
A High-Level Programming Language for Mod-

eling the Earth

Lutz Gross, Jonathan Smillie and Matt Davies

Abstract. Computational models based on the solution of partial differential
equations (PDEs) play a key role in Earth systems simulations. The soft-
ware implementing these models depends on the discretisation method, data
structures and the computer architecture. For this reason, it is difficult for
scientists to implement new models without strong software engineering skills.
In this paper, we present a computational modeling language escript based on
the object–oriented scripting language Python. This language, is designed to
implement PDE-based models with a high degree of abstraction from the un-
derlying discretization techniques and their implementation. The main com-
ponents of escript are the Data class objects which handle data with a spatial
distribution and the linearPDE class which define linear PDEs to be solved in
each step of a time integration or non-linear iteration scheme. As an example
we will discuss the solution of the Lame equation and the implementation of
a quasi-static model for crustal fault systems.

Keywords. Partial Differential Equations, Parallel Computing.

1. Introduction

Many mathematical models in Earth sciences are based on the solution of systems
of coupled, non-linear, time-dependent partial differential equations (PDEs). Here,
the spatial and temporal scales vary from a planetary scale evolving over millions
of years to the scale of a fault system evolving over several decades. In this context,
various numerical techniques can be applied to manage non-linearity, including the
Crank-Nicholson scheme, the Newton-Raphson method, and, for weakly coupled
equations, the non-linear Gauss-Seidel scheme. In addition to these high-level tech-
niques, spatial discretization methods such as the finite element method (FEM) or
the boundary element method (BEM), can be applied to approximate the spatial
derivatives on large, three-dimensional domains, usually decomposed into unstruc-
tured meshes in order to resolve geometrical complexity. For the Earth sciences,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14983196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Gross, Smillie and Davies

geometrical complexity can be inherent in the physical domain, such as that found
in a fault system [4], or in resolving high contrasts in the solution profile, as re-
quired in mantle convection simulations[2].

Even at this stage of our technological advancement, there remains a dearth
of knowledge with respect to the dynamics of the Earth and it’s constituent sys-
tems. As a consequence, the computational models that are in turn used to study
Earth systems are constantly required to rapidly adapt to our current interpreta-
tions and observations. For this reason, Earth scientists and geophysicists require
a high-level, interactive programming environment which allows them to rapidly
implement, test and run new computational models. Established programming en-
vironments such as MATLAB [8] and PETSc [12] are built around linear algebra.
They do not provide a level of abstraction sufficient to permit the user to work
purely within the context of PDEs. By way of a contrast, existing PDE-oriented
environments such as ELLPACK [9], VECFEM [10] and FASTFLO [11], do not
provide a sufficiently-powerful programming language to handle complex and cou-
pled problems in a tractable manner. These environments are also not bound to
an object-oriented programming environment.

In this paper, we present the concepts which underpin the development of
escript. Its objective is to provide a programming language for defining models
and high-level solution algorithms for solving general, time-dependent, non-linear
systems of PDEs, independently of the discretization method and underlying soft-
ware technologies. This approach permits the use of a validated model, in several
different contexts and with various PDE solver libraries without changes to the
model implementation. In order to reduce development costs and provide a seam-
less integration with existing toolkits for numerical modeling, such as linear algebra
tools [13] and visualization tools [14], escript is implemented as an extension of
the interactive, object-oriented scripting language Python [5].

In this paper, we present escript from a user perspective and defer a discussion
of the computational kernel’s implementation and parallelization to a later paper.
In the next section, we present escript’s concept of a PDE domain. Sections three
and four discuss Data objects and linearPDE objects, respectively. In section five
and six we present the application of escript to a simple linear-elastic material
model and a quasi-static stick-slip friction model for fault systems. As it is not
the purpose of the paper to discuss models and solution algorithms, we will not
present numerical results.

