
A Passive Test Oracle Using a Component’s API

Rakesh Shukla, David Carrington and Paul Strooper
School of Information Technology and Electrical Engineering,

The University of Queensland, St. Lucia 4072, Australia.
{shukla, davec, pstroop} @itee.uq.edu.au

Abstract

A test oracle is a mechanism that is used during
testing to determine whether a software component
behaves correctly or not. The test oracle problem is
widely acknowledged in the software testing literature
and many methods for test oracle development have
been proposed. Most of these methods use
specifications or other resources to develop test
oracles. A passive test oracle checks the behaviour of
the component, but does not reproduce this behaviour.
In this paper, we present a technique that develops
passive test oracles for components using their APIs.
This simple technique can be applied to any software
component that is accessed through an API. In an
initial experiment, we found that test oracles developed
this way were more effective at finding faults with a
relatively small number of test cases than test oracles
developed from a formal specification and developed
as a parallel implementation.

1. Introduction

Testing is an essential activity to assess the
behaviour and quality of a software component. The
state of the art in software testing during the past 30
years has developed numerous, often overlapping,
testing methods and practices: functional testing,
statistical testing, white-box testing, black-box testing,
unit testing, system testing and many others. These
testing approaches include both logic-driven and data-
driven test case generation. Results of execution of
these test cases must be evaluated to determine the
correctness of the behaviour of the software
component. The test result evaluation is accomplished
by using a test oracle [7]. A test oracle determines
whether a test case passes or fails.

Test result evaluation using a test oracle is widely
acknowledged in the software testing literature as a
critical aspect of the testing process. Several methods
for developing test oracles, such as those using
specifications [9, 13, 17], documentation [12], and

parallel implementations [1], have been reported.
Unfortunately development and use of such resources
(specifications, documentation and parallel
implementations) may require considerable effort.
They can be costly to write and maintain. A limitation
of using a resource to derive a test oracle is that the test
oracle is only as good as the resource from which it
was derived. Another drawback of some of these
methods is limited applicability because documents
such as formal specifications are rarely used in
practice.

In addition to the above limitations, many of the test
oracle development methods assume that they are
developing test oracles for in-house software
components where access to the internal state,
specification and documentation is available. As a
result, these methods cannot be applied when access to
the internal state and detailed documentation is not
available, for example, in the case of COTS
(commercial off the shelf) components.

Hoffman and Strooper [5] define several types of
test oracles including active and passive oracles. An
active oracle mimics the behaviour of the software
component under test. A passive oracle checks the
behaviour of the component, but does not reproduce it.
In this paper, we present a technique to develop a
passive test oracle for a software component that uses
the component’s API (application programmer
interface) for its behaviour-checking. The practice of
using a component’s API for testing is often applied on
an ad-hoc basis in industry. Clearly the amount of
checking that can be done with such an oracle depends
on how observable the state of the component is
through its public interface. Another potential danger
in using the component’s own API as a test oracle is
that this may mask errors: the component behaves
incorrectly, but the part of the component’s API that is
used as an oracle behaves incorrectly in exactly the
same way, thus masking the error.

In this paper, we show that the approach presented
has the following benefits.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14983834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Test oracle development is typically
straightforward.

• Test oracles can be surprisingly effective at
finding faults with a relatively small number
of test cases.

• This approach does not require special
documentation or separate tool support, and
will work in most programming languages
and component technologies.

This paper is organised as follows. Section 2
introduces the technique for passive test oracle
development using the component’s API. Section 3
demonstrates applying the test oracle technique on two
existing software components, SymbolTable and
Forest. Section 4 discusses the initial experimentation
comparing the test oracles using the APIs and test
oracles developed from a formal specification and as a
parallel implementation. Section 5 summarises related
work. Section 6 presents our conclusions and future
work.

2. Technique Overview

The basic idea of the wrapper approach [2, 9, 10] is
simple: place the component under test in a wrapper or
decorator that takes responsibility for performing
behaviour checks. Such a wrapper provides exactly the
same syntactic interface as the component and assigns
the work of the actual function execution to the
component held inside. Figure 1 illustrates this simple
idea.

