
Using l script to define L1d simulations.

Mechanical Engineering Report 2005/09
P. A. Jacobs

Centre for Hypersonics
The University of Queensland.

July 2005

Contents

Contents 1

1 Simulation Overview 2

2 Module l script 4

2.1 Functions . 5
2.2 Variables . 6
2.3 Class Diaphragm . 7

2.3.1 Methods . 8
2.4 Class FreeEnd . 8

2.4.1 Methods . 9
2.5 Class GasInterface . 9

2.5.1 Methods . 9
2.6 Class GasSlug . 9

2.6.1 Methods . 10
2.7 Class GlobalData . 11

2.7.1 Properties . 11
2.7.2 Instance Variables . 11

2.8 Class Piston . 13
2.8.1 Methods . 14

2.9 Class VelocityEnd . 15
2.9.1 Methods . 15

Index 16

1

Simulation Overview

1 Simulation Overview

Setting up a simulation is mostly an exercise in writing a textual description of your experimental facility
and the gas slugs contained within it. This description is presented to the l script program as a Python
script, and is assumed to have a “.py” extension. Once you have prepared your simulation script, the
simulation data is generated in a number of stages:

1. Create the input parameter file job.Lp with the command.
$ l script.py -f job

Input: Program: Output:

job.py - l script.py - job.Lp

2. Generate an initial (i.e. t = 0) flow solution in file job.L0 and tube description file job.La.
$ l prep.exe -f job

job.Lp - l prep.exe - job.La

- job.L0

3. Run the simulation code to produce flow data at subsequent times. The whole-of-tube data are
saved in job.Ls while history data at selected locations and cells are saved in files job.Lh and job.Lc
respectively.
$ l1d.exe -f job

job.Lp -

job.La

6

job.L0

6

l1d.exe - job.Ls

- job.Lh

- job.Lc

4. Extract subsets of the flow solution data for postprocessing. The specific commands for this stage
depend very much on what you want to do. The flow solution data is cell-averaged data associated
with cell centres. You may extract the flow data for all cells at a particular time using l post.exe

and save it in a form ready for display with GNU-Plot or for further calculation. The data for
all cells over a range of times may be extracted with the program sptime.exe and written into a
form ready to produce an (x, t)-diagram via a contouring program. The program l hist.exe can
be used to extract data for individual history locations and cells while piston.exe can be used to
get motion data for a specific piston. See the shell scripts in the examples for ideas on what can

2

Simulation Overview

be done. Since the output of this stage is always a text file, you may look at the head of each file
for hints as to what data is present.

3

Module l script

2 Module l script

Python program to write the input parameter file for L1d.

It is intended for the user to define their particular facility and flow in terms of the data objects defined in
this module. As part of its initialization, this program will execute a user-specified job file that contains,
in Python, the user’s script that defines both facility geometry and gas-path details.

Usage:

$ l script.py -f <job>

The simulation control data is then organised via the classes: GlobalData, GasSlug, Piston and Di-
aphragm. These classes provide places to store the configuration information and their function/method
names appear as commands in the user’s job description file.

When setting up a new simulation, first define the tube as a set of (x,d) break-points and identify regions
of head-loss and regions where the wall-temperature varies from the nominal value. Create the GasSlugs,
Pistons, and Diaphragms that will make up the gas path. Note that places where two GasSlugs join will
need a GasInterface to be defined. Once all of the components have been created, assemble the gas path
and then set any of the time-stepping parameters for which you want values other than the default.

Here is an example script for the Sod shock-tube problem:

sod.py

gdata.title = ’Sods ideal shock tube, 06-Jul-05’

gdata.gas name = ’perf air 14’

Define the tube walls.

add break point(0.0, 0.01)

add break point(3.0, 0.01)

Create the gas-path.

left wall = VelocityEnd(x0=0.0, v=0.0)

driver gas = GasSlug(p=100.0e3, u=0.0, T=348.4, nn=100,

to end R=1, cluster strength=1.1,

hcells=1)

interface = GasInterface(x0=0.5)

driven gas = GasSlug(p=10.0e3, u=0.0, T=278.7, nn=100,

hcells=1)

right wall = VelocityEnd(x0=1.0, v=0.0)

assemble gas path(left wall, driver gas, interface, driven gas, right wall)