2. The PDE Domain

A coupled system of time-dependent non-linear PDEs is solved using a time inte-
gration scheme and possibly an iterative procedure in each time step. This leads to
a sequence of linear PDEs that have to be solved in each time step or iteration. It
is the objective of escript to provide an environment in which this process can be
easily implemented without actually referring to the linear PDE solver to be used

A Programming Language for Modeling the Earth 3

to solve the linear PDE. The domain, Ω, of a PDE is defined by a Domain class
object. In the following, Γ will denote the boundary of the domain and Γcontact

denotes a manifold within the domain where a discontinuity may occur. The two
sides of the discontinuity are denoted by side 0 and side 1.

A factory class provided by the linear PDE solver library creates an instance
of an associated Domain. For instance, in the case of a FEM solver, a Domain

object holds the information about the FEM mesh described through a table of
node coordinates and a table of elements. It is emphasised that the way the FEM
mesh is described, stored and implemented is not dependent on escript. Instead
escript is dependent on a minimum subset of the information, such as number
of cells and number of data points per cell. This information must be provided
by the Domain through callback functions. For this reason, a PDE solver library
can be integrated with escript, requiring only a thin interface to map this core
functionality.

The following snippet of Python script shows how to generate two Domain

objects from the PDE solver finley [1]:

import finley

mydomain=finley.Rectangle(ne0=20,ne1=40,l0=1.,l1=2.)

myotherdomain=finley.Mesh("mymesh.file")

The object mydomain is a rectangular domain with length l0 = 1 in the first
spatial dimension and l1 = 2 in the second spatial dimension. The domain is
subdivided into a mesh with 20×40 elements. The object myotherdomain is created
by reading the file "mymesh.file"which is provided by an external mesh generator
and contains tables of nodes and elements. Rectangle and Mesh are both finley

functions returning an escript Domain object.

The solution of a PDE is a function of its location in the domain of inter-
est Ω. The solution is (piecewise) differentiable but, in general, its gradient is
discontinuous. These different degrees of smoothness are reflected in different rep-
resentations that are used. For instance, in the FEM context the displacement field
is represented by its values at the nodes of the mesh, while the strain, which is the
symmetric part of the gradient of the displacement field, is stored on the element
centers. To be able to classify functions with respect to their smoothness, escript

has the concept of the ”function space” described by objects of the FunctionSpace
class. The following statement generates the object solution_space which is a
FunctionSpace object and provides access to the function space of PDE solutions
on the domain mydomain:

solution_space=Solution(mydomain)

Notice that there is only one type of FunctionSpace on a given Domain. Any other
object returned by Solution(mydomain) equals solution_space.

The following function space objects are typically used in the context of
PDEs:

• Solution(mydomain): solutions of PDEs.

4 Gross, Smillie and Davies

• ContinuousFunction(mydomain): continuous functions, e.g. a temperature
distribution. They may have a discontinuity across Γcontact.

• Function(mydomain): general functions which are not necessarily continuous,
e.g. a stress field.

• FunctionOnBoundary(mydomain): functions on the boundary Γ of the do-
main, e.g. a surface pressure.

• FunctionOnContact0(mydomain): functions on side 0 of the discontinuity
Γcontact.

• FunctionOnContact1(mydomain): functions on side 1 of the discontinuity
Γcontact.

Figure 1 shows the dependency between function spaces. Any solution of a PDE is
a continuous function. Any continuous function can be seen as a general function
on the domain and can be restricted to the boundary as well as to any side of
the discontinuity Γcontact. The result will be different depending on which side is
chosen. Functions on any side of the discontinuity can be seen as a function from
the opposite side. A function on the boundary, or on one side of the discontinuity,
cannot be seen as a general function on the domain as there are no values de-
fined for the interior. For most PDE solver libraries, the space of the solution and
continuous functions are identical, however in some cases, for instance when peri-
odic boundary conditions are used, a solution fulfills periodic boundary conditions
while a continuous function may not be periodic.

