A Software Modelling Exercise Using FCA

Thomas Tilley!, Wolfgang Hesse?, and Roger Duke!

1 The University of Queensland

Brisbane, Australia

{tilley, rduke}@itee.uq.edu.au

2 University of Marburg
Department of Mathematics/Computer Science
Hans Meerwein-Str.
D-35032 Marburg, Germany
hesse@mathematik.uni-marburg.de

Abstract. This paper describes an exercise in object-oriented modelling
where Formal Concept Analysis is applied to a formal specification case
study using Object-Z. In particular, the informal description from the
case study is treated as a set of use-cases from which candidate classes
and objects are derived. The resulting class structure is contrasted with
the existing Object-Z design and the two approaches are discussed.

1 Introduction: Identifying class candidates via use-case
analysis

Formal Concept Analysis (FCA) is a lattice based ordering and visualisation
technique that has already been applied in Software (Re-) Engineering [5, 6]
and for identification of classes in Object-oriented modelling [2, 3]. This paper
describes a software modelling exercise where FCA is applied to a formal speci-
fication case study using Object-Z. In particular, the informal description from
the case study is treated as a set of use-cases from which candidate classes and
objects are derived via FCA. The resulting class structure is contrasted with the
existing Object-Z design and the two approaches are discussed.

Our aim was to perform a comparison between a class hierarchy derived via
the application of FCA and an existing class diagram produced as part of an
Object-Z case study [1]—in particular applying FCA in connection with use-case
analysis to discover class candidates [3]. Moreover, the FCA class decomposition
was performed sight unseen, that is, only the use-cases were presented to the
class designers—they did not have access to an existing class diagram for the
system being modelled. The informal description of the system was considered
as a use-case source and five use-cases were identified. In particular a number of
questions were asked:

— What are the differences between the two class hierarchies and are there
valid reasons for the differences?

— What support does FCA offer the class designer and to what extent is it
automated?

https://core.ac.uk/display/14983748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Thomas Tilley et al.

— How does the FCA approach influence the quality of the resulting class
structure?
— Is FCA a useful mechanism for constructing Object-Z classes?

Currently, the “Object-Z engineer” works in a bottom-up manner, using
mainly inheritance and association to create the system. The process is largely
based on native experience, and a great deal of Object-Z “training” tries to cul-
tivate this experience. Can FCA help by providing a method that relies less on
training and previously acquired knowledge but results in the same or at least a
similar class structure?

Our FCA-based methodology for identifying class candidates from a use case-
like problem description works as follows (for details cf. [2] and [3]):

— (Re-)Structure the problem description and formulate use-cases.

— Mark all relevant “things” occurring in the use-case descriptions.

— Build a formal context (in the sense of FCA) by taking the marked “things”
as objects and the use-cases as attributes.

— Generate the formal concept lattice for discussion. Check the concept nodes
of the resulting lattice for being good class candidates.

— Discuss, rework and modify the use-case descriptions and the marking of
objects.

— Iterate the preceding steps until a satisfactory class structure has evolved.

For the FCA terminology and details on formal contexts, concept lattices, etc.
cf. [4].

The next section of the paper introduces this approach in more detail using
a mass transit railway ticketing system as an example. Section 3 describes the
progress from the initial informal description to the final concept lattice repre-
senting a possible class structure for our example case. Section 4 contrasts the
results of the two approaches before Section 5 summarises the paper.

2 The mass transit case: From an informal description to
a first concept lattice

Our starting point was an informal description taken from a case study modelling
a mass transit railway ticketing system in Object-Z [1]. The main purpose of the
case study was to capture the functionality of the different ticket types. The
functionality was specified as perceived by an observer of the railway system.
The informal description of the system from [1] reads as follows:

— The mass transit railway network consists of a set of stations. For
simplicity, it will be assumed this set is fixed, i.e. stations are neither
added to nor removed from the network.

— The fare for a trip depends only upon the stations where the passen-
ger joins and leaves the network, i.e. the actual route taken by the
passenger when in the network is irrelevant. The fare structure can
be updated from time to time.

