
Proc. 7th Intl Conf. on High Performance Computing and Grid in the Asia Pacific Region

Scripting High Performance Earth Systems Simulations on the SGI Altix 3700

Matt Davies, Lutz Gross, Hans Mühlhaus
Earth Systems Science Computational Centre

The University of Queensland
Brisbane, Australia

{matt,gross,muhlhaus}@esscc.uq.edu.au

Abstract

A Python language scripting interface for optimised
numerical software written in C/C++ has been designed
to facilitate the rapid development of 3D parallel simu-
lations on the Altix 3700. A recent advance focusing on
the extensions implemented within a high performance fi-
nite element kernel module is described. Performance is-
sues, measurements and results on the Altix 3700 are pre-
sented.

1. Introduction

The modeling library escript has been developed as
a module extension of the scripting language Python [9]
to facilitate the rapid development of 3D parallel simu-
lations on the Altix 3700. The finite element kernel li-
brary, Finley, has been specifically designed for solv-
ing large-scale problems on ccNUMA architectures and
has been incorporated as a differential equation solver
into escript. While both projects are under continuous
development, the current version has been applied to
3D, anisotropic and viscoelastic convection models of
the Earth’s mantle. In the escript programming model,
Python scripts orchestrate numerical algorithms that are
parallelised behind-the-scenes in escript module calls,
without low-level technical threading implementation by
the escript user. In particular, the Finley module extends
the escript functionality of data array abstraction with
functions that assemble a system of linear equations from
a linear boundary value problem defined over a mesh.

The paper is organised as follows: In section 2 a short
overview on the SGI Altix 3700 architecture is presented.
An introduction to the finite element code Finley and
its parallelisation for ccNUMA architectures is then pro-
vided in section 3. Section 4 outlines some performance
results with analysis and discussion. Finally, in section
5, simulation results for a 3D mantle convection simula-
tion obtained with Finley and the SGI Altix 3700 are pre-
sented.

2. The SGI Altix 3700 Architecture

The Earth Systems Simulator (ESS) situated at the
University of Queensland is a 208-processor SGI Al-
tix 3700 cache-coherent NUMA (ccNUMA), distributed
shared-memory (DSM) “supercluster”. The system hard-
ware is based on the SGI Origin S2MP architecture (see
[4]) with SGI NUMAflex interconnect technology (first
used in the SGI Origin 3000 [2]), the Intel Itanium 2 pro-
cessor, DDR SDRAM DIMMs and supports a variety of
PCI cards and adaptors. The system software administer-
ing the system hardware is based on the SGI Advanced
Linux Environment with SGI ProPack, configured to op-
erate as one node under a single system image.

The 208 processor elements of the ESS are all Ita-
nium 2 Madison processors, each with a 3Mb L3 write-
back cache, 256Kb write-back L2 cache and 16Kb write-
through L1 cache, all of which are located on-die. The
ESS has 2Gb of memory local to each node board.

The NUMAflex network of the ESS is implemented in
a dual-plane “fat tree” topology interconnecting the ba-
sic building-block components (or “bricks”) in a modular
manner as shown in figure 1. The compute brick (or “C-
brick”) consists of two node boards, each supporting lo-
cal SDRAM memory and two Itanium 2 processors con-
nected to an ASIC via a single front side bus. The ASIC
acts as a crossbar between the local memory, processors,
network and I/O interfaces and is internally connected
to the opposing ASIC of the other node board in the C-
Brick via a 6.4Gb/s full duplex NUMAlink 4 intercon-
nect. The ASIC is also externally connected to a router
brick (or “R-brick”) by a 3.2Gb/s full duplex NUMAlink
3 interconnect. The R-brick in-turn acts as a high-speed
switch, routing network packets between the C-bricks
and other system components including memory bricks
(or “M-brick”s), I/O expansion bricks (or “IX-brick”s),
PCI expansion bricks (or “PX-brick”s), data bricks (or
“D-brick2”s) and other R-bricks in the network. Refer to
[2] for further information on the topology.

