 ¼ 20 3315, 1998, 1392, 81, 1011 148, 877, 100, 431, 284

12

215.47 r1 ¼ r2 ¼ r3 ¼ 100 4294, 1889, 1862, 34, 13, 14, 87, 94

r4 ¼ r5 ¼ r6 ¼ 48:26 5000(failed), 5000(failed)

r7 ¼ r8 ¼    ¼ r12 ¼ 23:72
15 39.37 r1 ¼ 1 3000(failed), 3000(failed), 512, 269, 26, 55, 60

r2 ¼ 2 3000(failed), 2431, 540

r3 ¼ 3

. . .
r15 ¼ 15

Fig. 10. Four examples of results (M ¼ 7, 50, 12, and 15).
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has been introduced. The key of the method lies in
a powerful means for getting out of local minima.
This is achieved through the incorporation of a
QuasiH strategy that results in a significant im-
provement to the previous QuasiP algorithm.
The effectiveness of the algorithm is verified in

the numerical experiments. Results are presented
to show the practicality of the new method. Since
systematic reports on the evaluation of the algo-
rithm for problems under study, in terms of both
speed and quality, are unavailable in the literature,
a comparative study with other methods is not
possible. The computations were conducted
mainly in comparison with the previously pub-
lished QuasiP approach.
The experimental results are exceptionally good

as shown in Table 1. A substantial reduction in
computing time has been achieved, especially for
those difficult examples. The quality of the results
has exceeded the best possible obtained by skillful
manual drawing.
Hochbaum and Maass (1985) work has theo-

retical importance since it provides a complete and
rigorous solution with a polynomial complexity.
However, the orders of the polynomials are very
high, therefore the required computing time is
prohibitively long. Actual computation using their
method is impractical.
Regarding the question raised by George et al.

(1995) as how to nest pipes inside one another
optimally, the proposed algorithm may provide a
useful answer. The problem discussed here is in
fact the first sub-problem of the cylindrical bin
packing put forward by George et al.
Tabu search is a metaheuristics and applied

successfully in various combinatorial optimization
(Glover and Manuel, 1997; Aarts and Lenstra,
1997) and continuous optimization problems
(Battiti and Tecchiolli, 1996; Chelouah and Siarry,
2000). Tabu search has a huge range of sophisti-
cation in many of its applications. A distinguishing
feature of Tabu search is represented by its ex-
ploitation of adaptive forms of memory (Glover
and Manuel, 1997), i.e., the tabu list is used to
prevent cycling back to some previous points; in
quasi-human strategy, the memory is used to
check whether the two most miserable bins suc-

cessively selected (i.e., the current and the previous
most miserable bins) are the same. If they are, the
pain relief strategy is switched to resources sur-
render strategy, the current choice is cancelled and
the least miserable bin is selected instead for
moving. Thus, the QuasiPQuasiH strategy can be
thought as an adoptive algorithm of the Tabu
search.
As the main focus of this paper is on the effec-

tiveness of the QuasiH strategy in conjunction
with the QuasiP algorithm, the QuasiP itself is
implemented with the simplest gradient method. In
fact, with more sophisticated methods such as
Fletcher–Power–Davidon’s quasi-Newton method
and the well-known Newton–Raphson method,
further improvement to the QuasiPQuasiH algo-
rithm is possible. This is one of the areas we are
currently working on.
The research was partly motivated by industrial

applications such as stacking of tubes and opti-
mization of optical fiber cable designs. It is hoped
that the new method will provide answers to some
questions raised by practical workers.
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