Lecture Notes in Computer Science 3

— Three types of tickets can be purchased:

Single-trip tickets permit only a single trip, and only on the day
the ticket is purchased. The ticket has a value in the range $1
to $10, and the passenger is permitted to leave the network if
and only if fare for the trip just completed does not exceed the
ticket’s value.

Multi-trip tickets are valid for any number of trips provided the
current value of the ticket remains greater than zero. A ticket’s
initial value is either $50 or $100. Each time the passenger leaves
the network the value of the ticket is reduced by the fare for the
trip just completed. If this fare exceeds the value remaining on
the ticket, the passenger is still permitted to leave the network
and the value of the ticket is set to zero. A multi-trip ticket
expires after two years even if it has some remaining value.

Season tickets are valid for either a week, a month, or a year.
Within that period no restrictions whatsoever are placed upon
the trips that can be undertaken.

— As tickets are expensive to produce, they can be reissued, i.e. tickets
can have their expiry date and value reset. (The type of ticket cannot
be changed.) Although tickets are issued to passengers, the essential
interaction is between tickets and stations; thus passengers are not
modelled.

From the informal description five use-cases were identified: update fare struc-
ture, buy single ticket, buy multi-trip ticket, buy season ticket, and reissue ticket.
In a first step, the text was cut into five pieces according to bold keywords rep-
resenting the five “use-cases”. All nouns showing a certain relevance were taken
as “things”, i.e. objects in the FCA sense. The choice of the nouns was deliber-
ately done in a syntactical, “quasi-automated” way, i.e. without further seman-
tic considerations whether this choice makes much sense. For every “thing”, we
can mark whether it is contained in a use-case description or not. The result
is represented in Table 1. The column names represent the use-cases and the
rows represent the nouns identifying objects in the use-cases . A “x” at the
intersection of a use-case and a noun indicates that the noun was identified in
this use-case description. The corresponding formal concept lattice is shown in
Figure 1.

A first correction concerns the cut of the text into use-cases where the head-
line introducing the three types of tickets was mistaken as a part of the update
fare structure use-case. In fact, the noun type of ticket is not addressed in update
fare structure but it is part of the introductory headline and thus applies to the
following three use-cases describing the purchase of the three ticket types.

The initial changes between the context in Table 1 and Table 2 result from
type of ticket being removed from the update fare structure use-case and added to

! In the standard FCA terminology the term “attribute” refers to the keyword iden-
tifying a column in a formal context and “object” labels identify a row. To avoid
confusion the term “item” (referring to the nouns) is used here instead of “attribute”.

4 Thomas Tilley et al.

buy single
buy multi
buy season

Xllupdate fare structure

type of ticket
expiry date
value

fare struct
station

fare

network
passenger
ticket X
trip

day

single trip

initial value
multi-trip
number

value remaining
month

period

week

year X

X[X|X|[reissue ticket

X
X

X XIXIXIXIX]
XIX[X[X
XX

XIX[XIX]

XIXIXIX

Table 1. First Formal context created from the five use-cases. The corresponding
concept lattice is shown in Figure 1.

reissue ticket
N

update fare structure

buy season

station

value remaining

passenger
‘network

Fig. 1. The Formal Concept lattice for the context represented in Table 1.

Lecture Notes in Computer Science 5

update fare structure

X| _[Xlbuy single
X[X|buy multi

X|[buy season

type of ticket
expiry date
value

fare struct
station

fare

network
passenger
ticket X
trip

day

single trip

initial value
multi-trip
number

value remaining
month

period

week

year X
time X

X[X|X|reissue ticket

X[XIXIXIX[X]
XIXXIXIXIX[X

XIXIX[X]

XX

XIX[X|X

XIXIXIX[X

Table 2. Changes to the formal context shown in Table 1 are shown in grey. The
corresponding concept lattice is shown in Figure 2.

