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ABSTRACT 

This paper present a feasible method for crack identification 
in hollow section structures based on the coupling vibration 
behaviour of cracked members. From the last several 
decades lots of techniques have been developed by many 
researchers to detect, locate and quantify damage by using 
changes to modal parameters such as natural frequency, 
mode shape or damping ratio. However, these approaches 
suffer from the fact that the structural damage has a low 
sensitivity to changes in these parameters. 

vi(u) Lateral vibration 

Q System matrix 

1. INTRODUCTION 

Detection and control of damage in mechanical structures 
such as found in large mining machinery is an important 
concern to mine operators. 

A related option is offered through coupled response 
measurements. A transverse surface crack is well known to 

Among many possible damage identification methods, 

produce local flexibility due to the stress-strain singularity in 
vibration measurements offer the potential to be an 

the vicinity of the crack tip. The local flexibility can be 
effective, inexpensive and fast tool for nondestmctive 

represented by the way of a 6x6 matrix for a beam element 
testing. During the past several decades, significant amount 
of research has been conducted in the area of vibration- 

that includes the crack. This matrlx contains off-diagonal based damage identification. The main idea under this 
terms that cause coupling response along the direction approach is that a change in a system due to damage will 
corresponding to these terms. This coupling property due to manifest itself as changes in the structural dynamic 
the crack is evidence of the existence of the cracks. characteristics. 

Coupled response of cracked hollow section structures was 
studied. Hollow section structures demonstrate a more 
pronounced coupling when cracks occur. In this paper, both 
an analytical simulation and the eady results of experimental 
implementation are presented. This method is fairly 
discriminative even for small cracks. 

Reviews on vibration of cracked structures were reported by 
Dimarogonaspl, Wauert’] and Doebling et a/ f I. Many 
identification techniques have been proposed based on 
different selected parameters. Some authors used the 
change of natural frequencies[4-61 or mode shapes[7-8’ as 
the indicator of damages while others detected structural 
damage directly from dynamic response in time domain or 
from Frequency Response Functionsf9’. 

NOMENCLATURE 

E 
I 
A 
P 
V 

Young’s modulus 
Moment of inertia 
Cross sectional Area 
Density of the material 
Poisson’s ratio 

Strain energy 

Strain energy density function 

C Local flexibility matrix 

Km” Stress intensity factor 

ui(x>t) Axial vibration 

Despite a certain degree of success with these techniques, 
one common practical problem still is the sensitivity of the 
selected parameters to damage. 

In this paper, we studied local parameters rather than those 
for the whole system and looked at the coupling property of 
the cracked member instead of just the quantitative change 
of parameters. It is demonstrated that this method may have 
a sufficiently high sensitivity to the presence of cracks. 

The key idea is to model the crack section by using a local 
flexibility matrix, which sets up the relationship between the 
displacements and forces. The local flexibility matrix can be 
formulated from the stress intensity factors of the structure 
using a fracture mechanics approach. This formulation 
depends on the crack orientation and magnitude. 
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Generally, for untracked members the local flexibility matrix 
is diagonal. In the presence of a crack, , some off-diagonal 
terms become nonzero. This means excitation along one 
direction (eg lateral) will cause response along other 
corresponding directions (eg Axial). 

The simple case of local flexibility was studied by ltwin[“’ 
for beams and by Rice and Levy”” for plates, who related 
the flexibility to stress intensity factors. Papadoupolos and 
Dimarogonas”” presented general picture of coupled 
vibration on a cracked shaft. 

In this paper, a Circular Hollow Section (CHS) member is 
studied. After first deriving the local flexibility matrix, we 
then present an analytical simulation of free and forced 
vibration of cracked CHS beam and demonstrate crack 
identification by using the proposed coupling property. The 
results for different crack severities and locations are 
compared. Finally, the preliminary test results are 
presented that prove the feasibility of this approach. Full 
analysis of the experimental results was not complete at the 
time of writing this paper but they will be presented at the 
Conference. 

2. LOCAL FLEXIBILITY MATRIX OF A CRACKED 
STRUCTURE MEMBER 

A crack on a structural member introduces additional local 
flexibility, which is a function of the crack depth (severity) 
and location. This flexibility changes the dynamic behaviour 
of the system. In order to understand the effect of a crack 
upon the dynamic response of an elastic structure and 
furthermore to identify the cracks, one has to first establish 
the local stiffness or flexibility matrix of the crack member 
under general loading. 

