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Abstract

In this paper we explore a method for modeling of categorical data
derived from the principles of the Generalized Cross Entropy method.
The method builds on standard kernel density estimation techniques by
providing a novel non-asymptotic data-driven bandwidth selection rule.
In addition to this, the Entropic approach provides model sparsity not
present in the standard kernel approach. Numerical experiments with 10
dimensional binary medical data are conducted. The experiments suggest
that the Generalized Cross Entropy approach is a viable method for density
estimation, discriminant analysis and classification.
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1 Introduction

Aitchison & Aitken [1] proposed an extension of the kernel density estima-
tion technique to multivariate discrete spaces. Similar to the kernel density
estimator, the performance of their proposed estimator depends crucially on
a smoothing parameter — usually called the bandwidth. Aitchison & Aitken
suggest maximizing the cross-validatory (aka as ’leave-one-out’) likelihood
function as a method of estimating the bandwidth. [4] argues that Aitchison
& Aitken’s likelihood cross-validation method can behave erratically even for
large samples. Since then various different methods for more reliable and con-
sistent estimation of the bandwidth have been suggested. Most of the methods
rely on asymptotic approximations and assume sufficient differentiability of
the underlying true density. For a survey of the various bandwidth selection
methods see [14], [3], [13] and the references therein.

The paper is organized as follows. First, Aitchison & Aitken’s likelihood
cross-validation method is briefly review and possible remedies for the prob-
lems mentioned above are considered. Next, the Generalized Cross Entropy
approach is presented and finally in the last section an example of multivari-
ate binary discrimination with real medical data is provided. The example is
based on medical data described in [6] and is the same one used by Aitchison
& Aitken [1] and some of the follow-up papers (see [4] and [14]) to present the
estimation results. The example clearly demonstrates the practical benefits of
the Generalized Cross Entropy method (GCE) as a tool for optimal bandwidth
selection and more generally for discrete multivariate data modeling.
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2 The Kernel Approach

Suppose we are given the observationsX = {X1, . . . ,Xn}on a discrete d−dimensional
space X . To model the data probabilistically we assume that the data is the out-
come of a random experiment with probability mass function q∗ : X → [0, 1],
i.e.:

X1, . . . ,Xn ∼ q∗,

where the data are not necessarily independent. The kernel method assumes
that the true, but unknown, underlying probability mass function q∗ can be
approximated well by a probability mass function of the form:

p(x | σ,X) =
1

n

n∑

i=1

K (x | σ,Xi) , x ∈X (1)

where:

1. x ∈X and X1, . . . ,Xn ∼ q∗ are d-dimensional column vectors.

2. K : X → [0, 1],
∑

x∈X K(x | ·) = 1 is a unimodal probability mass function,
usually referred to as the kernel function.

3. σ ∈ [0, 1] is a parameter which controls the “smoothness” of p in a way
similar to the bandwidth in kernel density estimation.

Example 1 (Binary Kernel) Suppose that the data X is binary. Then a simple
choice for the kernel function is:

K(x | σ,Xi) =

d∏

l=1

σI{x(l)=Xi(l)}(1 − σ)1−I{x(l)=Xi(l)} (2)

= σd(x,Xi)(1 − σ)d−d(x,Xi), (3)

where d(x,y) =
∑d

l=1 I
{
x(l) = y(l)

}
measures the “distance” between the vectors

x and y and σ ∈ (.5, 1) and I{·} is one if the statement inside the brackets is true
and zero otherwise. Note that:

lim
σ→1−

K(x | σ,Xi) =

{
1, if x = Xi

0, if x , Xi
, (4)

K(x | 1/2,Xi) =
1

2d
. (5)

So the end-points of the interval [1/2, 1] represent two extremes of smoothing.
For σ = 1 there is no smoothing whatsoever and p is simply estimated from
corresponding relative frequencies. For σ = 1/2 the smoothing is maximal, K
is not unimodal and p is the uniform probability mass function (pmf) on X .
Thus the restriction σ ∈ (1/2, 1) guarantees that K(x | σ,Xi) has a single mode at
x = Xi and that p is “smooth” in the sense of p(x | σ,X) > 0, ∀x ∈X .
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Everything in (1) is fixed except the smoothing parameter σ. This is the only
parameter over which we have control. We need to adjust σ so that our
approximation of q∗ is as good as possible— not too small so that the resulting
pmf is too peaked and sample dependent, not too large so that the pmf p is too
uniform.