The global shared memory addressing of the Altix
3700 is implemented in the C-Brick ASIC, interfacing
the snooping operations of the Itanium 2 processor to
NUMAflex protocol which is directory-based. The ASIC
maintains an internal directory containing the most re-

(c) 2004 IEEE. Reprinted with Corrections. 244

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Queensland eSpace

https://core.ac.uk/display/14983912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proc. 7th Intl Conf. on High Performance Computing and Grid in the Asia Pacific Region

Figure 1. The Dual Plane Fat Tree Topology

cent cache coherency information for each cache-line the
processor fetches. For each cache-line, a bit vector flag-
ging which other node boards have a copy of the partic-
ular cache-line is maintained. This arrangement permits
direct cache-line status transactions and updates, imple-
mented by way of an invalidation strategy [11]. An addi-
tional 3% of local memory is reserved for inactive direc-
tory entries not found in the ASIC. Cache-line data and
directory information are loaded simultaneously, reduc-
ing delays as a result of the coherency scheme [11].

3. Finley

A direct application of the finite element method is
the solution of initial boundary value problems (BVPs).
The escript Python module provides an environment to
solve these problems through its core finite element li-
brary Finley. Within escript, high-level numerical algo-
rithms including specialised nonlinear solvers and time-
differencing schemes can be rapidly developed. For in-
stance, an unsteady initial BVP can be transformed into a
sequence of steady BVPs to be solved at each time step.
The coefficients of the steady, linear BVP can then be
provided to Finley to assemble a system matrix for the
given domain and unstructured mesh. Although the ap-
plication of escript is not restricted to the solution of ini-
tial BVPs, we will present the usage of escript and Finley
in this context.

The steady, linear second order BVP for an unknown
function u is processed by Finley in the following tem-
plated system of PDEs in tensorial notation:

−(Aijkluk,l),j − (Bijkuk),j + Cikluk,l + Dikuk

= −Xij,j + Yi.

(1)

where uk denote the components of the solution u, and
for any function Z, Z,j denotes the derivative of Z with
respect to the jth spatial coordinate. The Einstein summa-
tion convention also applies where a duplicate subscript
within a term implies summation over all possible val-
ues of that subscript. The coefficients A, B, C, D, X ,

and Y are functions of their location in the physical do-
main that must be defined at the quadrature points within
each finite element.

Finley accepts a system of (natural) boundary condi-
tions given by:

nj(Aijkluk,l+Bijkuk)+dikuk = njXij+yi onΓN
i (2)

where n denotes the outer normal field of the domain and
A, B and X are as for (1). d and y are coefficients defined
on the boundary, Γ. Here, ΓN

i is a portion of the bound-
ary where the boundary condition applies. Moreover, the
Dirichlet boundary condition:

ui = ri on ΓD
i (3)

where ΓD
i is subset of Γ such thatΓD

i ∪ ΓN
i = Γ, is also

accepted. The right-hand side ri is a function defined on
the boundary. Within Finley, the sets ΓD

i are represented
through a characteristic function q defined by

q(x) =

{

1 x ∈ ΓD
i

0 otherwise
(4)

for all i. The functions r and q are defined at the nodes
of the finite element mesh. In the discussion that follows
the BVP defined by equations (1)-(4) will be referred to
as the Finley Boundary Value Template or Finley BVT.

A special form of the Finley BVT for the case of sin-
gle PDE for a scalar, unknown function u can be derived
from (1) as:

−(Ajlu,l),j−(Bju),j +Clu,l+Du = −Xj,j +Y , (5)

In this case, the accepted natural boundary condition (2)
is given in the form:

nj(Ajlu,l + Bju) + du = njXj + y onΓN (6)

and constraints are given by:

u = r on ΓD. (7)

Finley obtains a discretisation of the Finley BVT from
the variational formulation. A solution u is sought which
fulfills the constraints (3) and

(c) 2004 IEEE. Reprinted with Corrections. 245

Proc. 7th Intl Conf. on High Performance Computing and Grid in the Asia Pacific Region

∫

Ω

vi,j(Aijkluk,l + Bijkuk)

+ vi(Cikluk,l + Dikuk) dx +

∫

Γ

vidijvj dS

=

∫

Ω

vi,jXi,j + viYi dx +

∫

Γ

yivi dS (8)

for all trial functions v with vi = 0 on ΓD
i . The set Γ is a

superset of all ΓN
i where the functions dik and yi are set

to zero on Γ − ΓN
i .

