
Tool Support for Statistical Testing of Software Components

Rakesh Shukla, Paul Strooper and David Carrington
School of Information Technology and Electrical Engineering,

The University of Queensland, St. Lucia 4072, Australia.
{shukla, pstroop, davec} @itee.uq.edu.au

Abstract

We describe the “STSC” prototype tool that
supports the statistical testing of software components.
The tool supports a wide range of operational profiles
and test oracles for test case generation and output
evaluation. The tool also generates appropriate values
for different types of input parameters of operations.
STSC automatically generates a test driver from an
operational profile. This test driver invokes a test
oracle that is implemented as a behaviour-checking
version of the implementation. To evaluate the
flexibility and usability of the tool, it has been applied
to several case studies using different types of
operational profiles and test oracles.

1. Introduction

Software now controls banking systems,
telecommunication systems, transport systems,
factories, automobiles and even household gadgets.
Society has developed an extra-ordinary dependence
on software. Hence, software failure is regarded as one
of the most important concerns of software in everyday
lives. Extensive and efficient testing of these software
systems and their components is considered an obvious
prerequisite for high quality software. For the
development of high-quality software with certified
reliability, Cleanroom software engineering uses
software testing based on statistical principles [12].
Statistical usage testing involves testing software the
way the users use it and focuses on external behaviour,
not the internals of the software [14].

Statistical testing of a software component from a
user’s point of view depends largely on the manner in
which the component is used. Characterisation of the
population of expected use is referred to as an
operational profile. An operational profile is a set of
input events and their associated probabilities of
occurrence expected in actual operation. The test cases
that are executed during a statistical test are a sample
from the operational profile. The result of testing

obtained in this way depends upon accuracy of the
operational profile.

Test output evaluation is a difficult and important
problem for statistical testing. An expected result is
needed for each test case to check the test output. The
mechanism used to check these expected results is
called a test oracle. A test oracle is an essential part of
statistical testing, because a wide range and large
number of test cases are required and the behaviour
must be checked for every test case.

In an earlier paper, we incorporated test oracles with
statistical testing and proposed a conceptual framework
for the statistical testing of software components [18].
In this paper, we describe the Statistical Testing for
Software Components (STSC) prototype tool that
supports the framework for test case generation, test
case execution and output evaluation. STSC supports a
wide range of operational profile approaches for test
case generation and a variety of test oracles for output
evaluation. STSC also supports generation of
appropriate values for different types of input
parameters of operations. The tool automatically
generates a test driver from an operational profile. This
test driver invokes a test oracle that is implemented as
a behaviour-checking version of the component under
test, which calls the implementation and then checks
the results produced by the component. To evaluate the
flexibility and usability of the STSC, we apply the tool
to a simple Stack and two existing components,
SymbolTable and Forest (of abstract syntax trees), that
are used in the implementation of the PGMGEN tool
[8].

The paper is organised as follows. Section 2
discusses the issues of statistical testing addressed by
the tool. Section 3 introduces the STSC tool. Section 4
discusses experience with using STSC on the Stack,
SymbolTable and Forest components. Section 5
summarises related work. Section 6 presents our
conclusions and future work.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14983751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Issues

The simplest form of operational profile is a
uniform distribution in which the probability of
occurrence for each of the operations is equal. Such a
uniform distribution is easy to model and implement in
a test case generator. However, non-uniform
distributions are typically encountered in real
applications and must be supported by a tool for
statistical testing. A wide variety of modelling
notations, such as Markov chains [19], state machines
[11], UML [15], and probabilistic statecharts [16] have
been reported for statistical testing, and a number of
tools based on specific usage models have been
reported. For example, MaTeLo [9] is based on
Markov chain models and Riebisch et al. [15] describe
a statistical test case generator based on UML. We
designed STSC to be general enough to support any of
the above operational profiles.