2.1 Measuring the performance

The performance of the estimator (1) depends crucially on the parameter σ. Let
us assume for the moment that {X1, . . . ,Xn} are independent. Then one possible
measure of performance is the observed likelihood function:

L(σ | X) =

n∏

i=1

p(Xi | σ,X). (6)

Unfortunately maximization of the likelihood function leads to the undesirable
value σ = 1, in much the same way it leads to the empirical Dirac delta
measurable density function in the continuous case. Similar to the kernel
density estimation method this problem is resolved by considering the leave-
one-out or cross-validated likelihood:

Lx(σ | X) =

n∏

i=1

p(Xi | σ, {X\Xi}) =

n∏

i=1

1

n − 1

∑

j,i

K(Xi | σ,X j) (7)

Thus the Aitchison & Aitken’s [1] choice for σ is:

σ̂ = argmax
σ∈(0.5,1)

Lx(σ | X) (8)

The consistency properties of (8) are demonstrated in [1]. Hall [4], however,
argues that (8) can behave erratically and often undersmooths by giving a
solution close to 1. Occasionally the only maximizer of Lx(σ | X) is 1, in which
case the procedure fails to improve on the naive maximum likelihood estimator
based on the relative frequencies of the observations1. To overcome these
problems, Hall [4] proposes to minimize an asymptotic approximation to a
global function of the Mean Squared Error. His proposed performance criterion
is the analogue of the Integrated Mean Squared Error in the continuous density
estimation case. Hall’s estimation method is largely asymptotic in nature.
For a tretment of the above estimation problem via Markov Chain theory see
[3] and for a comparative study of the various kernel-based categorical data
smoothing techniques see [14]. We now consider a different approach to the
density estimation problem.

1This type of behavior is also typical for the Least Squares Cross Validation (LSCV) method,
as used in the continuous density estimation case (see [10]).
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3 The Generalized Cross Entropy Method

The Generalized Cross Entropy method (GCE) is another possible approach
to the problem of density estimation and statistical learning in general. For a
detailed derivation of the method and full references see [2].

Let our probabilistic model about the data X be the probability mass func-
tion p(x). Then the entropic formalism can be stated as follows:

1. Minimize a measure of model complexity (or alternatively maximize a
measure of model sparsity),

2. subject to agreement with the empirical observations.

In other words we want the function/model p to be as simple as possible
while at the same time being truthful and consistent with the observed data.
This is in accordance with “Occam’s razor” principle which states that one
should look for the simplest possible model which explains the observed reality
(in our case reality is revealed in the form of statistical data).

3.1 A Suitable Measure of Complexity

In the GCE method a commonly used measure of complexity is the negative of
Shannon’s Entropy [12]: ∑

x∈X

p(x) ln p(x).

Shannon’s Entropy is a special limiting case of a one-parameter family of
Entropy measures first studied by Havrda and Charvat (see [5]):

Hα{p} =
1

1 − α


1 −

∑

x∈X

pα(x)


 , α , 1.

It is easy to verify that

lim
α→1

Hα{p} =
∑

x∈X

p(x) ln p(x).

Kesavan and Kapur [8] argue that one can use the Havrda-Charvat one-
parameter family as a measure of complexity (or taking the negative of Hα,
as a measure of Entropy). This interpretation of Hα suits our purpose and we
will use Hα to measure the complexity of our proposed model for the data X,
i.e., p(x).
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3.2 Fidelity to the Empirical Data

Having chosen a suitable measure of model complexity, we now have to ex-
plain what we mean by “agreement with empirical data” in part 2 of the GCE
formalism. In the GCE method the agreement of the model with empirical
observations is imposed via constraints of the form:

∑

x∈X

p(x) Ki(x) = Ep[Ki(X)] ≧ κ∗i , i = 1, . . . ,n,

where:

• {Ki(x) = K(x | σ,Xi)}
n
i=1 is a set of kernels just like the ones used in the ker-

nel estimation method for categorical data. For concreteness we consider
binary data X and choose Ki(x) = K(x | σ,Xi) to be the binary kernel dis-
cussed previously. Note that Ki(x) is a function of the random variable
Xi.