Finley uses isoparametric finite elements on unstruc-
tured meshes to discretise the variational problem (8).
Available elements shapes are line, triangle, quadrilateral,
tetrahedron, and hexahedron of orders one and two. The
discretisation leads to a system of linear equations with a
sparse coefficient system matrix. escript also provides a
set of iterative Krylov subspace methods [10] to solve the
arising linear system.

3.1. A Scripted Example

The current section demonstrates the use of Finley and
escript. Assume that a solution to the diffusion equation

u,t − u,jj = f (9)

for the scalar, time-dependent function u on the unit
square is required. In this case, u,t is the derivative of
u with respect of time and we will assume f is a given
source term identical to one. At an initial time, u is known
to be a Gaussian profile with its peak at c = (1

2 , 1
2) and

analytical form u(x) = 1
10e−20‖x−c‖. The values of u at

the bottom boundary x1 = 0 are fixed in time.
Application of the Euler scheme

u(t−∆t) = u(t) − u
(t)
t ∆t (10)

with step size ∆t produces a steady linear differential
equation

u(t) − ∆t u
(t)
,jj = ∆t f + u(t−∆t) (11)

at each time step t. Equating like terms against the Finley
BVT for the single PDE (5) yields the template relations:

Aij = ∆t δij Bj = 0
D = 1 Cl = 0

X = 0 Y = ∆t f + u(t−∆t)
(12)

As the implicit natural boundary condition can be writ-
ten:

∂u(t)

∂n
= 0 (13)

like terms are similarly equated against the Finley BVT
for boundary conditions (6) yielding further template re-
lations:

d = y = 0 (14)

Finally, in implementation of the Dirichlet condition,
the Finley BVT equation (7) requires a characteristic
function q as defined in (4) and given by:

q(x0, x1) =

{

1 x1 = 0

0 otherwise
(15)

With the template parameters correctly identified, a
Python script is then written solve this problem:

import escript and finley
from escript import *
from Finley import *
step size
dt=0.1
set 20x20 mesh over [0,l0]x[0,10]
msh=Rectangle(20,20,1,l0=1,l1=1)
source term: constant 1.0
f=Scalar(value=1.0,where=msh.Elements())
get the coordinates of the nodes:
x=msh.Nodes().getX()
initial value for u:
u=1./10.*exp(-20.*length(x-[0.5,0.5]))
start of iteration
t=dt
while t<=1.

assemble linear system Mu=b
M,b=msh.assemble(A=[[dt,0],[0,dt]],\
D=1,Y=dt*f+u,q=x[1].whereZero(),r=u)

solve Mu=b
u=M.solve(b)
next time step
t+=dt

f=Scalar(...) creates the source term as an es-
cript data object describing a scalar value. The argu-
ment where=msh.Elements() associates the value
to the elements of the finite element mesh, msh. Val-
ues associated with the elements of a finite element
mesh are actually associated with the element’s quadra-
ture nodes. The value of f is initialised to 1.0. es-
cript avoids copying this constant value to the elements
and stores the value efficiently in this case. The state-
ment x=msh.Nodes().getX() returns the coor-
dinates of the nodes of the finite element mesh as an
escript data object representing a vector value asso-
ciated with the nodes. In the next statement, the ini-
tial value for u is set. escript automatically converts
the list [0.5,0.5] into an escript data object as-
sociated with nodes in context with the subtraction
from the data object x associated with nodes. The re-
sult is a data object representing a vector tied to nodes.
The final result for u is a scalar object on nodes.

The method msh.assemble(...) calculates the
stiffness matrix and right hand side vector using the fi-
nite element discretisation defined by the mesh msh to
the left and right hand side in the variational problem (8)
and the constraints (3). It is expected that the characteris-
tic functions q and the values of the constraints r are are
associated with nodes. The coefficients A, D and Y must

(c) 2004 IEEE. Reprinted with Corrections. 246

Proc. 7th Intl Conf. on High Performance Computing and Grid in the Asia Pacific Region

be defined on elements. In this case, A and D are defined
as a list and constant value, respectively. escript automati-
cally converts the given values into matrix and scalar data
objects associated with elements. In a manner similar to
that described for f, the values are not copies to the el-
ements but stored as single values used by all elements
when referring to the corresponding coefficient. The situ-
ation for Y is slightly more complicated. In fact the value
for Y is defined by an expression involving data tied to
elements (f) and data tied to nodes (u). In this situation,
escript automatically invokes an interpolation of the data
associated with the nodes to data associated with the el-
ements before the operation. In this case addition is per-
formed. Notice, that f is set to a constant value (=1.0).
As u will have an individual for each element the con-
stant value is copied to each element before the addition
can be performed.