One aspect in which operational profiles differ is in
the determination of the number and termination of test
sequences. For example, some operational profiles
explicitly define when a test sequence is complete by
including final state(s) in the model of the operational
profile. In other cases, the decision as to when to
terminate one test sequence and start another is not part
of the operational profile and left as a decision for the
test case generator. We designed STSC so that both
approaches to splitting up test cases into test sequences
are supported.

Most of the research on operational profiles has
focused on operations and little is said about operation
parameters. Random values for input parameters are a
common practice in statistical testing. The entire
domain of the input parameter is considered and the
test generator randomly selects values from this
domain. For generation of a single independent input
value, random generators may provide an adequate
solution. Each randomly generated value is unrelated
to the next randomly generated value. However,
related input data sequences cannot be generated this
way. The sequence of test cases generated from a test
generator would be meaningless when operation
parameters values are not consistent with parameter
values from the expected usage.

For software components, we have found that
assigning appropriate values for input parameters can
be quite complicated, because they depend not only on
the type of the parameter, but there are often also
constraints on individual parameters and intricate
relationships between different input parameters (to the
same or even different operation calls) and between
output parameters of calls and input parameters of
subsequent calls. In an earlier paper, we described a

method for deriving those constraints and relationships
to generate appropriate input parameters values as part
of the operational profile [16]. In the STSC tool, we
provide a facility to support the flexible generation of
input parameters so that constraints on and
relationships between parameters are satisfied.

A test oracle is needed for each test case to evaluate
the test behaviour. A number of statistical testing
researchers assume that a test oracle is available for
output evaluation [11, 13, 20]. Several test oracle
methods, for example using a formal specification [10]
or a parallel implementation [1], are reported in the
software testing literature. In addition, we want the
framework and tool support to be applicable for the
statistical testing of third-party components, such as
commercial off the shelf (COTS) components. For
such components, the test oracle will typically not have
access to the internals of the implementation. The
STSC tool was designed to support all these types of
test oracles.

3. STSC Tool

Figure 1 shows an overview of our framework [18]
for statistical testing. The rectangles represent
processes, the ovals represent outputs, the folded
corner documents represent inputs and the cubes
represent software components. Test case generation
requires the definition of an operational profile and a
number of testing parameters.

Figure 1: Framework for statistical testing

In this section we discuss the STSC tool developed
for statistical testing of software components.
Matching the framework in Figure 1, the STSC tool
supports: (1) test case generation; and (2) test case
execution. Test case generation is supported by the
TCG tool, which samples from the operational profile
to generate test cases, executes these test cases, and
evaluates the test output. The TCG uses the operational
profile and testing parameters, and generates a test
driver. When this test driver is executed, a test oracle is

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

needed to check the results produced by the component
under test.

The stakeholders are the software component user
and the software component developer. The tool
requires the user to specify an operational profile and
the testing parameters. The component developer
supplies the component. The test oracle can be written
by the developer or by the user. The latter will have to
be the case when the developer does not supply an
oracle, as is typically the case for COTS components.

3.1. Test Case Generation

To allow the generation of test cases from a wide
variety of operational profiles and to deal with the
issues discussed in the previous section, the TCG is
implemented as a software framework, as defined by
Gamma et al. [4], which is a reusable software
component that requires other software components as
input to perform its function. In this case, the TCG
relies on a software component that must implement
OPinterface (Operational Profile interface). This OP
component would typically be implemented by the
software component user who is also the person
interested in testing the component. As such, this
person would typically be a programmer. The
operational profile is specified by the combination of
the OP component and a distribution table that defines
one or more probability distributions for the operations
in the component under test. In addition, the TCG
takes a number of testing parameters as input.

With this approach, the distribution table and the
implementation of the OP component will be simple
for straightforward operational profiles. For example,
for an unconditional operational profile, for which
there is only a single, unconditional probability
distribution for all the operations of the component, the
distribution table would only have to define this single
probability distribution. For a conditional operational
profile that contains a number of usage conditions,
each of which defines a distinct way of using the
component with an associated probability distribution,
the distribution table would define the probability
distribution for each usage condition. Similarly, for
components for which it is easy to generate the input
parameters of operations and for which there are no
interdependencies between the parameters of different
calls, the implementation of the input and output
parameter methods (as detailed below) of the OP
component would be trivial.