Figure 1: Wrapper approach for test oracle

The behaviour-checking wrappers are augmented
versions of the publicly visible member functions of
the component under test. The publicly visible
interface features of the component are used to develop
the interface of the wrapper component. In this way,

the two components have the same externally visible
features: an unwrapped original component that is the
component under test for actual function execution and
the (behaviour-checking) wrapper component that is a
test oracle for output evaluation.

The wrapper component consists of the test oracle
and wrapper functions for each of the public member
functions defined in the component implementation.
Each wrapper function calls the corresponding member
function and then a local behaviour-checking function
to check the behaviour of the implementation.

A test oracle using a component’s API is one in
which the component’s interface is used for behaviour-
checking. In this case, the test oracle checks the
behaviour of the component by calling other member
functions of the component using its API. While the
wrapper approach supports the use of different types of
behaviour-checking functions (such as those based on
formal specifications and parallel implementations),
we explore test oracles using the component’s API in
this paper.

3. Examples

The API wrapper test oracle development technique
discussed above is applied to develop test oracles for
the SymbolTable and Forest components of the
PGMGEN testing tool [6]. PGMGEN stores exception
names as symbols in SymbolTable, and then uses the
list of exception names to generate exception handler
code in a test driver. The table stores pairs of symbols
(strings) and identifiers (integers). Symbols and
identifiers must be unique. The Forest component is
used to build a forest of abstract syntax trees of the
input script file in PGMGEN. The Forest class is more
complicated than the SymbolTable class and has
operations to add new trees to the forest, to add a sub-
tree as a child of another tree, and to traverse a tree.
Each node has a value (the token in the input file), a
type (the type of the token), and the line number on
which the token occurs. Table 1 shows the source
(without comments) lines of code (LOC) and number
of methods for each component.

Table 1: Details of each component

Component LOC Number of
methods

SymbolTable 128 7
Forest 234 10

The API of SymbolTable is shown in Figure 2.
The constant MAX_SYMBOLS indicates that a
maximum of 50 symbols are allowed in the table and

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

MAX_SYM_LENGTH indicates that the maximum
length of a symbol is 20. The insert method adds a
new symbol sym and assigns an identifier to it. The
method size returns the number of pairs in the table.
The existId method returns whether identifier id is
in the table. Similarly existSym returns whether
symbol sym occurs in the table. The method del
deletes identifier id and its corresponding symbol
from the table. The getSym and getId methods
return the symbol and identifier for a given identifier
and symbol respectively. The Java exception handling
mechanism is used to signal exceptions in the
implementation. The insert method throws
MaxLengthExc if sym has more than
MAX_SYM_LEN characters, FullExc if the table has
MAX_SYMBOLS symbols in it and ExistSymExc if
sym already exists in the table. The methods del and
getSym throw NotExistIdExc if there is no
identifier id in the table. The getId method throws
NotExistSymExc if sym is not in the table.

public class SymbolTable {
 static final int MAX_SYMBOLS = 50;
 static final int MAX_SYM_LENGTH = 20;
 public SymbolTable();
 public void insert(String sym) throws

MaxLengthExc, FullExc,ExistSymExc;
 public int size();
 public boolean existId(int id);
 public boolean existSym(String sym);
 public void del(int id) throws

NotExistIdExc;
 public String getSym(int id) throws

NotExistIdExc;
 public int getId(String sym) throws

NotExistSymExc;
}

Figure 2: API for SymbolTable

The wrapper component, SymbolOracle, inherits
from the implementation and checks the actual
behaviour with the expected behaviour. Figure 3 shows
the API of the wrapper component, SymbolOracle.
The SymbolOracle contains the wrapper methods
that have the same signatures as in SymbolTable,
except that the oracle methods do not signal any
exceptions. While the method can easily be extended to
deal with exceptions, the oracles described in this
paper were developed in the context of research on
statistical testing [16]. In this work, components are
tested according to the expected use of the component
in an application, and as such we do not expect that
any calls should signal an exception. Hence the oracle

wrapper methods catch and print any exceptions that
are signalled.