3.2. Parallelisation

Where explicit time-integration schemes are not ap-
plicable, the solution of systems of linear equations is the
most computationally expensive operation within a sim-
ulation. In this case, an efficient parallelisation of the lin-
ear solver is essential to achieving improved scalability.
As iterative Krylov subspace methods are based on the
fundamental operations of vector update, scalar product
and matrix-vector product (see [10]), they are appropri-
ate for fine-grain parallelisation.

This section will briefly address several issues arising
from the parallelisation of the escript BiCGStab linear
solver and the Finley assembly routine with C/C++ and
OpenMP [1]. The discussion will exclude the precondi-
tioning of the linear system, as the intent is to present a
general overview.

3.2.1. The Matrix Vector Product In each iteration
step of the BiCGStab algorithm, the matrix-vector prod-
uct is the most computationally expensive task. With the
current implementation of escript, system matrices are
stored in the block compressed sparse row (CSR) data
structure (refer to [7] for details). The matrix-vector prod-
uct with input vector x and output vector y is given as:

do i=1,m
do k=ptr(i),ptr(i+1)-1
y(i)=y(i)+entry(k)*x(index(k))

end do
end do

where m is the number of rows of the stiffness ma-
trix, entry(ptr(i)...ptr(i+1)-1) are the
non-zero entries of the i-th row of the stiffness ma-
trix, and index(ptr(i)...ptr(i+1)-1) define the
corresponding column indices. The outer i-loop is stat-
ically parallelised with respect to workload schedul-
ing (refer to [1]). To avoid communication overhead for
the output array y, the Altix 3700 system software de-
lays physical page mapping until first use (or “touch”),
allowing pages to be instantiated in parallel and dis-

tributed with the thread nodes. It is critical that the phys-
ical memory pages for all other arrays (ptr, x, entry
and index) are distributed in a compatible manner be-
fore entering the i-loop. For example, to avoid nonlocal
memory access of the array entry, the pages contain-
ing elements entry(ptr(i)...ptr(i+1)-1) are in-
stantiated on the thread node of row i. Note that on
the computational border, cache-lines of the page con-
taining element entry(ptr(i)) can be shared
by two processors without detriment to performance.
This is due to the nonblocking cache-coherency algo-
rithm. In the case of a cache overflow, the volume of
nonlocal memory access for the matrix-vector prod-
uct is at most of the size of a cache line.

The fetch operation x(index(k)) requires addi-
tional communication if the requested elements of x are
not stored on the thread node of row i. This case is min-
imised if non-zero entries in each row of the matrix are
close to the main diagonal, or alternatively if the matrix
bandwidth given by:

max{|i − index(k)|
|i = 1, m; k = ptr(i), ptr(i + 1) − 1}

is small. The Cuthill-McKee algorithm [3] is a heuris-
tic that can be used with unstructured meshes to ob-
tain a near-optimal ordering. For each row i, the in-
dices index(ptr(i)), ..., index(ptr(i+1)-1)
are stored in order of increasing value so that all entries
read into cache can be reused before being overwritten.

3.2.2. The Stiffness Matrix Assembly The stiffness
matrix and the right hand side of the linear system are as-
sembled from element matrices that arise from a discreti-
sation of the variational problem (8) for each mesh ele-
ment. An element matrix is added onto the stiffness ma-
trix and the right hand side vector as an overlay where,
for each entry of the element matrix, the row and column
indices are given by the underlying mesh node ordering.
While the calculation of the element matrices is paral-
lel by nature, adding them to the stiffness matrix and the
right hand side vector as an overlay can result in mem-
ory contention. To overcome this problem, Finley users a
colouring algorithm whereby neighbouring elements are
assigned different colours so that elements with the same
colour can be added in parallel. Barrier synchronization
must be applied before processing elements with the next
colour.