Set some time-stepping parameters

gdata.dt init = 1.0e-7

gdata.max time = 0.6e-3

gdata.max step = 5000

add dt plot(0.0, 10.0e-6, 5.0e-6)

add history loc(0.7)

This script should define the gas path:

. |+----- driver-gas -----+|+----- driven-gas -----+|

. | | |

. | | |

. left-wall interface right-wall

4

Module l script Functions

and can be invoked with the command:

$ l script.py -f sod

Upon getting to the end of the user’s script, this program should then write a complete simulation
parameter file (sod.Lp) in the traditional (i.e. ugly) format. Because this program just gathers the data
in order to write the input parameter file, the old documentation for that file is still relevant (despite a
few small name changes).

2.1 Functions

add break point(x, d, transition flag=0)

Add a break-point tuple to the tube-diameter description contained in GlobalData.
The tube is described as a set of (x,d)-coordinate pairs that define break points in the profile of the
tube wall.

Parameters

x: x-coordinate (in metres) of the break point
(type=float)

d: diameter (in metres) of the tube wall at the break-point.
(type=float)

transition flag: Indicates the variation in diameter between this break-point and the
next. 1=linear, 0=Hermite-cubic.

Return Value

Number of break points defined so far.

add dt plot(t change, dt plot, dt his)

Add a dt tuple to the dt plot tuple list in GlobalData.

Parameters

t change: The time (in seconds) at which this dt plot and dt his should take effect.
(type=float)

dt plot: Time interval between writing whole solutions (for later plotting).
(type=float)

dt his: Time interval between writing data to history file.
(type=float)

add history loc(x)

Add a location to the history-location list in GlobalData.

Parameters

x: x-coordinate (in metres) of the sample point.
(type=float)

Return Value

Number of sample points defined so far.

5

Module l script Variables

add loss region(xL, xR, K)

Add a head-loss region to the tube description in GlobalData.
There is a momentum-sink term much like the so-called minor-loss terms in the fluid mechanics text
books. The effect of the loss is spread over a finite region so that the cells are gradually affected as
they pass through the region

Parameters

xL: Left-end location (in metres) of the loss region.
(type=float)

xR: Right-end location (in metres) of the loss region.
(type=float)

K: Head-loss coefficient. A value of 0.25 seems to be good for a reasonably smooth
contraction such as the T4 main diaphragm station.
(type=float)

Return Value

Number of loss regions defined so far.

add T patch(xL, xR, T)

Add a temperature patch for a region where the wall temperature is different from the nominal value.

Parameters

xL: Left-end location (in metres) of the loss region.
(type=float)

xR: Right-end location (in metres) of the loss region.
(type=float)

T: Wall temperature in degrees K.
(type=float)

Return Value

Number of temperature patches defined so far.

assemble gas path(*components)

Assembles a gas path by makeing the logical connections between adjacent components.
The components are assembled left-to-right, as they are supplied to this function.

Parameters

components: An arbitrary number of arguments representing individual components or
lists of components. Each component may be a GasSlug, Piston, or any
other gas-path object, however, it doesn’t always make sense to connect
arbitrary components. For example, connecting a GasSlug to a Piston is
reasonable but connecting a Piston to a Diaphragm without an intervening
GasSlug does not make sense in the context of this simulation program.
(type=mixed gas-path objects and lists of gas-path objects)

2.2 Variables

6

Module l script Class Diaphragm

Name Description

gdata Contains the GlobalData information describing the simulation.
Note that there is one such variable set up by the main program
and the user’s script should directly set the attributes of this
variable to adjust settings for the simulation.
Value: <l script.GlobalData object at 0xb7c0956c>

(type=GlobalData)

2.3 Class Diaphragm

builtin .object

Diaphragm

Contains the information for a diaphragm which controls the interaction of two GasSlugs.

7

Module l script Class FreeEnd

2.3.1 Methods

init (self, x0, p burst, is burst=0, dt hold=0.0, dt blend=0.0, dx blend=0.0, dxL=0.0, dxR=0.0,
label=’’)

Creates a diaphragm with specified properties.
The connections to GasSlugs are made later via the function assemble gas path.