Using the testing parameters and the information in
the distribution table, and by making calls to the OP
component implemented by the software component
user, the TCG generates a Java test driver that contains
calls to the component under test according to the

operational profile. The TCG also produces a
significance level [7] of the generated test cases, which
can be used to determine the statistical significance of
the test cases.

3.1.1. Testing Parameters. The command-line
parameters to the TCG are:

• calls: number of calls per sequence to be
generated in the output test driver;

• sequences: number of sequences to be
generated in the output test driver;

• seed: a seed for random number generation;
• distribution table: the name of the

input distribution table file;
• OP component: the name of component

that implements OPinterface;
• oracle component: the name of the test

oracle component;
• frequency file: output file name in

which the frequency of actual operations
generated in the output test driver and the
significance level of the test cases will be
stored; and

• test driver: output file in which the Java
test driver will be stored.

The user can provide both calls and
sequences as parameters to specify the number of
calls per sequence to be generated in the test driver.
The sequences and seed parameters are optional. If the
tool is run twice with the same seed and the same
testing parameters, it will generate identical output
frequency files and test drivers. This is so that we can
generate identical test drivers (e.g. for debugging).

3.1.2. Distribution Table. The TCG generates test
calls according to the probability distribution described
in the distribution table. The distribution table
describes the number of usage conditions, the number
of operations, the name of the operations and a
probability distribution for each usage condition of the
operational profile.

3.1.3. OP Component. The Java interface
OPinterface, shown in Figure 2, defines the
methods that must be implemented in the OP
component for the TCG to function properly. We
discuss each method in turn.

The checkTestingPara has two input
parameters from the testing parameters: calls and
sequences. The method checks the calls and
sequences with the actual requirement of the calls
and sequences for that particular operational profile
and returns true if the specified parameters are valid.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

The checking process may contain limit checks on the
parameters.
public interface OPinterface {
 // checks testing parameters
 boolean checkTestingPara(int calls,
 int sequences);
 // Transition function
 int transition(int uc, int on);
 // Input function
 String inputpara(int uc, int on);
 // Output function
 String outputpara(int uc, int on);
}

Figure 2: Interface for OP component

The other three methods in OPinterface have
two input parameters: the current usage condition uc
in the distribution table and the current operation
number on (each operation in the component under
test has a unique number associated with it) that is
generated in the test driver.

Based on the values of uc and on, the
transition method returns the next usage
condition (represented as an integer) to use after the
current call. It also informs the TCG when a new test
sequence must be started by returning the special value
of -1. For the special case of an unconditional
probability distribution, this method always returns the
value 1, unless a new test sequence must be started.
Determining the next usage condition is much harder
for complicated operational profiles, e.g., those
modelled using statecharts [16].

The inputpara and outputpara methods
support the generation of appropriate values for input
parameters and allow constraints between different
parameters to be observed. The inputpara method
must return a string that represents the input

parameters to be used in the generated test driver for
the current operation. If there is more than one input
parameter for the current operation, the method must
return them as a single string, using commas to
separate the parameters. A special utility library
component that is part of TCG can be used to easily
generate random values of various types (integer, long,
float, double, Boolean, character and String) for input
parameters. If there are no constraints on input and
output parameters and the parameters can be easily
generated as random values, then the inputpara
method would simply contain calls to these utility
methods based on the current operation number and the
outputpara method is not needed.