The addition of the element matrix em of a given ele-
ment onto the stiffness matrix is given by:

do i=1,N
do j=1,N
k=add(node(i),node(j))
entry(k)=entry(k)+em(i,j)

end do
end do

where N is the number of nodes describing the element
and node is the array of the node identification numbers.
The function add(r,c) returns the address of an en-
try in row r and column c as an index between ptr(r)

(c) 2004 IEEE. Reprinted with Corrections. 247

Proc. 7th Intl Conf. on High Performance Computing and Grid in the Asia Pacific Region

and ptr(r+1)-1 where index(k)=c. If the element
is assigned to a node different from the thread node which
stores row node(i) of the stiffness matrix, the cache
line of entry(k) must be fetched to the element pro-
cessor to perform the update. While a colour is being pro-
cessed, no other element can update the cache line except
in the bordering case where it is shared by two rows. The
loaded cache line will persist for a given colour if cache
overflow is avoided.

Where nonlocal memory access cannot be avoided, a
cache-line should be fetched from node as topologically
close as possible for maximum efficiency. For this rea-
son, elements are ordered by the increasing mean value of
their node ordering. Together with node bandwidth min-
imising algorithms, an element is as close as possible to
the nodes where the rows it contributes to are stored.

The assembly process presented here assumes that the
sparsity pattern of the stiffness matrix is known before-
hand. Alternatively, this requires that the values of the en-
tries of ptr and index are known before actual nonzero
values are calculated. To derive the matrix pattern, a
colouring algorithm similar to the one used in the assem-
bly process is used.

4. Finley and SGI Altix 3700 Performance

The performance of the Finley parallelisation and the
Altix 3700 has been studied with abstract scalar and vec-
tor test cases. The abstract test cases are solved using es-
cript and Finley with 1 to 128 processors.

The abstract scalar test case studied in this paper is the
elliptic BVP

u − u,jj = f (16)

on the n-dimensional unit square with Dirichlet bound-
ary conditions on the entire boundary. f is selected such
that the solution of the problem is

u =

n
∑

i=1

x2
i (17)

In comparison, the abstract vector test case studied in
this paper is the elliptic BVP

−(uk,kδij + ui,j + uj,i),j = fi (18)

on the n-dimensional unit square with Dirichlet bound-
ary conditions on the entire boundary. f is selected such
that the solution of this problem is

uj =

n
∑

i=1,i6=j

x2
i , j = 1...n (19)

4.1. Discussion

The preconditioned BiCGStab algorithm requires 2
matrix-vector products, 4 inner products, and 2 precon-
ditioner solves per iteration. A Jacobi preconditioner has

been used to simplify the analysis, resulting in an algo-
rithm of 2 matrix-vector products and 6 inner products.
The number of iteration steps needed to reach a given
tolerance depends on the size of the assembled system
matrix. Consequently, the complexity of solving a linear
system grows super-linearly where the complexity per it-
eration step is linearly dependent on the number of un-
knowns. For purposes of comparison between problems
of different sizes, the discussion is restricted to the com-
putation of a single iteration of the BiCGStab algorithm.

Timings were recorded for the solution of the scalar
and vector test cases, (16) and (18), in 2D and 3D for
a distribution of thread numbers and mesh resolutions on
the SGI Altix 3700. Typical test results generated with es-
cript and Finley for the scalar test case in 3D are shown
in figure 2. In this case, the number of elements used was

0.000

0.050

0.100

0.150

0.200

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 T
im

e
Pe

r B
iC

G
St

ab
 It

er
at

io
n

(s
/it

er
at

io
n)

Number of Processors

Average Time Per BiCGStab Iteration: Scaled 3D Scalar Problem

16*16*16*N Elements

0.000

0.050

0.100

0.150

0.200

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 T
im

e
Pe

r B
iC

G
St

ab
 It

er
at

io
n

(s
/it

er
at

io
n)

Number of Processors

Average Time Per BiCGStab Iteration: Scaled 3D Scalar Problem

24*24*24*N Elements

0.000

0.050

0.100

0.150

0.200

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 T
im

e
Pe

r B
iC

G
St

ab
 It

er
at

io
n

(s
/it

er
at

io
n)

Number of Processors

Average Time Per BiCGStab Iteration: Scaled 3D Scalar Problem

32*32*32*N Elements

Figure 2. Sample 3D results.