• X1, . . . ,Xn ∼ q∗ is the d-dimensional empirical data coming from the un-
known q∗. Note that it is not necessary to assume that {X1, . . . ,Xn} are
independent.

• κ∗
i
= 1

n−1

∑
j,i Ki(X j) for all i = 1, . . . ,n, i.e., κ∗

i
is the empirical/sample aver-

age which approximatesEq∗[Ki(X)]. It is obvious thatEq∗

[
1

n−1

∑
j,i Ki(X j)

]
=

Eq∗[Ki(X)] so:

κ∗i =
1

n − 1

∑

j,i

Ki(X j) ≈ Eq∗[Ki(X)].

Note that to estimate Eq∗[Ki(X)] we do not use the i-th observation. The
reason is that 1

n

∑n
j=1 Ki(X j) is a biased statistical estimator of Eq∗[Ki(X)].

We, however, wish to estimateEq∗[Ki(X)] without bias. To achieve this we
drop the i-th observation and obtain the unbiased estimator 1

n−1

∑
j,i Ki(X j).

This estimator is similar to the cross validatory estimators used in the
Least Squares Cross Validation Method for density estimation (see [10]).

• The n constraints could either be strict equalities:

Ep[Ki(X)] = κ∗i

or inequalities:
Ep[Ki(X)] > κ∗i .

Note that the Maximum Entropy Method [7] uses equality constraints
only. In the GCE method [2], however, we use inequality constraints
instead. Thus the GCE approach differs from the Maximum Entropy
method in this respect.
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The constraints embody nothing more than the simple concept of moment match-
ing first advocated by Karl Pearson [11]. We “match” the moments of our
proposed density Ep[Ki(X)] to the empirical moments κ∗

i
(which approximate

the true but unknown moments Eq∗[Ki(X)]).

3.3 The GCE Optimization Problem

For clarity we now restate the GCE approach. Given the data X,

1. minimize the measure of complexity H2{p} =
∑

x∈X p2(x) − 1 , i.e.,

min
p∈P

∑

x∈X

p2(x), (9)

2. subject to the constraints:
∑

x∈X

p(x) Ki(x) = Ep[Ki(X)] > κ∗i , i = 1, . . . ,n. (10)

Here P =
{
p :
∑

x∈X p(x) = 1, p(x) > 0 ∀x
}

denotes the set of all probability
density functions on X . We have chosen α = 2 because H2{p} is easier to ma-
nipulate than other choices for Hα{p}. Using the Lagrange multiplier technique
[15] it can be shown that the optimal solution of the GCE problem (9)+(10) has
the form:

p(x) =

n∑

j=1

λ j K j(x), (11)

where λ = [λ1, . . . , λn]T are positive Lagrange multipliers each of which takes
care of the n constraints (10). Thus the optimal solution to (9)+(10) is a linear
combination of the n kernels. All that remains is to determine the actual
Lagrange multipliers λ. Fortunately finding λ is not a difficult task as it only
requires to solve a common optimization problem.

3.4 The Quadratic Programming Problem

To find the Lagrange multipliers substitute (11) into (9) and (10). This gives the
following quadratic programming problem (QPP):

(9) transforms to→ min
λ

1

2
λ

TCλ (12)

(10) transforms to→ subject to: Cλ > κ∗, (13)

where C is the n × n matrix with

Ci j =
∑

x∈X

Ki(x) K j(x) = K(Xi | ς,X j), ς = σ
2 + (1 − σ)2

7



for the simple binary kernel and κ∗ = [κ∗
1
, . . . , κ∗n]T. The only quantity that is still

unspecified is the bandwidth (aka as scale, spread or concentration) parameter
σ. This is the tricky part of the method. First note that the integral of (11) is

∑

x∈X

p(x) =

n∑

j=1

λ j

∑

x∈X

K j(x) =

n∑

j=1

λ j .