When there are constraints on and relationships
between operation parameters, the situation is much
more complicated, because the actual parameter values
that are returned by operations of the component under
test are only known when the generated test driver is
executed, and not when the TCG runs to generate the
test driver. To deal with this situation, the
outputpara method can be used to define variables
in the generated test driver to capture the return values
of calls so that they can later be used as input
parameters to other calls. To do this, the
outputpara method returns a string, which is
prepended to the current operation call in the generated
test driver. Similarly, if there are relationships between
different input parameters of the same or even different
calls, this can be implemented through the
inputpara method.

Given the testing parameters, the distribution table,
and the OP Component, the TCG framework executes
the pseudo-code shown in Figure 3.

if (checkTestingPara(calls, sequences)) {
tnc = 0; // total number of calls
ns = -1; // number of sequences

 nc = 0; // number of calls per sequence
 uc = -1; // usage condition
 while not_finished_generating_calls {

if ((nc = calls) OR (uc = -1)) { // start new test sequence
uc = 1;

 instantiate new component under test in test driver;
ns++; nc = 0;

}
on = randomly generate operation number from distribution table based on uc;
use on,inputpara(uc,on), and outputpara(uc,on) to generate call in test driver;
nc++; tnc++;
uc = transition(uc, on);

 }
} else
 report error;
}

Figure 3: Pseudo-code executed by TCG framework

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

The checkTestingPara is called once at the
beginning of the test case generation with the testing
parameters calls and sequences passed as
arguments. A special value of -1 is used for sequences,
if this parameter was not specified (the number of calls
must always be specified). The method should return
true if and only if the specified test parameters are
valid. For example, for operational profiles that have
explicit final states that can be used to determine when
a test sequence is complete, only the number of calls
can be specified and the TCG will generate calls based
on the operational profile until this total number of
calls has been reached (starting a new test sequence
when a final state in the operational model is reached).
On the other hand, if no such final states exist, the user
could specify both the number of test sequences and
the number of calls, which in this case can be
interpreted as the number of calls per test sequence.
Other combinations and interpretations of the test
parameters calls and sequences are possible, and
can be used in combination with the definition of the
transition method to control the number of test
sequences and calls generated. If the
checkTestingPara method returns false, the TCG
terminates and does not generate any test cases.

Note that with the above approach, once the
operational profile has been defined in terms of the
distribution table and the OP Component, a large
number of test drivers with different numbers of test
sequences and/or calls can easily be generated from
this operational profile by simply varying the testing
parameters.

3.2. Test Case Execution

Test outputs of the component under test must be
evaluated during testing. This is done through a test
oracle that provides a behaviour-checking
implementation of the component, which can be
implemented using inheritance or delegation [18]. The
test oracle is a wrapper or decorator [4] around the
component under test. The test oracle presents the
same user interface as the component under test and is
used in place of the component during test execution.
During test case execution, the generated test driver is
executed and the test output is evaluated. The test
driver invokes the supplied test oracle that invokes the
component under test and then checks its behaviour.
The result of the test case execution and output
evaluation allows us to confirm or deny that the
component behaves correctly.

4. Case Studies

The tool supports a wide range of operational
profiles for test case generation and a variety of test
oracles for output evaluation. To check the practical
viability and flexibility of STSC, we applied the tool to
the Stack, SymbolTable and Forest (of abstract syntax
trees) components using different types of operational
profiles and test oracles.

4.1. Subject Components

Table 1 shows the source (without comments) lines
of code (LOC), number of operations and number of
input parameters of operations for the three
components.

Table 1: Details of each component

Component LOC Number of
operations

Number of
input
parameters

Stack 35 3 1
SymbolTable 128 7 7
Forest 234 10 14

We use the Stack from [20] as an initial case study
to check the working of the tool.

SymbolTable and Forest are more realistic
components from an existing system, the PGMGEN
testing tool [8]. PGMGEN stores exception names as
symbols in SymbolTable, and then uses the list of
exception names to generate exception handler code in
a test driver. The SymbolTable stores pairs of symbols
(strings) and identifiers (integers).