Parameters

x0: x-position in the tube, metres. This value is used to determine the end-points
of the GasSlugs.
(type=float)

p burst: Pressure (in Pa) at which rupture is triggered.
(type=float)

is burst: Flag to indicate the state of diaphragm. A value of 0 indicates that the
diaphragm is intact while a value of 1 indicates that the diaphragm is
ruptured and the GasSlugs are interacting.
(type=int)

dt hold: Time delay (in seconds) from rupture trigger to actual rupture.
(type=float)

dt blend: Time delay (in seconds) from rupture to a blend event. This models the
mixing of the two gas slugs some time after rupture of the diaphragm.
Blending events are seldom used so this is usually set to 0.0.
(type=float)

dx blend: Distance (in metres) over which blending occurs. Set to 0.0 to have no
effective blending.
(type=float)

dxL: The distance over which p is averaged on left of the diaphragm. The pressure
difference between the left- and right-sided of the diaphragm is used to trigger
rupture. The default value of 0.0 will cause the pressure in the gas cell
immediately adjacent to the diaphragm to be used.
(type=float)

dxR: The distance (in metres) over which p is averaged on right-side of the
diaphragm.
(type=float)

label: A label that will appear in the parameter file for this diaphragm.
(type=string)

Overrides: builtin .object. init

2.4 Class FreeEnd

builtin .object

FreeEnd

Contains the information for a free-end condition.

8

Module l script Class GasInterface

2.4.1 Methods

init (self, x0)

Creates a GasSlug end-condition with a specified location.

Parameters

x0: Initial position (in metres).
(type=float)

Overrides: builtin .object. init

2.5 Class GasInterface

builtin .object

GasInterface

Contains the information for an interface between two slugs.

The primary use of this class is to locate the ends of the connected GasSlugs. Implicitly, the logical
connections are also made via the function assemble gas path.

2.5.1 Methods

init (self, x0)

Creates as interface between two GasSlugs at specified location.

Parameters

x0: Initial position (in metres).
(type=float)

Overrides: builtin .object. init

2.6 Class GasSlug

builtin .object

GasSlug

Contains the gas properties and discretisation for each gas slug.

The user may create more than one gas slug to describe the initial gas properties throughout the facility.

Note: A slug needs to have appropriate end-conditions. This is achieved by creating end-condition
objects such as FreeEnd and VelocityEnd objects and then assembling the gas-path via a call to
assemble gas path.

9

Module l script Class GasSlug

2.6.1 Methods

init (self, p=100000.0, u=0.0, T=300.0, mf =[1.0], Tv=None, Te=None, label=’’, nn=10,
to end L=0, to end R=0, cluster strength=0.0, viscous effects=0, adiabatic flag=0, hcells=[])

Creates a gas slug with user-specified properties.
Most parameters have default properties so that only the user needs to override the ones that they
wish to set differently.

Parameters

p: Pressure in Pa.
(type=float)

u: Velocity in m/s.
(type=float)

T: Temperature in degrees K.
(type=float)

mf: Mass fractions. The number of mass fraction values should match
the number of species expected by the selected gas model. See
GlobalData.gas name.
(type=list of floats)

Tv: Vibrational temperatures in degrees K.
(type=list of floats)

Te: Electron temperature in degrees K.
(type=float)

label: Optional label for the gas slug.
(type=string)

nn: Number of cells within the gas slug.
(type=int)

to end L: Boolean flag to indicate that cells should be clustered to the left end.
(type=int)

to end R: Boolean flag to indicate that cells should be clustered to the right
end.
(type=int)

cluster strength: As this value approaches 1.0 from above, the clustering gets
stronger. A value of zero indicates no clustering.
(type=float)

viscous effects: A nonzero value activates the viscous effects. 0 = inviscid equations
only; 1 = include viscous source terms F wall , loss , q, friction
factor for pipe flow; 2 = use Con Doolan’s laminar mass-loss model
if the mass within a cell is greater than MINIMUM MASS as set in
l1d.h; 3 = use Con Doolan’s turbulent mass-loss model if the mass
within a cell is greater than MINIMUM MASS as set in l1d.h; 4 =
include viscous source terms F wall , loss , q, friction factor for flat
plate; 5 = use David Buttsworth’s mass-loss model with pipe-flow
friction factor; 6 = use David Buttsworth’s mass-loss model with
flat-plate friction factor; 7 = include viscous source terms F wall ,
loss , q, friction factor for pipe flow; half heat flux.
(type=int)

adiabatic flag: Boolean flag to indicate that there should be no heat transfer at the
tube wall.
(type=int)

hcells: Either the index of a single cell or a list of indices of cells for which
the data are to be written every dt his seconds, as set by
add dt plot.
(type=int or list of int)

Overrides: builtin .object. init
Note: Locations of the ends of the slug are communicated through end-condition objects that are
attached during assembly of the gas path.