[reissue foket _ _
buy season
~ update fare structure S y
expiry date station (

fare struct ‘

number

multi-trip ‘
initial value |

value remaining

Fig. 2. The Formal Concept lattice for the context represented in Table 2.

6 Thomas Tilley et al.

the three “buy” use-cases: buy single, buy multi and buy season. The differences
between the two contexts are shown in grey. Furthermore the item time has
been identified and included in both the update fare structure and buy season
use cases. Time is explicitly mentioned in update fare structure but not in buy
season ticket. However, we have extended the text “Within that period ...” by
the implicit assumption “Within that period of time...”.

3 Iterating the FCA steps

The initial steps (identification of use-cases and contained things, corrections
of the incidence matrix) resulted in the formal context and lattice diagram of
Table 2/Figure 2. A first analysis of the lattice shows the use-case < thing
dependencies as far as they can be derived from the pure syntactical formulation
of the use-cases:

1. If we select a certain node marked by a use-case identifier, then we find all
things occurring in this use-case somewhere among its successor nodes.

2. If we select a certain node marked by a “thing” identifier, then we find all
use-cases containing this thing somewhere among its predecessor nodes.

An immediate consequence is: the higher things occur in the lattice diagram
the more specialised they are—i.e. the lower-most things are the most general
ones. A dual argument would apply to the use-cases if these formed a hierarchy
(which is not the case in this example).

Further refinement of the structures now calls upon the “contextual knowl-
edge” of the modeller/reviewer. From this point of view we start a first “se-
mantic” analysis of the lattice: passenger and network seem to be too high
in the diagram—we would expect them to be more general than the diagram
shows. This inspires us to review the buy season ticket use-case: Although not
mentioned in the corresponding use-case description, a season ticket implicitly
involves both a passenger and the mass transit network. A more explicit version
of the use-case description would read:

Season tickets are valid on the whole network for either a week, a
month, or a year. Within that period no restrictions whatsoever are
placed upon the trips that can be undertaken by the passenger.

This modification is reflected in Table 3 and the corresponding lattice in Figure 3.

The context in Table 4 represents the recognition that the items day and
year in buy single ticket and buy multi-ticket respectively also imply time. The
resulting concept lattice is depicted in Figure 4 and at this point in the exer-
cise the modellers were shown the existing class diagram of the system for the
first time. An initial informal comparison was made and these observations are
presented in Section 4 of the paper.

Looking at Figure 4 we detect that while the item t¢éme has now moved into
an appropriate position, fare seems still too high in the diagram. This leads us

Lecture Notes in Computer Science 7

update fare structure

X[[X|buy single
X| | X|buy multi

X|[buy season

type of ticket
expiry date
value

fare struct
station

fare

network
passenger
ticket X
trip

day

single trip

initial value
multi-trip
number

value remaining
month

period

week

year X
time X

X[X[X|reissue ticket

X XIXIX[XX]

XIXIXIXIX[X[X
XIXX[X]
XIXIXIX]

XIXIX[X]

XIXIXIX[X]

Table 3. Changes to the formal context shown in Table 2 are shown in grey. The
corresponding concept lattice is shown in Figure 3.

reissue ticket
~
Q
expiry date

buy season

fare struct

| passenger

network |
trip

type of ticket
ticket ‘

Fig. 3. The Formal Concept lattice for the context represented in Table 3.

8 Thomas Tilley et al.

update fare structure

X[[X|buy single
X|_[X|buy multi

X|buy season

type of ticket
expiry date
value

fare struct
station

fare

network
passenger
ticket X
trip

day

single trip

initial value
multi-trip
number

value remaining
month

period

week

year

time XIXIX

X|X[X|reissue ticket

X XIXIX[XX]

XIXXIXXIX[X
XIX[X[X]
XIXIXIX]

XIXIX[X]

X
XIXIXIX[X]

Table 4. Changes to the formal context shown in Table 3 are shown in grey. The
corresponding concept lattice is shown in Figure 4.

buy season

| period
week

update fare structure

station

reissue ticket

Q
expiry date

number
multi-trip
initial value

value remaining

\\/passenger

network

time
trip

type of ticket
ticket |

Fig. 4. The Formal Concept lattice for the context represented in Table 4.