The constructor of the SymbolOracle calls the
inherited component constructor and then checks its
behaviour by calling the size method. The other
wrapper methods perform similar checking. As an
example, the implementation of the wrapper method
for insert and its behaviour checker
checkInsert are shown in Figure 4.

public class SymbolOracle extends
SymbolTable {
 // Wrapper methods
 public SymbolOracle();//constructor
 public void insert(String sym);
 public int size();
 public boolean existId(int id);
 public boolean existSym(String sym);
 public void del(int id);
 public String getSym(int id);
 public int getId(String sym);
}

Figure 3: API for SymbolOracle

public void insert(String sym) {
 int before = super.size();
 try {
 super.insert(sym);
 }
 catch (Exception e) {
 System.out.println("Unexpected

 exception in insert "+e);
 }
 int after = super.size();
 checkInsert(sym, before, after);
}

void checkInsert(String sym, int before,
int after) {
 if ((super.existSym(sym)) &&

((before+1) == after));
 else
 System.out.println("*** Insert()

 error ***");
}

Figure 4: Implementation of wrapper method
insert and behaviour checker checkInsert

The method insert of the SymbolOracle calls
the size method to get the size of the
SymbolTable before inserting a sym. The Java
exception handling mechanism is used to catch any
exceptions that get thrown when the member methods
are called. The wrapper method calls the inherited
insert method in a try-catch block that outputs any
exception that was signalled. Then the wrapper method

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

calls the size method again to get the size of the
SymbolTable after insert. The input sym and the
size before and after inserting sym are passed to the
method behaviour checker, checkInsert, which
checks that the input sym exists in the SymbolTable
by calling the existSym method and that the size
was incremented correctly.

The size and existSym methods are used for
the behaviour-checking of the insert method. If a
test case of insert fails during execution, the fault
could be in the insert, size or existSym
method. Thus, a behaviour-checking method provides
double-sided behaviour-checking, to both the member
method and its behaviour checker methods. The test
oracle checks the behaviour of more than one method
for each test case during execution. It means that the
test oracle can detect more faults with a small number
of test calls. However, if the methods insert, size
and existSym are consistently incorrect then the test
oracle may mask errors.

Similarly, the getSym and existSym methods
are used for the behaviour-checking of the existId
method; getId and existId for the checking of
existSym; size and existSym for the checking
of del; getId for the checking of getSym; and
getSym for the checking of getId.

In this example, a behaviour checker method for the
size method was not provided, as the internal state
for the size method is not observable through the API
of the component. Instead, the behaviour of the size
method is checked when calls are made to the insert
and del methods.

Despite being a more complicated component than
SymbolTable, test oracle development for the Forest
component using its interface is as easy as for the
SymbolTable. The average size of the checking
methods is 12 LOC.

4. Experiments

To compare our test oracle technique with other test
oracle techniques, we implemented two additional test
oracles using the wrapper approach for SymbolTable
and Forest.

Following the approach in [9], we developed a
passive test oracle from an Object-Z specification. In
this case, the test oracle also contains an abstraction
function to relate the concrete implementation state to
the abstract specification state and an invariant checker
to check the invariant of the component.

We also developed an active test oracle in which the
state of a parallel implementation is used to generate
the expected behaviour of the component [1].

Table 2 shows the source LOC of these test oracles.
In both cases, the API wrapper test oracle is smaller
(and simpler) than the other two test oracles. The other
two test oracles use a common, named exception
message to check the exception-behaviour of the
component. This means that these two oracles to
slightly more checking than the API oracle, but this
additional checking resulted in only 12 additional lines
in SymbolTable and 28 additional lines in Forest.

Table 2: LOC of each test oracle

Component LOC of Test Oracle
 Using

specification
Active Using

API
SymbolTable 275 251 148
Forest 387 366 269

To compare the fault-detection ability of these test
oracles, we use the MuJava tool [8] for fault-seeding
and the STSC tool [16] for test case generation, test
case execution and test output evaluation.