It follows that p ∈ P is equivalent to
∑n

j=1 λ j = 1. Second, note that the

condition
∑n

j=1 λ j = 1 is not present in the quadratic programming problem
(12)+(13). We now select the as yet unspecified bandwidth σ to meet this
constraint. We thus choose the bandwidth parameter σ such that:

• p ∈ P, which is equivalent to

•
∑n

j=1 λ j = 1, which in turn is equivalent to

• p(x) integrates to one.

Now all of the unknown variables in the model are specified and we can
summarize the GCE approach:

1. Find a σ such that
∑n

j=1 λ
∗
j
= 1, where {λ∗

j
}n

j=1
is the solution of the QPP, i.e.,

find:

σ∗ =

σ : 1T
λ
∗(σ) = 1, λ∗(σ) = argmin

λ: C(σ)λ>κ∗(σ)

λ
TC(σ)λ



2. Present the mixture pmf:

p(x) =

n∑

j=1

λ∗j K(x | σ∗,X j)

as the GCE pmf which models the data X.

A final note is that λTCλ =
∑

x∈X p2(x) > 0, ∀λ , 0 implies that C is a positive
definite matrix and hence the QPP (12)+(13) has a unique global solution for
each value of σ ∈ (1/2, 1).

4 Application to Multivariate Binary Discrimina-

tion

In this section we apply the GCE method to the diagnosis of Keratoconjunctivitis
sicca (KCS) based on the medical data reported in [6]. The same data set was
used by Aitchison & Aitken [1] and we can compare the results of the two
studies. The description of the data set is:
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1. 40 patients suffering from KCS given in the first two columns of Table 1.
Each patient may or may not have any of the 10 possible symptoms of
the disease. The presence of the symptoms is represented as binary row
vectors of length 10. A 1 means that the symptom is present and a 0
stands for no clinically obvious pathology.

2. 37 non-KCS patients given in the first two columns of Table 2.

3. Table 1 and Table 2 form the first group of 77 patients, referred to as
group-1.

4. The same 10 symptoms are recorded for another group of 41 patients,
henceforth referred to as the group-2 patients. Of this group the 24 KCS
patients are given in the first two columns of Table 3 and the 17 non-KCS
patients in the first two columns of Table 4.

We now use the GCE method to estimate the pmf of the “group-1 KCS”
observations (denoted by pKCS) and the pmf of the “group-1 non-KCS” obser-
vations (denoted pnon−KCS). The estimated mixture pmf pnon−KCS is summarized
in Table 5. Kernels associated with zero Lagrange multiplier are not listed as
they do not contribute toward the value of pnon−KCS(x) for any x ∈X . Similarly
the mixture pmf pKCS is summarized in Table 6. This time the number of obser-
vations (and hence kernels) associated with a zero multiplier is much largeer.
The GCE smoothing parameters σ∗

KCS
= 0.79275 and σ∗

non−KCS
= 0.947666 are

close to the Aitchison and Aitken’s leave-one-out maximum likelihood para-
meter values of 0.843 and 0.96 respectively. Next, based on the training data
in group-1 we classify the patients in group-2. Each patient is classified in the
following way. If the odds ratio

pnon−KCS(X(2)

i
)

pKCS(X(2)

i
)
> 1,

where X
(2)

i
denotes the i-th observation from group-2, then the i-th patient from

group-2 is classified as a non-KCS patient. Alternatively if

pKCS(X(2)

i
)

pnon−KCS(X(2)

i
)
> 1,

then the i-th patient from group-2 is classified as KCS patient. The same
classification procedure is used by Aitchison & Aitken [1]. The odds ratios
computed using the GCE and Aitchison & Aitken’s method are given in the
third and fourth column, respectively, of Table 3 and 4. Both methods classify all
of the patients in group-2 correctly. There is some element of doubt, however,
for patients 1 and 3 in Table 4 as the odds ratios are smaller than 10.
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In addition to classifying the patients in group-2 the effectiveness of the GCE
method is tested using the approach of Lachenbruch and Mickey [9]. Their
approach is another example of cross validation. In it each patient is omitted
from the training set in turn. Suppose, for example, that we omit a KCE patient
from group-1. A new estimate for σnew