Lecture Notes in Computer Science 9

to correct a mistake from our noun analysis of the use-cases: the item fare is
mentioned in the buy multi-ticket use-case but was missed in the creation of the
earlier contexts. This change is reflected in Table 5.

update fare structure

X|lbuy season

type of ticket
expiry date
value

fare struct
station

fare

network
passenger
ticket X
trip

day

single trip

initial value
multi-trip
number

value remaining
month

period

week

year

time XXX

X|X|X|reissue ticket

XIX[XIXIXIX][X] [X|[buy multi

X IXIXIXIX[X]
XIXIXIX]

XIX[X[X]

X
XIXIXIXIX

Table 5. Changes to the formal context shown in Table 4 are shown in grey. The
corresponding concept lattice is shown in Figure 5.

Furthermore, we consider the station item: the calculation of a fare implies
knowledge of the stations by which a passenger enters and exits the mass transit
railway network. Both the buy single ticket and buy multi-ticket use-cases include
the fare item so in Table 5 the station item has been included for these use-
cases as well. The concept lattice resulting from these “semantic implications”
is depicted in Figure 5.

4 Comparing the two approaches

The aim of this modelling exercise was to perform a comparison between a class
hierarchy derived via the application of FCA and an existing class diagram pro-
duced as part of an Object-Z case study. Having derived the lattice depicted
in Figure 4 the modellers were shown the existing class diagram for the first
time. One further refinement was made resulting in Figure 5. This section com-
pares and contrasts the “final” lattice with the existing class diagram shown in
Figure 6.

10 Thomas Tilley et al.

update fare structure
fare struct

reissue ticket
O,

buy season

- |month

expiry date

o
2
E
a

number

multi-trip

initial value
value remaining

=
@
@
=

fare

type of ticket
ticket |

Fig. 5. The Formal Concept lattice for the context represented in Table 5.

If the node below the label “year” in Figure 5 is considered as a filter, that
is, a point representing a common lower bound for any two nodes above it in the
lattice, then the similarity between the line and class diagrams becomes more
readily apparent. In Figure 7 this filter and the corresponding ideal (common up-
per bound) are shown in bold. The nodes labelled buy single, buy multi, and buy
season in Figure 7 represent the class candidates corresponding to the classes
Single Trip Ticket, MultiTripTicket, and SeasonTicket. The unlabelled counter-
parts of the TripTicket and Ticket class unions in Figure 6 have also been la-
belled. In this case, the structure in bold represents the encapsulation of “ticket
buying” functionality. An alternative interpretation that considers the re-issuing
of tickets would move the corresponding Ticket label down to the type of ticket
and ticket node.

An obvious difference between the two structures is the presence of attributes
and possible methods (e.g. update fare structure) in the line diagram as compared
with Object-Z functions in the class diagram. However, the relationship between
the two structures can still be inferred by checking if the attributes required
for a particular function are in the “correct” place. For example, the Object-
Z representation makes use of EnterStation and EzitStation functions so that
the appropriate fare can be calculated and checked for SingleTrip and MultiTrip
tickets. The action of entering and exiting stations is assumed domain knowledge
and is therefore not present in the use-cases. While the actions themselves do
not appear in the line diagram the lattice mirrors the required structure because

SingleTripTicket MultiTripTicket SeasonTicket
relssue relssue relssue
exitStation exitStation

TripTicket
FareDataBase
Station ‘ U updateFare
o stats
supplyld « | Ticket statsFare
.\. 1 _‘.“"
stations ' tickets / database
MassTransitRailway . clock
relssueTicket
1
startTrip Clock
tripTicketFinishTrip supplyDate
seasonTicketFinishTrip newDay
updateFare
newDay

Lecture Notes in Computer Science

BaseTicket

relssue
enterStation
exitStation

Fig. 6. Class union diagram for the mass transit system taken from [1].