Fault-seeding tools such as MuJava measure the
error-detection power of test cases by introducing
simple faults, called mutants, into a component under
test to create a set of faulty versions. These mutants are
created from the original program by applying
mutation operators, which describe syntactic changes
in the program. Each mutant is executed with a set of
test cases. When a mutant produces different output
from the original software component on a test case,
that mutant is said to be “killed” by that test case.
Killed mutants are not executed against subsequent test
cases. Some mutants cannot be killed because they are
functionally equivalent to the original component.
These are called equivalent mutants. The fault-
detection ability of a set of test cases can then be
“measured” by determining how many of the non-
equivalent mutants were killed. Of course, the problem
of determining which mutants are equivalent can be a
difficult one.

In our experiments, we used the MuJava tool to
automatically generate mutants for the SymbolTable
and Forest components and we tried to find the
equivalent mutants by hand (after discounting any
mutants that were killed during the testing). The
MuJava tool generated 188 and 242 non-equivalent
mutants for SymbolTable and Forest. Note that
each mutant represents exactly one fault.

The STSC tool is a statistical testing tool that
generates statistically representative test cases from a
model of expected operational use of the component.
The STSC tool also supports a wide range of test
oracles using the wrapper approach presented in this

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

paper for output evaluation. To evaluate the test
oracles, we generated 10 different test sequences
ranging from 25 to 5000 test cases for each component
using a hypothetical operational use of the component.

The graphs in Figure 5 and 6 show the percentage
of faults detected by the test cases using each test
oracle for the SymbolTable and Forest components.

The results for SymbolTable in Figure 5 show that
the passive oracle using the component’s API detects
more faults than the other two test oracles in the first
six test sequences (up to 1000 test cases) because it
checks behaviour of more than one method in each test
case. Both the passive oracles detect the same
percentage of faults in the seventh, eighth and ninth
(2000, 3000 and 4000 test cases) test sequences. In the
last, tenth, test sequence, the passive oracle using the
component’s API and the active oracle detect the same

percentage of faults, but the passive oracle using
Object-Z detects one more fault and kills all non-
equivalent mutants.

Figure 6 shows that for the Forest component the
passive oracle using the component’s API is more
effective at finding faults than the other test oracles.
The passive oracle using Object-Z detects fewer faults
because of a partial implementation of the abstraction
function. With a full implementation of the abstraction
function, we expect that the passive oracle using
Object-Z would perform as effectively as the active
oracle.

Further experimentation on the fault-detection
ability of the test oracles is currently being carried out
with different types of test cases generated using
expected operational use and actual use of the
components.

40

50

60

70

80

90

100

25 50 100 200 500 1000 2000 3000 4000 5000

Number of test cases

%
 o

f f
au

lts
 d

et
ec

te
d

Passive Oracle using Object-Z Active Oracle Passive Oracle using Component's API

Figure 5: Fault-detection ability of the test oracles for SymbolTable

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

30

40

50

60

70

80

90

100

25 50 100 200 500 1000 2000 3000 4000 5000

Number of test cases

%
 o

f f
au

lts
 d

et
ec

te
d

Passive Oracle using Object-Z Active Oracle Passive Oracle using Component's API

Figure 6: Fault-detection ability of the test oracles for Forest

5. Related Work

A wrapper is a component that is used to control
access to a second component. The wrapper literally
wraps around the second component, allowing
enforcement of a higher degree of checking and
security than the component can enforce on its own
[10]. Many researchers have used wrappers to add
assertion (pre-conditions, post-conditions and
invariants) checking [2, 3], which is used to detect
contract violations based on the design-by-contract
principles [10]. Assertions have also been used for
security (encryption, authentication, access control,
intrusion detection) checking [4].

The papers most related to our work are those of
Miller et al. [11] and McDonald et al. [9]. Both of
these papers present methods for generating passive
test oracles using the wrapper approach presented in
this paper. Our approach differs from their approach
because we are using a component’s API for
behaviour-checking instead of a formal specification.

6. Conclusions

An approach combining passive oracles
implemented as a wrapper with checking functions

based on the API of a software component has been
presented in this paper. The technique has been applied
to develop test oracles for the SymbolTable and Forest
components, and was easy to implement and produced
good results compared to other test oracles derived
from formal specifications and parallel
implementations. The technique can be applied to any
type of software component in most programming
languages and component technologies provided the
component is accessed through an API.