10

Module l script Class GlobalData

2.7 Class GlobalData

builtin .object

GlobalData

Contains the global data that defines the tube and simulation control parameters.

The user’s script should not create one of these but should specify the simulation parameters by altering
the attributes of the global object gdata that already exists by the time the user’s script executes.

2.7.1 Properties

Name Description

gas name The name of the gas.

2.7.2 Instance Variables

Name Description

case id Specifies a special case that has custom C-code in the main
simulation. See l1d.h for possible values. Use a value of 0 for a
generic simulation; this is the usual case.
Value: <member ’case id’ of ’GlobalData’ objects>

(type=int)
cfl Largest allowable CFL number. The time step is adjusted to

ensure that this value is not exceeded in any particular cell. A
typical value of 0.25 seems to work well for simulations with
sudden events such as diaphragm bursting, while a value as
high as 0.5 should be considered only for well-behaved flows.
Value: <member ’cfl’ of ’GlobalData’ objects>

(type=float)
dt init The size of the time-step that will be used for the first few

simulation steps. After a few steps, the cfl condition takes over
the determination of a suitable time-step.
Value: <member ’dt init’ of ’GlobalData’ objects>

(type=float)
dt plot list Specifies the frequency of writing complete solutions (for later

plotting, maybe) and also for the writing of data at history
locations. It may be convenient to have different frequencies of
writing such output at different stages of the simulation. For
example, free-piston driven shock tunnels have a fairly long
period during which the piston travels the length of the
compression tube and then a relatively short period, following
diaphragm rupture, when all the interesting things happen. It is
good to have low-frequency output during most of the
compression process and higher-frequency output starting just
before diaphragm rupture. Arranging good values may require
some trial and error. Add entries to this list via add dt plot.
Value:

<member ’dt plot list’ of ’GlobalData’ objects>

(type=list of tuples)
continued on next page

11

Module l script Class GlobalData

Name Description

gas name selects the thermo-chemical model (which, in turn, sets the
number of species). Look in the file gas.h for a current list of
the gas models, their names and their integer indices.

hloc list List of x-coordinates for the history locations. Add entries via
the function add history loc.
Value: <member ’hloc list’ of ’GlobalData’ objects>

(type=list of float)
loss region list List of head-loss regions, usually associated with sudden

changes in tube cross-section and diaphragm stations. Add
regions via the function add loss region.
Value:

<member ’loss region list’ of ’GlobalData’ objects>

(type=list of tuples)
max step The simulation will be stopped if it reaches this number of

steps. This is mostly used to catch the problem of the
calculation taking a very long time (measured by one’s
patience), possibly because the time-step size has decreased to
an extremely small value.
Value: <member ’max step’ of ’GlobalData’ objects>

(type=int)
max time The simulation will stop if it reaches this time. It is most usual

to use this critereon to stop the simulation.
Value: <member ’max time’ of ’GlobalData’ objects>

(type=float)
n The number of small segments that will be used to describe the

tube’s area distribution internal to the simulation. To enable a
fast lookup process for the area calculation, the area variation
between equally-spaced x-positions is taken to be linear. The
default value is 4000 and probably won’t need to be changed
except for geometries with rapidly changing cross-sections.
Value: <member ’n’ of ’GlobalData’ objects> (type=int)

reacting flag If set to 1, Rowan’s finite-rate chemistry will be active. (Default
is 0)
Value:

<member ’reacting flag’ of ’GlobalData’ objects>

(type=int)
T nominal The nominal wall temperature (in degrees K) in the absence of

a patch of differing temperature.
Value: <member ’T nominal’ of ’GlobalData’ objects>

(type=float)
t order 1=Euler time-stepping. This is generally cheap and nasty.