The concept of a function space describes the properties of functions and
allows abstraction from the actual representation of the function in the context of
a particular PDE solver. In the FEM context, a function in the Function object’s
function space is typically represented by its values at the element center, but,
in a finite difference scheme, the edge midpoint of cells is preferred. Using the
concept of function spaces allows the user to run the same script on different
PDE solver libraries by just changing the creator of the Domain object. Changing
the function space of a particular function will typically lead to a change of its
representation. So, when seen as a general function, a continuous function which is
typically represented by its values on the node of the FEM mesh or finite difference
grid has to be interpolated to the element centers or the cell edges, respectively.
The function of performing the interpolation is the responsibility of the PDE solver
library and is based on that library’s data structures for computational efficiency.
escript does not require specific knowledge of the library’s internal implementation.

3. The Data Class

Instances of the Data class store functions of spatial coordinates and these can be
of any function space. The function is represented through its values on sample
points where the sample points are chosen according to the function space of the
function. The Data class objects are used to define coefficients of PDEs on the
Python level and to store the PDE solutions.

A Programming Language for Modeling the Earth 5

The values of a function have a rank, which specifies the number of indices,
and a shape defining the range of each index. The rank in escript is limited to
the range 0 through 4 and it is assumed that the rank and shape is the same for
all sample points. For instance, a stress field has rank 2 and shape (d, d) where d
is the spatial dimension. The following statement creates the Data object mydat

representing a continuous function of shape (2, 3) and rank 2:

mydat=Data(1.0,(2,3),ContinuousFunction(myDomain))

The initial value is the constant 1.0 for all sample points and all components.

The numarray package [13] provides a working environment for linear algebra
in Python, similar to that of MATLAB [8]. Matrices and tensors represented in
numarray objects or any object, such as a list of floating point numbers, that
can be converted into a numarray object and used to create Data objects. The
following two statements create objects which are equivalent to mydat:

import numarray

mydat1=Data(numarray.ones((2,3)),ContinuousFunction(myDomain))

mydat2=Data([[1,1],[1,1],[1,1]],ContinuousFunction(myDomain))

In the first case the initial value is numarray.ones((2,3))which generates a 2×3
matrix as a numarray array filled with ones. The shape of the created Data object
is taken from the shape of the array. In the second case, escript converts the initial
value, which is a list of lists, into a numarray object before creating the actual
Data object.

For convenience escript provides creators for the most common types of Data
objects in the following forms:

• Scalar(0.0,fSpace) is the same as Data(0.0,(,),fSpace), for instance a
temperature field.

• Vector(0.0,fSpace))is the same as Data(0.0,(d,),fSpace), for instance
a velocity field.

• Tensor(0.0,fSpace) is the same as Data(0.0,(d,d),fSpace), for instance
a stress field.

• Tensor4(0.0,fSpace) is the same as Data(0.0,(d,d,d,d),fSpace) for in-
stance a Hook tensor field.

In these statments d defines the spatial dimension and fSpace defines a function
space, e.g. fSpace=Function(myDomain).

Objects of the Data class can be manipulated by applying unitary operations,
such as cos, sin and log, and can be combined by applying the common arithmetic
binary operations such as +, − ,∗, /. As these operations have to be performed
on a very large data sets, the actual work of these operations is not implemented
in Python but rather in C++. In the current implementation, operations on Data

objects are executed in parallel using the OpenMP paradigm [6] with data dis-
tributions optimized for ccNUMA architectures [7]. Support for other MPI-based
parallelization [12] is not difficult to incorporate and is planned currently.

6 Gross, Smillie and Davies

As aforementioned, escript itself does not handle any spatial dependencies
itself and instead relies on the PDE solver library to provide appropriate function-
ality such as interpolation. However escript invokes interpolation, if required, to
resolve Data operations. Typically, this occurs in a binary operation when both
arguments belong to different function spaces or when data is provided to a PDE
solver library, requiring functions to be represented in a particular way.