KCE
is calculated from the reduced set and

then the omitted patient is classified using σnew
KCE

and σ∗
non−KCE

. The results of
this procedure for each patient are presented in the third columns of Table 1
and 2. Of those suffering from KCS, patients 10, 21, 26, 38, 39 are misclassified.
The misclassification is lower for the non-KCS patients with patients 3 and
25 being the only misclassified ones. Misclassification in this case does not
necessarily signify problems with the statistical model but rather it may point to
some anomalous symptoms in the diagnosis of Keratoconjunctivitis Sicca. For
example, the misclassified KCS patient 39 does not exhibit any of the symptoms
of the disease, yet full medical tests (see [6]) confirm the KCS diagnosis.

4.1 Matlab Implementation

Some issues concerning the implementation of the GCE are :

1. The Matlab routine “mosekopt” is used to solve the QPP. “mosekopt”
was downloaded from this webpage:

http://www.mosek.com/trials.html# students

2. To find a σ such that
∑n

j=1 λ
∗
j
= 1, where

{
λ∗

j

}n
j=1

is the solution of the

QPP, the Matlab build-in root-finding function “fzero.m” was used. Each
iteration of “fzero.m” requires the solution of a QPP and hence calls
“mosekopt”.
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Symptoms
KCS Patient 1 2 3 4 5 6 7 8 9 10 Misclassification odds ratio

1 1 1 1 0 1 0 1 0 0 1 8551.4
2 1 1 1 1 1 0 0 1 0 0 4.1789×105

3 1 1 0 1 1 1 0 0 1 0 64775
4 1 1 0 1 1 0 0 1 1 0 83398
5 1 1 1 1 0 0 1 0 0 1 26506
6 1 1 0 0 1 0 0 0 0 1 121.05
7 1 1 1 0 0 1 0 1 0 0 5394.3
8 1 1 0 1 0 1 0 0 1 0 1132.5
9 1 1 1 1 1 0 1 1 0 0 1.8521×105

10 1 0 0 0 0 0 0 0 0 0 0.046952
11 1 1 1 1 0 1 0 1 0 0 3.2027×105

12 1 1 0 0 0 0 1 1 1 0 218.29
13 1 1 1 1 1 1 1 0 0 1 5.5853×106

14 1 1 1 1 1 0 1 1 0 1 3.4814×106

15 0 0 1 1 0 0 1 1 0 0 26.729
16 1 1 0 1 0 0 0 0 1 0 310.05
17 0 1 1 0 0 1 0 1 0 1 663.26
18 1 0 1 1 1 0 0 1 0 0 11933
19 1 0 1 1 1 0 1 0 0 0 991.85
20 1 1 1 1 0 0 1 0 0 1 26506
21 0 0 0 0 1 0 0 0 0 0 0.033421
22 1 1 1 1 1 1 1 0 0 0 2.4328×105

23 1 1 1 0 1 0 0 0 0 1 4041.5
24 1 1 0 1 0 0 1 1 1 0 12271
25 1 1 1 1 0 0 0 1 0 0 21215
26 0 0 0 1 0 0 1 0 0 0 0.083477
27 1 1 0 1 1 0 0 1 1 1 5.371×105

28 1 1 1 1 0 0 0 0 0 1 26392
29 1 0 1 0 1 0 0 0 1 0 63.845
30 1 1 0 1 0 1 0 0 0 1 4774.9
31 0 1 1 1 0 0 0 0 0 1 416.46
32 1 1 1 1 1 1 1 0 0 1 5.5853×106

33 0 0 1 1 1 0 1 0 1 0 83.169
34 1 1 1 1 0 1 1 0 0 1 4.8692×105

35 1 0 1 0 1 0 0 1 0 0 249.01
36 1 1 1 1 0 0 0 1 0 0 21215
37 1 1 1 1 1 0 0 0 0 0 13902
38 1 1 0 0 0 0 0 0 0 0 0.80488
39 0 0 0 0 0 0 0 0 0 0 0.0018276
40 0 1 1 1 0 0 1 0 0 1 860.13