2=predictor-corrector time-stepping, nominally second order.
This is the default setting. It is, however, twice as CPU
intensive as Euler time-stepping.
Value: <member ’t order’ of ’GlobalData’ objects>

(type=int)
T patch list Regions of the tube wall that have temperature different to the

nominal value can be specified via the function add T patch.
Value:

<member ’T patch list’ of ’GlobalData’ objects>

(type=list of tuples)
continued on next page

12

Module l script Class Piston

Name Description

title Short title string for embedding in the parameter and solution
files.
Value: <member ’title’ of ’GlobalData’ objects>

(type=string)
x order 1=use cell averages without high-order reconstruction. Use this

only if the second-order calculation is showing problems. 2=use
limited reconstruction (nominally second order). This is the
default selection.
Value: <member ’x order’ of ’GlobalData’ objects>

(type=int)
xd list List of break-point tuples defining the tube wall. Add elements

to the list via the function add break point.
Value: <member ’xd list’ of ’GlobalData’ objects>

(type=member descriptor)

2.8 Class Piston

builtin .object

Piston

Contains the information for a piston.

Notes:

• The left- and right-end positions of the piston are also used to locate the ends of adjoining
GasSlugs.

• The generic piston model (type of piston=0) has inertia but no friction. However, to
make accurate simulations of a particular facility, it is usually important to have some
account of the friction caused by gas-seals and guide-rings that may be present on the
piston. Piston models that have been encoded are listed in l1d.h.

13

Module l script Class Piston

2.8.1 Methods

init (self, m, d, xL0, xR0, v0, type of piston=0, p restrain=0.0, is restrain=0, with brakes=0,
brakes on=0, x buffer=10000000.0, hit buffer=0, label=’’)

Create a piston with specified properties.

Parameters

m: Mass in kg.
(type=float)

d: Face diameter, metres.
(type=float)

xL0: Initial position of left-end, metres. The initial position of the piston
centroid is set midway between xL0 and xR0 while piston length is the
difference (xR0 - xL0).
(type=float)

xR0: Initial position of right-end, metres.
(type=float)

v0: Initial velocity (of the centroid), m/s.
(type=float)

type of piston: Usually 0 but, for others, see the header file l1d.h.
(type=int)

p restrain: Pressure at which restraint will release. Some machines, such as
two-stage light-gas guns, will hold the projectile in place with some
form of mechanical restraint until the pressure behind the piston
reaches a critical value. The piston is then allowed to slide.
(type=float)

is restrain: Status flag for restraint. 0=free-to-move, 1=restrained.
(type=int)

with brakes: Flag to indicate the presence of brakes. 0=no-brakes,
1=piston-does-have-brakes. Such brakes, as on the T4 shock tunnel,
allow forward motion of the piston but prevent backward motion by
locking the piston against the tube wall.
(type=int)

brakes on: Flag to indicate the state of the brakes. 0=off, 1=on.
(type=int)

x buffer: Position of the stopping buffer in metres. This is the location of the
piston centroid at which the piston would strike the buffer (or brake, in
HEG terminology). Note that it is different to the location of the front
of the piston at strike.
(type=float)

hit buffer: Flag to indicate state of buffer interaction. A value of 0 indicates that
the piston has not (yet) hit the buffer. A value of 1 indicates that it
has. Details of the time and velocity of the strike are recorded in the
event file.
(type=int)

label: A bit of text for corresponding line in the Lp file.
(type=string)

Overrides: builtin .object. init

14

Module l script Class VelocityEnd

2.9 Class VelocityEnd

builtin .object

VelocityEnd

Contains the information for a fixed-velocity end condition for a GasSlug.

2.9.1 Methods

init (self, x0, v=0.0)

Creates a GasSlug end-condition with a specified location and velocity.

Parameters

x0: Initial position (in metres).
(type=float)

v: Velocity (in m/s) of the end-point of the GasSlug.

Overrides: builtin .object. init

15

Index

l script (module), 4–15
add break point (function), 5
add dt plot (function), 5
add history loc (function), 5
add loss region (function), 5
add T patch (function), 6
assemble gas path (function), 6
Diaphragm (class), 7–8

init (method), 8
FreeEnd (class), 8–9

init (method), 9
GasInterface (class), 9

init (method), 9
GasSlug (class), 9–10

init (method), 10
GlobalData (class), 10–13
Piston (class), 13–14

init (method), 14
VelocityEnd (class), 14–15

init (method), 15

16