The Forest component is more complex than
SymbolTable and is used to build and access a forest of
abstract syntax trees of the input script file in
PGMGEN. Generation of appropriate values for input
parameters of the operations is more complex for this
component because of intricate relationships between
parameters. In particular, random values for input
parameters will result in meaningless calls that only
generate exceptions.

4.2. Operational Profiles

We use the hypothetical operational profile
presented in [20] for the Stack component. The LOC of
our OP component is 59 while the LOC of the Woit’s
userfiles [20] in her prototype tool is 93. Note that
Woit’s driver only works for the Stack component, and
would need to be updated to generate statistical tests
for other components.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

We implemented four different operational profiles
as described below for the SymbolTable and Forest
components. The first two operational profiles are
hypothetically generated and the last two are developed
using actual usage data from the components when
used as part of PGMGEN. The first two operational
profiles use randomly generated values for input
parameters of operations and the remaining operational
profiles generate/assign appropriate values for input
parameters of operations from the constraints and
relationships between them as derived from the
component’s use in PGMGEN.

An unconditional uniformly distributed operational
profile is one in which the probability of occurrence of
each operation is equal. Since the profile is
unconditional, there is only one usage condition. The
probability vector contains equal probability for each
operation.

A conditional uniformly distributed operational
profile is one in which the probability of occurrence of
each enabled operation for each usage condition is
equal. The difference with the unconditional uniformly
distributed operational profile is that for different usage
conditions, different subsets of the set of operations of
the component are “enabled” and the other operations
that are not enabled for a particular usage condition
cannot be selected for that usage condition. In the
case of SymbolTable, we assume that there are three
usage conditions: create symbols, list the symbols and
find the identifiers of the symbols.

The third operational profile is described using a
Markov model in which the probabilities of the
operations are based on the last call issued. This
operational profile is derived by applying the bottom-
up approach presented in [16] using both actual usage
data and intended usage assumptions.

The fourth operational profile is described using
probabilistic statecharts in which the probability of an
input event depends on any or all prior input events.
This operational profile is derived by applying the top-
down approach presented in [16] using both actual
usage data and intended usage assumptions. The
probability of occurrence of each operation for each
usage state is calculated from the usage data.

Table 2 shows the number of usage conditions and
source LOC of OP components for these operational
profiles for each subject component.

As indicated earlier, because of dependencies
between parameters, the test drivers generated from the
first two operational profiles for the Forest component
do not generate many valid calls, as most calls signal
an exception. As a result, these drivers are not
representative of the actual use of this component
(which shows that more sophisticated operational

profiles are necessary for the statistical testing of this
component).

Table 2: Details of each operational profile

Uniformly distributed Operational
Profile

Unconditional Conditional

Component

Usage
conditions

LOC Usage
conditions

LOC

SymbolTable 1 46 3 82
Forest 1 59 2 70

Operational Profile described using
Markov model Probabilistic

statecharts

Component

Usage
conditions

LOC Usage
conditions

LOC

Stack --- --- 3 59
SymbolTable 7 81 15 133
Forest 12 215 16 273

4.3. Test Oracles

Following the approach in [10], we developed a
passive test oracle from the Object-Z [3] specification
for the Stack component, where the abstraction
function relates the concrete implementation state to an
abstract state and predicates from the Object-Z
specification that is modelled using classes from the
Java JDK. The approach can only be applied to in-
house components, in which the test oracle can access
the internal state and Object-Z specification.

In addition to the above test oracle, we implemented
two additional test oracles for SymbolTable and Forest.
These additional test oracles do not rely on knowledge
of the implementation, and as such are more
representative of the types of oracles that are needed
for third-party (e.g. COTS) components.

A test oracle using a component’s API (application
programmer interface) is one in which the component’s
interface is used to check the behaviour of the
component [17]. Clearly the amount of checking that
can be done with such an oracle depends on how
observable the internal state of the component is
through its public interface.