scaled to maintain a constant problem size per thread. The
effects of the NUMA architecture are evident with the in-
crease of compute time between 4 and 8 nodes caused
by nonlocal memory access during the two matrix-vector
products. As described in section 2, the four processors
within a C-brick are connected by a 6.4Gb/s full du-
plex NUMAlink 4 interconnect. Outside of the C-brick,
each node board is connect to a R-brick by only a sin-
gle 3.2Gb/s NUMAlink 3 interconnect. For the case of
two threads, the memory access is local. For the case of 4
threads, all nonlocal memory is accessed via a 6.4Gb full
duplex channel. In both cases, the nonlocal memory ac-
cess for the matrix-vector product is achieved at a higher
bandwidth. In comparison, for the case of 8 threads, non-
local memory is accessed with 4 hops in the worst case
(one 6.4Gb/s channel and three 3.2Gb/s channels). The
3.2 Gb/s channel is the limiting bandwidth for nonlocal
memory access with more than 4 threads.

A simple model is proposed to predict the the execu-
tion time for a BiCGStab iteration with m unknowns on
N processors:

T (m, N) = T0 + T1
m

N
+ T2m

(n−1)/n + T3f(N) (20)

(c) 2004 IEEE. Reprinted with Corrections. 248

Proc. 7th Intl Conf. on High Performance Computing and Grid in the Asia Pacific Region

Here T0 + T1
m
N represents the computational cost. The

communication cost of the matrix-vector product is pro-
portional to the bandwidth of the system matrix. The
bandwidth can be estimated by the number of mesh points
in a cross-section of the domain. As n

√
m is the num-

ber of mesh nodes in each spatial direction, the num-
ber of nodes of a cross-section is estimated by m(n−1)/n

where n is the spatial dimension. It follows that the term
T2m

(n−1)/n represents the cost of nonlocal memory ac-
cess. The last term, T3f(N), represents the time spent
in global communication operations such as barrier syn-
chronizations and the reduction of partial results of scalar
products across threads.

A logarithmic growth in the global communication
cost was expected (i.e. f(N) = O(log(N))). However,
the timings obtained for a small number of elements sug-
gested that the global communication cost is linear (i.e.
f(N) = O(N)). A least squares fit was applied to esti-
mate the coefficients of (20) for each of the cases of log-
arithmic and linear growth in the global communication
cost. For each test case, a variety of time measurements
covering the parameter space for N (1 ≤ N ≤ 128) and
m (5 × 103 ≤ m ≤ 107) were obtained. It is assumed
that T0 = 0. Table 1 shows the fitted values of the co-
efficients. The 6th column is the correlation coefficient
and the 7th column is the defect (the sum of the square of
the differences from the model). A small defect infers a
good correlation between the data and the model. In this
study, both the correlation coefficient and the defect in-
dicate that linear growth is a more appropriate model for
the global communication cost.1 While it is expected that
the fit coefficient T3 is independent of the linear system,
T3 was fitted with a value of approximately 50 for the
case f(N) = O(N) and values between 50 and 500 for
the case f(N) = O(log(N)). In comparison with the fit
for the former case, the degree of variability in the later
case indicates that a linear model for global communica-
tion is likely.

The majority of the communication cost of the matrix-
vector product is determined by the bandwidth of the ma-
trix and by the number of entries per matrix row. The esti-
mated values of T2 indicate that the communication cost
is similar for 2D and 3D problems. It is noted that the
values for the vector case are slightly larger due to the in-
creased number of entries per row.

As the mesh is both regular and structured and the fi-
nite elements are second order, the average number of
nonzero entries per row is 16 for the 2D scalar test case,
32 for the 2D vector test case, 59 for the 3D scalar
test case, and 177 for the 3D vector test case. As the
BiCGStab algorithm requires 24 floating point operations
per unknown per iteration step, each iteration step re-
quires 40, 56, 83 and 201 floating point operations per
unknown for each test case respectively. Therefore, an in-
crease of the fit coefficient T1by the factors 56/40=1.4,

1 At the time of submission, it could not be confirmed with SGI if
the complexity of the algorithm for global communication is linear
with the number of threads.