In general, the local flexibility for a beam can be described 
by the way of a local flexibility matrix, the dimension of 
which depends on the number of the degrees of freedom 
being considered, maximum 6x6.The coordinate system 
and the corresponding forces are shown in Figure 1. Here 
we use subscript 1 for the longitudinal coordinate,2 and 3 for 
the shear directions, 4 and 5 for bending moment and 6 for 
torsional degree of freedom. Using this flexibility equation, 
the extra displacement along any degree of freedom due to 
the presence of the crack is given by the following equation: 

G=[cp (1) 

where c and P are displacement and force vectors and 

c is the crack flexibility matrix: U E R6”’ ; C E R6”6 ; 
p E R6x’ . 

The displacement ui along the force component P, due to 

the presence of the crack will be computed using 

Castigliano’s theorem (Energy method). 

Figure 1: CHS Beam Under General L 

If u, is the strain energy due to a crack 

displacement ui is defined as: 

ui = au, /a4 

The strain energy has the following form: 

u, = pa = jJ(a)da 
0 

oading 

the additional 

(2) 

(3) 

where J(a)is strain energy density function, u is the 
crack length. Therefore: 

The flexibility influence coefficient cd will be: 

From fracture mechanics the strain energy density function 
J(a) has the general form: 
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Where E' = E for plane stress,& =E/(l-v2) for plane 

straima = 1+ v ; E and v are Young’s modulus and 
Poisson’s ratio, respectively. Then, combining the equations 

(5) and (6): 

(7) 

Where e, =I for m=I,II and e, =afor m=III;& 

is the stress intensity factor of mode m(m = r,rl,Irr> due 

to the load P,(n = 1,2 ,... 6). 

From (7), one can judge the existence of coupling between 
any considered coordinates by K,,. If some of the loads 

contribute to the same fracture mode, for example, beam 
under extension and bending both create tensile stress and 
contribute to the mode Iof stress intensity factor (i.e. 

K,, # O,K,, # 0), the corresponding flexibility element 

would be nonzero (i.e. c,~ # 0). 

Eventually, the local flexibility matrix for the beam due to the 
crack will have the following form: 

Cl1 0 0 Cl4 55 0 
0 C12 0 0 0 c26 
0 0 =31 0 0 =3s 

Cdl 0 0 cd4 c45 0 
C5I 0 0 %I css 0 
0 %2 %3 0 0 cm 

(8) 

This matrix relates the displacement vector {u} to the 

corresponding force vector {P} through (1). 

By inversion of this local flexibility matrix we can obtain the 
local stiffness matrix: 

K=C-’ (9) 

Due to reciprocity, the matrix C and K are symmetric for 
an untracked beam. The nondiagonal terms of the matrix 
C show that coupling exists between longitudinal, bending 
and torsional vibrations because of the crack. This coupling 
property is a practical indicator to identify the cracks in the 
structure. 

In the following analysis the qualitative and quantitative 
coupled longitudinal and bending vibration of a cracked 
hollow section beam will be presented. Firstly, the stress 
intensity factors of a hollow section beam with 
circumferential through-wall crack will be introduced. Then 
the free vibration of a cracked beam will be analysed to 
examine the change of natural frequencies and mode 

shapes. Furthermore, the coupling property of cracked 
beam will be shown by the frequency response functions of 
the system that can be derived from forced vibration 
analysis. 

3. STRESS INTENSITY FACTORS 

For the expression of the local flexibility, the crucial element 
is the availability of the relevant stress intensity factors. To 
this end, we consider the coupling between longitudinal and 
bending vibration. The dimension of the matrix C and 

K are 2 x 2 and can be expressed as: 

c=p: :::I K=[;;; ;;] (IO) 
Using fracture mechanicsp5’ principles, the stress intensity 
factors for circumferential through-wall crack in cylinders 
can be expressed as follows: 

Axial force 4 : 

(11) 

Where R = (R, + R,)/2 is the mean radius; and 0 is the 

half angle of the total through-wall crack and: 

F, =l+,,i,.,,o~[~)5+l*.7~,(~~24] 

i 
02* 

‘4, = O.l25fl-0.25 For dL0 t t 
,4,=(0.4~-3.0~*~ For 10+$420 

Bending moment Ps : 

K,, = (12) 

Fb =l+.4+X7($5 +2.6422@-] 

,4, is same as above. 