Table 1: Group 1-KCS
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Symptoms
Non-KCS Patient 1 2 3 4 5 6 7 8 9 10 Misclassification odds ratio

1 1 0 0 0 0 0 1 0 0 0 3.848
2 0 0 0 0 0 0 0 0 0 0 71.673
3 0 1 1 0 0 0 1 0 0 0 0.46621
4 0 0 0 0 0 0 0 0 0 0 71.673
5 0 0 0 0 0 0 0 1 0 0 14.068
6 0 0 0 0 0 0 0 0 0 0 71.673
7 0 0 1 0 0 0 1 0 0 0 10.048
8 0 0 0 0 0 0 0 0 0 0 71.673
9 0 0 0 0 0 0 0 0 0 0 71.673
10 0 0 0 0 0 0 0 0 1 0 14.611
11 0 1 0 0 0 0 1 0 0 0 9.5114
12 0 0 0 0 0 0 0 0 0 0 71.673
13 0 0 0 0 0 0 1 0 0 0 50.653
14 0 0 0 0 0 0 0 0 0 0 71.673
15 0 0 0 0 0 0 1 0 0 0 50.653
16 0 0 0 0 0 0 0 0 0 0 71.673
17 0 0 0 0 0 0 1 0 0 0 50.653
18 0 0 0 0 0 0 0 0 0 0 71.673
19 0 0 0 0 1 0 0 0 0 0 9.9515
20 0 0 0 0 0 0 0 0 0 0 71.673
21 0 0 0 0 0 0 0 0 0 0 71.673
22 0 0 0 0 0 1 0 0 0 0 14.769
23 0 0 0 0 0 0 0 0 0 0 71.673
24 0 0 0 0 1 0 0 0 0 0 9.9515
25 1 0 0 0 0 0 0 0 1 0 0.8358
26 0 0 0 0 0 0 0 0 0 0 71.673
27 0 0 0 0 0 0 0 0 0 0 71.673
28 0 0 0 0 0 0 0 0 0 0 71.673
29 0 0 0 0 0 0 1 0 0 0 50.653
30 0 0 0 0 0 0 0 0 0 0 71.673
31 0 0 0 1 0 0 0 0 0 0 13.597
32 0 0 0 0 0 0 0 0 0 0 71.673
33 0 0 0 0 0 0 1 0 0 0 50.653
34 0 0 0 0 0 0 0 0 0 0 71.673
35 0 0 0 0 0 0 0 0 0 1 14.359
36 0 0 0 0 0 0 0 0 0 0 71.673
37 0 0 0 0 0 0 1 0 0 1 10.352

Table 2: Group 1-non KCS
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Symptoms
KCS Patient 1 2 3 4 5 6 7 8 9 10 GCE Maximum Likelihood

1 0 1 1 1 1 1 1 0 1 1 1.2927×106 1.8381×105

2 1 1 1 1 0 0 0 0 1 0 9277.4 1323.9
3 1 0 1 1 1 1 1 0 1 1 7.5692×106 1.115×106

4 0 1 1 1 1 1 0 0 0 0 2545.9 1835.3
5 1 1 0 1 0 0 0 0 1 0 652.68 180.17
6 1 1 1 0 1 0 1 0 0 0 206.79 56.087
7 1 1 1 1 0 1 1 1 0 1 2.9445×106 7.8095×105

8 1 0 1 0 1 0 0 0 1 0 75.469 136.48
9 1 1 1 1 0 1 0 0 0 0 9569.2 11940
10 1 1 1 0 1 1 1 1 1 0 2.039×105 70854
11 1 1 0 1 1 0 0 0 0 0 379.53 438.74
12 1 1 1 1 0 1 0 1 0 0 3.7973×105 6.7367×105

13 1 1 1 0 0 0 0 1 0 0 1165.3 896.3
14 0 1 1 1 0 0 0 0 0 0 25.447 21.869
15 1 1 1 0 1 0 0 0 0 0 476.64 579.01
16 1 1 0 0 0 0 0 1 0 0 24.154 31.903
17 1 1 1 0 0 1 1 0 0 0 141.13 21.43
18 1 0 1 1 0 0 0 0 0 0 28.576 25.058
19 1 1 1 1 0 1 1 1 0 1 2.9445×106 7.8095×105