Case f(N) T1 T2 T3 Corr. Def.
Sca2D N 0.379 4.27 41.9 0.994 100

log(N) 0.368 5.95 114 0.989 106
Vec2D N 0.549 5.53 36.7 0.998 173

log(N) 0.542 6.93 51.2 0.997 258
Sca3D N 0.826 0.945 33.2 0.998 245

log(N) 0.822 0.980 306 0.997 281
Vec3D N 2.04 1.02 59.1 1.00 423

log(N) 2.03 1.08 580 0.99 513

Table 1. Timing model fitted coefficients.

83/56=1.48 and 201/56=2.42 is expected between corre-
sponding 2D scalar and 2D vector test cases, correspond-
ing 2D vector and 3D scalar test cases, and correspond-
ing 3D scalar and 3D vector test cases respectively. These
predicted ratios compare with the observed ratios of 1.4,
1.5 and 2.5.

5. A Case Study: Mantle Convection

escript is designed to facilitate the development of 3D
parallel Earth systems simulations on the Altix 3700 for a
variety of users including geophysicists, mathematicians
and engineers. With the kernel finite element library Fin-
ley, escript has been applied to 3D nonlinear models aris-
ing from the study of the convection of the Earth’s man-
tle. Such models represent the rock as an incompress-
ible, highly viscous material. The model discussed here
is based on 3D anisotropic non-Newtonian mantle con-
vection.

The governing equations of mantle convection [8, 5]
consist of the equations of motion of the material points
of the continuum and the heat equation. These equations
are given by:

σ′
ij,j − pth

,i + Ra(c) T gi = 0

T,t + vj T,j = T,jj +
Di(c)

Ra(c)
σ′

ij Dij

The equations of motion for this study are subse-
quently obtained by substitution of the anisotropic con-
stitutive relationships [6], relating the velocity gradients
to the components of the stress tensor into the stress equi-
librium equations. In this case, the stress is given by:

σij = 2 η D′
ij + 2 (ηS − η) Λijkl D′

kl − p δij

where

Λijkl = 1
2 (ni nk δlj + nj nk δil + ni nl δkj + nj nl δik)

−2 ni nj nk nl

Here η and ηS are the normal and the shear viscosities
respectively. The material behavior is isotropic if η = ηS .
The tensor ΛijklD

′
kl maps the deviatoric component of

the stretching Dkl with respect to the global coordinates

(c) 2004 IEEE. Reprinted with Corrections. 249

Proc. 7th Intl Conf. on High Performance Computing and Grid in the Asia Pacific Region

onto the shear strain rate with respect to the principal axes
of anisotropy (see [6] for details). As shown above, the
components of the Λijkl tensor can be expressed in terms
of the components of the normal vector (also referred to
as the director) of the anisotropy surfaces. The director
components transform like material surface normals and
a separate evolution equation for the director is part is ap-
pended to the governing equations. The equations of mo-
tion are coupled through the temperature dependence of
the density (Boussinesque approximation [8, 5]) and the
temperature advection term in the heat equation. As the
heat equation is advection dominated, an appropriate up-
winding strategy has to be applied in the formulation of
the numerical model. The equations of motion and the
heat equation are nondimensionalised in the usual manner
for mantle convection [8, 5]. The controlling nondimen-
sionalised number is the Rayleigh Number (Ra) ranging
between 104 and 109. A standard SUPG method [12] is
used for both the heat equation and the director evolu-
tion equation. For the time integration of the heat equa-
tion a standard backward Euler scheme is used. The coef-
ficient tensors of the Finley BVT are related to the terms
of the governing equations as follows:

−(Aijklv
(t)
k,l),j = Yi − Xij,j

where

Aijkl = δikδjl + δilδjk

+(Penalty − 2

3
)δijδkl +

(

ηS

η
− 1

)

Λ
(t)
ijkl

Xij = pδij

Yi = RaT (t)δni

Similarly, the discretisation of the temperature equation
is given by:

−(AijT
(t+∆t)
,i),j − (BjT

(t+∆t)),j

+CjT
(t+∆t)
,j + DT (t+∆t) = Y − Xj,j

where

Aij = κδij + h
2
√

vlvl
vjCi D =

ρcp

∆t

Bj = h
2
√

vlvl
vjD Y = DT (t)

Cj = ρcpvj Xj = h
2
√

vlvl
vjDT (t)