By substituting K,, to equation (7) one can obtain 

matrix C and K 
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4. FREE VIBRATION OF A CRACKED CHS BEAM 

A cantilever Euler-Bernoulli CHS Beam is considered. The 
system is described by following differential equations: 

Axial vibration: a’u, _ P w 

8X2 E dt2 
(13) 

Lateral vibration: a*v,+Pw -0 
ax4 El at2 

(14) 

Where i = 1 for the section lefl to the crack (x I I) and 
i = 2 for the section right to the crack (1 I x I L ) 

The solutions to equations (13)----(14) can be described by 
formulas (15)----(I 8) with separate variables, where Cd is 

the natural frequency of the system, A,, B, , A,, B, are 

unknown coefficients, which can be determined from the 
initial conditions. 

u,(x,t)= u,(xXA, coswt + B, sin cot) (15) 

v,(x,t)=u,(xXA,coswt+E,sinwt) (16) 
V, (x, t ) = v, (x)(4 cos cot + B, sin cot) (17) 
V, (x, t) = v2 (x)(4 cosmt + B, sin cot) (18) 

By substitution of equations (I~)----(18) into equations (13)- 
---(14) and separating variables we obtain the governing 
equations for the spatial variable x : 

ah 
i+k,*u, =0 
a2 
a2u 
----L+k,‘u, =0 

8X2 

a% ---k,%+ =0 
ax4 
a4v 1 

.:;;:;, k, j&&j”. 

(1% 

(20) 

(21) 

(22) 

Then the general solutions of equations (19)~---(22) have 
the following form: 

UI (4 = 4 cosk,x+ A, sink,x (23) 

u,(x)=A,cosk,x+A,sink,x (24) 

v,(x)= A, coshk,x+ A6 sinhk,x+ A, cosk,x+ A,sink,x (25) 
v,(x)= Ag coshk,x+ A,,sinhk,x+ A,, cosk,x+ A,, sink,x (26) 

Where Ai ,i = I,&...12 are unknown coefficients that will 

be determined by the boundary conditions. For the beam 
with one crack, the boundaries will include both ends and 

the two sides of the crack (totally 12 conditions). These 
conditions are homogeneous which means they don’t 
involve functions of t Therefore, application of the 
boundary conditions to the solution will yield twelve 

algebraic equations for A,, A,,...A,, These algebraic 
equations are homogeneous. The condition for the 
existence of nontrivial solution is that the determinant of the 
coefficient matrix equals to zero. This gives an equation for 
the determination of the system natural frequency Cd. 

For each value of Wi we can get the corresponding solution 

of A,, A *,... A,, . Then substituting A,, A *,... A,2 to equations 

(23)----(26) we can get U, (x),u, (x),v, (x), v2 (x) which 
arethe axial and bending modes, respectively. 

For a cracked cantilever beam, the boundary conditions will 
be: 

Clamp end: s,(o)= 6 ; v,(o)=o; v,‘(O)=0 (27) 

Free end: ,&G,‘(L)= o; EIV,$)= o; Elv,“‘@)= 0 (28) 

Cracked section: 
A,&,‘(l)= A&(Z) (2% 

EI”,‘ (I) = Elv,“(l) (30) 

El”,“(r)= EI”,-(r) (31) 

VI (4 = v2 (0 (32) 

AEu,‘(I)=k,,[u,(l)-u,(I)]+k,,[v,’([)-v,’(r)] (33) 

w'(O= k,,[u,(l)-u,(lll+k,,[v,'(l)-v,'(l)l (34) 

By applying the solution functions (23~---(26) into the 
boundary conditions (27)----(34),the characteristic equation 
of the system can be obtained: 

det[Q] = 0 (35) 

This determinant is a function of the natural frequency 
w and the local stiffness matrix which is dependent on the 
crack severity and location. The roots of the equation versus 
the natural frequency w give the eigenvalues of the 
system. The eigenmodes of the system can also be 
determined as stated above. 

5. FORCED VIBRATION OF A CRACKED CHS BEAM 

Vibration can be excited by applying a harmonic excitation 
along any coordinate direction. Without a crack, the 
response only exists at the corresponding direction. But 
when even a small crack is presented, excitation in one 
degree of freedom gives response in all possible degrees of 
freedom. This coupling property can be observed by the 
Frequency Response Functions of the system. 

Supposing a transverse hamlonic excitation force 

F(U) = f, coswt is applied at the free end of the beam, 

then the boundary condition of equation (28) will become: 
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m,“‘(L)= f, 

The other boundary conditions will remain the same. The 

coefficients A,, A,,...A12 can now be computed by solving 
the linear system equation: 

(37) 

Where {F} = {O,O,...fO,...O)T. Substituting the solution of 

{A} back to equation (23)----(26) we can get response 

function Ii= ‘(“@) ’ v(x’w) for longitudinal and - -=- 
F fo ’ F fo 

lateral vibration respectively. Such plots have been created 

for the free end of the beam (X = L ). 

6. RESULTS AND DISCUSSION 

As shown in Figure 1, a Circular Hollow Section beam is 
examined. This is a common section used in engineering 
structures. In this paper, we consider a cantilever beam 
configuration. The following parameters are selected: beam 
length 1 .O m, outside diameter 48.3 mm, wall thickness 3.2 
mm and crack location 0.2 m from clamp end. 