An active test oracle is one in which the state of a
parallel implementation is used to generate the
expected behaviour of the implementation [1]. Such an
approach to test oracle development involves
implementing a second version of the component.
Clearly this can be prohibitively expensive but since

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

the oracle does not need to be efficient, it may be
substantially simpler than the original implementation.

Table 3 shows the source LOC of these test oracles
for each subject component. The test oracles using the
component’s API are smaller than the other test
oracles.

Table 3: LOC of each test oracle

Component LOC of Test Oracle
 Using

specification
Using
API

Active

Stack 116 --- ---
SymbolTable 275 148 251
Forest 387 269 366

Initial data indicates that testing using the
component’s API does surprisingly well with a
relatively small number of test cases [17].

5. Related Work

Model-based test generation has become an area of
active research. However, relatively little research has
been performed on statistical testing using models.
Most of the model-based test generation focuses on
obtaining test cases directly from diagrams prepared
during early stages of development or for fault fixing
rather than to derive usage models to guide a test case
generator for statistical testing. Riebisch et al. [15]
derive a Markov usage model from a UML use case
model for automated generation of test cases for
quality assurance during the software development
process. Their transformation process derives usage
models from use cases, state diagrams and usage
graphs. Le Guen et al. [9] produce test cases based on
usage models described using Markov models with the
MaTeLo tool. The tool is developed based on the
Markov model approach presented by Whittaker and
Thomason [19]. However, the Markov model has
limitations in describing complex behaviours. Woit
[20] presents a statistical test case generator for a
hypothetically generated operational profile for the
earlier presented Stack component. In Woit’s work, a
separate test case generator is needed for each
component under test. Popovic and Velikik [13]
present a test case generator based on the test case
generator presented by Woit [20] for their own Generic
Model Environment. None of the above test generators
support treatment of parameters of operations, test case
execution and output evaluation.

The issue of appropriate operation parameter values
has been largely ignored by the operational profile and
statistical test case generation literature [11, 13, 19,

20]. Giltens et al. [5] follow Woit [20] and include a
data profile, the minimum and maximum data values of
the inputs to the application, in the operational profile.
The problem of input parameter values is discussed in
[2, 6], but no general solution is presented. Chen et al.
[2] mention that it is not straightforward to generate
test cases that take complex data structures as input.
They suggest that input parameters can be generated by
a hybrid approach using partitions of domains and
random values, but do not demonstrate their approach.

6. Conclusions

We have presented the STSC prototype tool for
statistical testing of software components (including
COTS components). Although the framework for
statistical testing has been presented previously, the
tool support presented in this paper is essential to
reduce the time and the potential human error in: (1)
writing test drivers; and (2) manual output evaluation.

The STSC tool has been applied successfully to the
Stack, SymbolTable and Forest components for test
case generation, test case execution and output
evaluation using different types of operational profiles
and test oracles. The tool needs an operational profile
and a test oracle. The tool uses the operational profile
in the form of a distribution table and an
implementation of various methods, and the test oracle
as a wrapper around the component under test.

The operational profiles implemented for the
components show that the STSC tool is flexible
enough to support different types of operational
profiles, including those described using Markov
models and probabilistic statecharts. The test oracles
implemented for the components show that the STSC
tool is general enough to support a range of test oracles
implemented as wrappers, including those generated
from a formal specification. The test drivers with
different types of operation parameter values generated
from different types of constraints and relationships
between them show that the STSC is generating
appropriate input parameter values as per the expected
usage.

We have applied four different operational profile
approaches and three different test oracle techniques.
However, we are interested in an accurate operational
profile that represents the actual use of the component
and an effective test oracle that detects all the possible
faults for statistical testing. An empirical evaluation to
compare the accuracy of these operational profiles and
effectiveness of these test oracles is currently being
carried out.

To verify the scalability of the tool, the tool is
currently being applied to an industrial case study. The

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

component has been selected from an e-Healthcare
system. Initially, we plan to create an operational
profile from the expected usage and a test oracle using
the component’s API.