12 Thomas Tilley et al.

buy single
Q

day
‘single trip

buy season

\: month
perid
multi-trip week

initial value
value remaining

" TripTicket

" Ticket”

type of ticket passenger
network
time

trip

Fig. 7. The Formal Concept lattice from Figure 5 with the ticket class hierarchy shown

in bold. The nodes labelled TripTicket and Ticket correspond to the class unions in
Figure 6.

Lecture Notes in Computer Science 13

the station, fare, and value attributes are only available to these ticket types.
This information is not required for a SeasonTicket.

Other differences between the two structures include the absence of obvious
Station, Clock and FareDataBase classes in Figure 5. In addition, a comparison
shows that the stats and statsFare functions in Figure 6 are quite artificial. These
differences are largely due to functional artefacts or abstractions required for the
Object-Z specification of the mass transit railway as described in [1]:

The main purpose of this case study is to capture the functionality of
the different ticket types. The approach taken is to specify ticket func-
tionality from the point of view of the passenger, i.e. as perceived by an
observer of the railway system. In order to do this, however, it is neces-
sary to conceptualise and abstract various other objects in the system,
such as the stations, a database to record the fare structure, and a clock
to keep track of the days.

A further important question concerns the modularisation of the system, i.e.
its decomposition into smaller units typically called components, packages or
modules. Lindig and Snelting have shown that FCA can support this decompo-
sition by forming so-called block relations [5]. Block relations result from filling
up a formal context table with additional marks (not contained in the original
context) in order to coarsen the lattice structure and get more compact concepts.
In our case, the attempt to find an appropriate decomposition for the lattice of
Figure 4 resulted in the initial package structure depicted in Figure 8. Three
possible packages deal with the purchase of (various kinds of) tickets, the fare
structure and its updates, and the re-issuing of tickets.

5 Conclusion

This paper has presented a modelling exercise to identify class candidates using
use-case analysis and formal concept analysis and then contrast it against a
known existing structure. A small, well understood example was chosen and a
comparison of the resulting structures demonstrates that they are quite similar.
Obvious differences between the two structures rely on information that is not
made explicit in the use-cases or they represent artificial constructions related
to the specification in Object-Z.

Although it may be possible to automate the initial noun identification within
use-cases later refinements rely on the insight and judgement of the modeller.
The value of this approach then is in the process itself—the construction and
discussion of the line diagrams, and in the kinds of questions it forces the designer
to ask about the structure. The process and resulting diagrams also promote
discussion as modellers consider and question the position of attributes in the
line diagram and try to adjust the formal context accordingly.

14

reissue ticket buy season
i®)

expiry date

Thomas Tilley et al.

multi-trip
initial value
value remaining

type of ticket

ticket

passenger

\
network
\ =
time

o]

Fig. 8. Initial package structure based on Figure 4.

References

1.

2.

R. Duke and G. Rose. Formal Object-Oriented Specification Using Object-Z. MacMil-
lan Press, 2000.

S. Diiwel. BASE - ein begriffsbasiertes Analyseverfahren fir die Software- Entwick-
lung. PhD thesis, Philipps-Universitat, Marburg, 2000. Available through University
library Marburg: http://www.ub.uni-marburg.de/digibib/ediss/welcome.html.
S. Diiwel and W. Hesse. Bridging the gap between use case analysis and class
structure design by formal concept analysis. In J. Ebert and U. Frank, editors,
Proceedings of Modellierung 2000, pages 27-40. Folbach-Verlag, 2000.

B. Ganter and R. Wille. Formal Concept Analysis - Mathematical Foundations.
Springer-Verlag, Berlin, 1999.

C. Lindig and G. Snelting. Assessing modular structure of legacy code based on
mathematical concept analysis. In Proceedings of the International Conference on
Software Engineering (ICSE 97), pages 349-359, Boston, 1997.

G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis. In
Proceedings of ACMSIGSOFT Symposium on the Foundations of Software Engi-
neering, pages 99-110, November 1998.