Based on previous analysis, we firstly obtained the 
eigenfrequencies and mode shapes for untracked beam, 
and then compared to cracked beam under different 
locations and various crack severities. The eigenfrequencies 
are shown in table 1 and The first four modes are presented 
in Figure 2. As can be seen, there is more frequency shift 
when the crack is located closer to the root or if the crack 
is more severe. From the mode shapes one can observe the 
discontinuity at the crack location. 

An examination of the coupling effects on the Frequency 
Response Functions (FRFs) indicates the sensitivity of the 
method to the crack presence. The driving point FRFs of the 
free end (vertical response with vertical excitation) under 
different crack severity are plotted in Figure 3. It is clear that 
for untracked beam only lateral response exists. However, 
once the crack is presented the axial response manifests 
itself in lateral spectra and as the crack progresses this 
manifestation becomes very significant. In order to judge 
these extra peaks are from axial response, we wmpared it 
with the FRF of the untracked beam and also created the 
corresponding mode shape for further confirmation. 

This coupling, which is due to the non-diagonal terms at the 
local flexibility matrix, is a potential indicator for crack 
identification. 

Table 1: Comparison of Natural Frequency Change ( % ) Due to Crack 

Second Sending Mode 

;FLi 

I 

0 02 0.4 0.6 0.8 1 i-4 

Beam Length, m , 0 0.2 0.4 0.6 0.6 1 
Seam Length (m ) 

Figure 2: Mode Shapes of Cracked CHS Beam 
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Third Bending Mode First Axial Mode 

Beam Length (m ) 

Figure 2: Mode Shapes of Cracked CHS Beam (Continued) 

Crack Severity : 5% 

0.5 1 d&m; 25 3 35 4 
( rad/s ) X104 

Crack Severity: 25% 
--I-- /- 

Frequency ( rad/s ) 

Crack Severity: 10% 
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---- --- 

; I I I 

Crack Severity: 10% 
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h 
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-10 

-12 

-14 

I 
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/ I / / 

I I 
I 

I / 

I 
I I / 

) / I 
/ 

0.5 1 1.5 2 2.5 Y---l 3.5 4 
Frequency ( rad/s ) X104 

Figure 3: Comparison of FRF of CHS Beam Under different severity 
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7.EXPERIMENT 

In order to observe the evidence of the coupling property, 
a CHS beam of same dimension was firmly clamped onto 
a strong bench. The crack was created by a very fine 
hacksaw to a certain degree of severity. The modal testing 
was conducted by impact excitation. The lateral and axial 
responses were measured at the free end of the beam 
while the excitation points were selected at various 
locations. 

The acquisition of the excitation and response data was 
done by an IOTECH Wavebook data acquisition system 
and the signal processing was done using MATLAB. A 
sampling frequency of 15 kHz was used. 

Both untracked and cracked CHS beam were tested and 
relating Frequency Response Functions were generated. 
From the results we can see that extra resonance peaks 
appear at lateral FRFs. One of these FRFs ( free end 
lateral driving point FRF) is plotted in Figure 4. 

ld I 

NW Peak Ox To Crack 
I 

16 L& --A 
IO’ IO3 5x 103 

Frequency (Hz) 

Figure 4:Experimental FRF of Cracked and Untracked 
CHS Beam 

&SUMMARY AND CONCLUSIONS 

The purpose of this paper is to present the feasibility of 
identifying cracks by using the coupling property of 
cracked structural members. To achieve this, we used a 
Circular Hollow Section (CHS) member as an example to 
analytically study the free and forced vibration of a cracked 
CHS beam and then experimentally observe the coupling 
behaviour of the same structure. Both methods showed 
that the coupling property well indicated the existence of 
cracks. The results of the beam under different crack 
severity and location were also compared. 

The reason for coupling is because of the nondiagonal 
terms of the local flexibility matrix due to the presence of a 
crack. Physically, if several loadings contribute to the 

same mode of the stress intensity factor, the 
corresponding coupling will be presented. 

In order to identify the cracks, one can observe the 
coupled response measurements through driving point 
FRF or extra modal modes. The side peaks on FRF plots 
indicate the existence of cracks. 

In the case of cantilever beam, if the crack is closer to the 
clamp end, the coupling phenomenon will be more 
obvious. Similarly, the more severe of the crack, the more 
clear of the coupling. 

This approach is based on linear fracture mechanics and 
open crack model. However the coupling property is still 
useable for crack identification. For more complex 
structure and the crack closure effect, further study needs 
to be conducted. 
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