Implementing the discretisation as described in sec-
tion 3.1, the simulation is performed using 243,000 2nd-
order finite elements with Ra = 106. In this case,
a smooth, rigid container of dimensions 3 × 3 × 1 is
filled with a transversely isotropic, viscous fluid with the
anisotropic axis initially in the direction of the x3 coor-
dinate. The container is heated from below with temper-
atures at the top and the bottom kept constant. An initial
perturbation of the temperature field of the form

T = 1 − x3 +
1

10
(cos(πx1) cos(πx2) sin(πx3))

instigates the convection. The average mechanical power
peaks at approximately 1300 before decreasing and then
finally settles into a steady-state. Figure 3 shows a visual-

Figure 3. Mantle convection results after
216 million years. Temperature and veloc-
ity are nondimensionalised.

isation of the temperature isotherms and velocity stream-
lines just after the peak of the average mechanical power
(which is proportional to the so called Nusselt number
[6]).

6. Conclusion

escript, a Python language scripting interface to opti-
mised parallel numerical software written in C/C++ has
been presented. In particular, a high performance finite
element kernel module , Finley, has been discussed as an
extension to escript. Finley facilitates the assembly of fi-
nite element system matrices for the solution of linear
BVPs defined on unstructured meshes.

The parallel performance of the Altix 3700 for abstract
test cases of variable size and threading have been investi-
gated. A notable issue was the effect of the NUMA archi-
tecture on efficiency and scalability for larger-scale prob-
lems, indicating that fine-grain algorithms suffered per-
formance degradation as a result of increased communi-
cation costs between C-bricks. A simple model was pro-
posed indicating that global communication for the multi-
threaded BiCGStab iteration is not scalable.

A case study focusing on the 3D numerical simulation
of anisotropic mantle convection processes has been pre-
sented. Such large-scale problems in computational earth

(c) 2004 IEEE. Reprinted with Corrections. 250

Proc. 7th Intl Conf. on High Performance Computing and Grid in the Asia Pacific Region

systems simulations are the motivation for this work. Fu-
ture work will further develop escript’s ability to under-
take such problems and improve its parallel efficiency for
the SGI Altix 3700.

Acknowledgment This work has been funded by the
Australian Computational Earth System Simulator Ma-
jor National Research Facility (ACcESS MNRF).

References

[1] OpenMP Architecture Review Board. OpenMP C and
C++ Application Program Interface (Version 2.0), 2002.

[2] Dick Brownell. SGI Altix 3000 User’s Guide, 2003.
[3] Elizabeth Cuthill and J McKee. Reducing the bandwidth

of sparse symmetric matrices. In ACM National Confer-
ence, New York, 1969.

[4] James Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA highly scalable server. In Proceedings of the
24th International Symposium on Computer Architecture
(ISCA’97), pages 241–251, Denver, Colorado, 1997.

[5] L. Moresi, F. Dufour, and H. B. Mühlhaus. A Lagrangian
integration point finite element method for large defor-
mation modeling of viscoelastic geomaterials. Journal of
Computational Physics, (184):476–497, 2003.

[6] H. B. Mühlhaus, F. Dufour, L. Moresi, and B. Hobbs.
A director theory for visco-elastic folding instabilities in
multilayered rock. International Journal of Solids and
Structures, (39):3675–3691, 2002.

[7] Yousef Saad. Iterative Methods for Sparse Linear Sys-
tems. Second edition, 2000.

[8] Donald L. Turcotte and Gerald Schubert. Geodynamics.
Cambridge University Press, second edition, 2002.

[9] Guido van Rossum. Python Reference Manual (Version
2.3.3). PythonLabs, 2003.

[10] Rudiger Weiss. Parameter-Free Iterative Linear Solvers,
volume 97 of Mathematical Research. Akademie Verlag,
Berlin, 1996.

[11] Michael Woodacre, Derek Robb, Dean Roe, and Karl
Feind. The SGI altix 3000 global shared-memory archi-
tecture. 2003.

[12] O. C. Zienkiewicz and R. L. Taylor. The Finite Ele-
ment Method: Fluid Dynamics, volume 3. Butterworth-
Heinemann, Oxford, fifth edition, 2000.

(c) 2004 IEEE. Reprinted with Corrections. 251