20 1 1 1 0 0 0 0 0 0 0 28.424 37.81
21 0 1 0 1 1 0 0 1 0 1 1633 1189.1
22 1 1 0 0 1 1 1 0 0 0 447.05 129.59
23 1 1 0 1 1 0 0 0 0 0 379.53 438.74
24 1 0 0 1 1 0 0 1 0 0 381.13 254.75

Table 3: Group 2-KCS
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Symptoms
Non-KCS Patient 1 2 3 4 5 6 7 8 9 10 GCE Maximum Likelihood

1 0 0 1 0 0 1 0 0 0 0 2.9395 4.2407
2 0 0 0 0 0 0 0 1 0 0 14.625 24.687
3 0 0 0 0 1 1 0 0 0 0 2.1732 2.6514
4 0 0 0 0 0 0 0 1 0 0 14.625 24.687
5 0 0 1 0 0 0 0 0 0 0 14.246 10.971
6 0 0 0 0 0 1 0 0 0 0 15.354 26.05
7 0 0 0 0 0 0 0 0 0 0 73.767 53.258
8 0 0 0 0 0 0 0 0 0 0 73.767 53.258
9 0 0 0 0 0 1 0 0 0 0 15.354 26.05
10 0 0 0 0 0 0 0 0 0 0 73.767 53.258
11 0 0 0 0 0 0 0 0 0 0 73.767 53.258
12 0 0 1 0 0 0 0 0 0 0 14.246 10.971
13 0 0 0 0 0 0 0 0 0 0 73.767 53.258
14 0 0 0 0 0 0 0 1 0 0 14.625 24.687
15 0 0 0 0 0 0 0 0 0 0 73.767 53.258
16 0 0 0 0 0 0 0 0 0 0 73.767 53.258
17 0 0 0 0 0 1 0 0 0 0 15.354 26.05

Table 4: Group 2-non KCS

i-th non-KCS observation K(x | σ∗,Xi) with Xi given below i-th weight λi

36 0 0 0 0 0 0 0 0 0 0 0.84474
33 0 0 0 0 0 0 1 0 0 0 0.15115
24 0 0 0 0 1 0 0 0 0 0 0.0011155
3 0 1 1 0 0 0 1 0 0 0 0.0030032

Table 5: “Group 1-non KCS” mixture pmf with σ∗ = 0.947666
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Index of KCS patient K(x | σ∗,Xi) with Xi given by λi

39 0 0 0 0 0 0 0 0 0 0 0.055622
21 0 0 0 0 1 0 0 0 0 0 0.0093176
31 0 1 1 1 0 0 0 0 0 1 0.010266
10 1 0 0 0 0 0 0 0 0 0 0.039071
35 1 0 1 0 1 0 0 1 0 0 0.0057993
18 1 0 1 1 1 0 0 1 0 0 0.019046
12 1 1 0 0 0 0 1 1 1 0 0.012942
6 1 1 0 0 1 0 0 0 0 1 0.011055
16 1 1 0 1 0 0 0 0 1 0 0.0072441
24 1 1 0 1 0 0 1 1 1 0 0.0066307
8 1 1 0 1 0 1 0 0 1 0 0.05691
4 1 1 0 1 1 0 0 1 1 0 0.025143
27 1 1 0 1 1 0 0 1 1 1 2.3899×10−5

3 1 1 0 1 1 1 0 0 1 0 0.0053602
23 1 1 1 0 1 0 0 0 0 1 0.037531
36 1 1 1 1 0 0 0 1 0 0 0.18358
20 1 1 1 1 0 0 1 0 0 1 0.22707
2 1 1 1 1 1 0 0 1 0 0 0.095159
9 1 1 1 1 1 0 1 1 0 0 0.0024979
32 1 1 1 1 1 1 1 0 0 1 0.18974

Table 6: “Group 1-KCS” mixture pmf with σ∗ = 0.79275
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