This work contributes to a larger project on testing
that aims to develop a framework and tool support for
the statistical testing of software components [15, 16],
including a method for operational profile development
[14].

To test the scalability of the approach, we have
started to apply it to an industrial case study using a
component from an e-Healthcare system.

References

[1] R. Binder, Testing object-oriented systems:
models, patterns, and tools. Reading,
Massachusetts: Addison-Wesley, 2000.

[2] S. H. Edwards, M. Sitaraman, B. W. Weide,
and J. Hollingsworth, "Contract-checking

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

wrappers for C++ classes," IEEE
Transactions on Software Engineering, vol.
30, no. 11, pp. 794-810, 2004.

[3] R. B. Findler, M. Latendresse, and M.
Felleisen, "Behavioral contracts and
behavioral subtyping," In Proceedings of 8th
European Software Engineering Conference,
pp. 229-236, 2001.

[4] T. Fraser, L. Badger, and M. Feldman,
"Hardening COTS software with generic
software wrappers," In Proceedings of
Foundations of Intrusion Tolerant Systems,
pp. 399-413, 2003.

[5] D. M. Hoffman and P. A. Strooper,
"Automated module testing in Prolog," IEEE
Transactions on Software Engineering, vol.
17, no. 9, pp. 934 -943, 1991.

[6] D. M. Hoffman and P. A. Strooper, Software
Design, Automated Testing, and Maintenance
A Practical Approach: International Thomson
Computer Press, 1995.

[7] W. E. Howden and P. Eichhorst, "Proving
properties of programs from program traces,"
in Tutorial: software testing & validation
techniques, E. Miller and W. E. Howden,
Eds., 2nd ed: IEEE Computer Society Press,
New York, 1981, pp. 46-56.

[8] Y.-S. Ma, J. A. Offutt, and Y. R. Kwon,
"MuJava: an automated class mutation
system," Software Testing, Verification and
Reliability, vol. 15, no. 2, pp. 97-133, 2005.

[9] J. McDonald and P. A. Strooper, "Translating
Object-Z specifications to passive test
oracles," In Proceedings of Second
International Conference on Formal
Engineering Methods, Brisbane, Australia, pp.
165 -174, 1998.

[10] B. Meyer, Object-oriented software
construction, 2nd ed: Prentice Hall, 1997.

[11] T. Miller and P. A. Strooper, "Supporting the
software testing process through specification
animation," In Proceedings of First
International Conference on Software
Engineering and Formal Methods, pp. 14-23,
2003.

[12] D. Peters and D. L. Parnas, "Using test oracles
generated from program documentation,"
IEEE Transactions on Software Engineering,
vol. 24, no. 3, pp. 161 -173, 1998.

[13] D. J. Richardson, S. L. Aha, and T. O.
O'Malley, "Specification-based test oracles
for reactive systems," In Proceedings of
International Conference on Software
Engineering, Melbourne, Australia, pp. 105-
118, 1992.

[14] R. Y. Shukla, D. A. Carrington, and P. A.
Strooper, "Systematic operational profile
development for software components," In
Proceedings of 11th Asia-Pacific Software
Engineering Conference (APSEC), Busan,
Korea, pp. 528-537, 2004.

[15] R. Y. Shukla, P. A. Strooper, and D. A.
Carrington, "A framework for reliability
assessment of software components," In
Proceedings of 7th International Symposium
on Component-based Software Engineering
(CBSE), Edinburgh, UK, Lecture Notes in
Computer Science, vol. 3054, Springer,
Berlin, pp. 272-279, 2004.

[16] R. Y. Shukla, P. A. Strooper, and D. A.
Carrington, "Tool support for statistical
testing of software components," 12th Asia-
Pacific Software Engineering Conference
(accepted), 2005.

[17] H. Zhu, "A note on test oracles and semantics
of algebraic specifications," In Proceedings of
Third International Conference On Quality
Software (QSIC), Dallas, Texas, pp. 91-98,
2003.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