References

[1] R. Binder, Testing object-oriented systems:
models, patterns, and tools. Reading,
Massachusetts: Addison-Wesley, 2000.

[2] T. Y. Chen, G. Eddy, R. Merkel, and P. K.
Wong, "Adaptive random testing through
dynamic partitioning," In Proceedings of
Fourth International Conference On Quality
Software, pp. 79-86, 2004.

[3] R. W. Duke and G. Rose, Formal object-
oriented specification using Object-Z:
Macmillan Press Limited, 2000.

[4] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides, Design patterns: elements of
reusable object-oriented software. Sydney:
Addison-Wesley, 1994.

[5] M. Gittens, H. Lutfiyya, and M. Bauer, "An
extended operational profile model," In
Proceedings of 15th International Symposium
on Software Reliability Engineering, pp. 314-
325, 2004.

[6] D. Hamlet, D. Mason, and D. Woit, "Theory
of software reliability based on components,"
In Proceedings of 23rd International
Conference on Software Engineering (ICSE),
Toronto, Ontario, Canada, pp. 361-370, 2001.

[7] A. J. Hayter, Probability and statistics for
engineers and scientists. Boston: PWS Co.,
1996.

[8] D. M. Hoffman and P. A. Strooper, Software
design, automated testing, and maintenance a
practical approach: International Thomson
Computer Press, 1995.

[9] H. Le Guen, R. Marie, and T. Thelin,
"Reliability estimation for statistical usage
testing using Markov chains," In Proceedings
of 15th International Symposium on Software
Reliability Engineering, pp. 54-65, 2004.

[10] J. McDonald and P. A. Strooper, "Translating
Object-Z specifications to passive test
oracles," In Proceedings of Second
International Conference on Formal
Engineering Methods, pp. 165 -174, 1998.

[11] J. D. McGregor, J. A. Stafford, and I.-H. Cho,
"Measuring component reliability," In
Proceedings of 6th ICSE Workshop on
Component-based Software Engineering,
2003.

[12] H. D. Mills, "Certifying the correctness of
software," In Proceedings of Twenty-Fifth
Hawaii International Conference on System
Sciences, Kauai, HI, USA, pp. 373-381 vol.2,
1992.

[13] M. Popovic and I. Velikic, "A generic model-
based test case generator," In Proceedings of
12th IEEE International Conference and
Workshops on the Engineering of Computer-
Based Systems, pp. 221-228, 2005.

[14] S. J. Prowell, C. J. Trammell, R. C. Linger,
and J. H. Poore, Cleanroom software
engineering: technology and process.
Reading, Mass: Addison-Wesley, 1999.

[15] M. Riebisch, I. Philippow, and M. Götze,
"UML-based statistical test case generation,"
In Proceedings of International Conference
NetObjectDays, Lecture Notes in Computer
Science, Vol. 2591, pp. 394-411, 2003.

[16] R. Y. Shukla, D. A. Carrington, and P. A.
Strooper, "Systematic operational profile
development for software components," In
Proceedings of 11th Asia-Pacific Software
Engineering Conference, pp. 528-537, 2004.

[17] R. Y. Shukla, D. A. Carrington, and P. A.
Strooper, "A passive test oracle using a
component's API," 12th Asia-Pacific Software
Engineering Conference (accepted), 2005.

[18] R. Y. Shukla, P. A. Strooper, and D. A.
Carrington, "A framework for reliability
assessment of software components," In
Proceedings of 7th International Symposium
on Component-based Software Engineering,
pp. 272-279, 2004.

[19] J. A. Whittaker and M. G. Thomason, "A
Markov chain model for statistical software
testing," IEEE Transactions on Software
Engineering, vol. 20, no. 10, pp. 812-824,
1994.

[20] D. Woit, Operational profile specification, test
case generation, and reliability estimation for
modules, PhD, in Computing and Information
Science. Canada: Queen's University, 1994.

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05)
0-7695-2465-6/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