We now present an example to illustrate the usage of Data objects. Assume
we have a displacement field, u, and we want to calculate the corresponding stress
field, σ, using the linear–elastic isotropic material model

σij = λuk,kδij + µ(ui,j + uj,i) (3.1)

where δij is the Kronecker symbol and λ and µ are the Lame coefficients. The
following Python function, getStress, takes the displacement, u, and the Lame
coefficients, lam and mu, as arguments and returns the corresponding stress:

def getStress(u,lam,mu):

d=u.getFunctionSpace().getDim()

g=grad(u)

stress=lam*trace(g)*kronecker(d)+mu*(g+transpose(g))

return stress

The variable d gives the spatial dimension of the domain on which the displace-
ments are defined. kronecker returns the Kronecker symbol with indexes i and j
running from 0 to d-1. In a similar manner to the way that interpolation is un-
dertaken, the gradient calculation ,grad(u), in turn calls a function of the PDE
solver library for which u is defined. Typically, u must be in the Solution or
ContinuousFunction function space. The result, g, and stress are in the Function
function space. If u is defined, getStress might be called in the following way:

s=getStress(u,1.,2.)

In the case that the values for lam and mu are calculated through expressions, such
as in the case of a temperature dependency, getStress can also be called with
Data objects instead of floating-point numbers as arguments. The following call is
equivalent to the previous example:

lam=Scalar(1.,ContinuousFunction(mydomain))

mu=Scalar(2.,Function(mydomain))

s=getStress(u,lam,mu)

In this situation processing the getStress function becomes more complicated:
the lam object belongs to the ContinuousFunction object’s function space but the
object returned by trace(g) is in the Function object’s function space. Therefore
the evaluation of the product lam*trace(g) produces a problem, as both functions
are represented differently. In case of FEM, the lam object’s values correspond
to the coordinates of the mesh nodes, and trace(g) object’s values correspond
to the coordinates of the element centers. If the function spaces of arguments
in a binary operation are inconsistent, escript interprets the arguments in the
appropriate function space according to the inclusion defined in Table 1. In this

A Programming Language for Modeling the Earth 7

example, escript sees lam as a function of the Function object’s function space
and interpolates the lam object’s values to the coordinates of the element centers.
It is noted that this interpolation is performed independently through a function
of the underlying PDE solver library.

In the Earth sciences, material parameters such as the Lame coefficients are
typically dependent on rock types present in the domain of interest. A common
technique to handle these kinds of material parameters, in particular in the case
of complex domain geometries, is through ”tagging”. Figure 2 shows an example
of a geological map. In this case, two rock types white and grey can be found
in the domain. The domain is subdivided into triangles. Each triangle has a tag
indicating the rock type found in this triangle. Here, tag 1 is used to indicate
the rock type white and tag 2 for the rock type grey. The tags are assigned at
the time when the triangles are generated and stored in the Domain class object.
The following statements show how, for the example of Figure 2 and the stress
calculation discussed previously, tagged values are used to define a lam function
according to a geological map:

lam=Scalar(20.,Function(mydomain))

lam.setTaggedValue(1,30.)

lam.setTaggedValue(2,5000.)

s=getStress(u,lam,2.)

In this example, lam is set to 30 for those triangles with a tag of 1 and to 5000 for
those triangles with a tag of 2. The initial value 20 of lam is used as a default value
for the case when a tag is encountered which has not been linked with a value.
Note that the getStress method is called without modification. escript resolves
the tags when lam*trace(g) is calculated.

Objects of the Data class provide an abstraction from not only from the rep-
resentation required to represent functions in a particular function space but also
their possible representations as constants over the domain, piecewise constant, as
represented by tagging samples, or as expanded data when each sample holds an
individual value. The latter is computationally intensive and memory demanding
when processed. In arithmetic expressions, Data objects with different represen-
tations and on different function spaces can be used in a single expression. The
required transformations of representations are performed by escript when the
expressions are evaluated. As shown in the example of a stress calculation, this
allows users developing and testing algorithms for a simple case (such as with the
Lame coefficients being constants) to reapply the algorithm in a more complex
application without the need to modify or reimplement it.

4. linearPDE Class

A linearPDE class object defines a linear, steady, second order PDE for an un-
known function u on the domain Ω. To formulate the PDE we use the generalized

8 Gross, Smillie and Davies

flux, J , which in tensor notation is defined by

Jij = Aijkluk,l + Bijkuk − Xij (4.1)

where uk denotes the k-th component of the function, u, and u,j denotes the
derivative of u with respect to the j-th spatial direction. The PDE for the unknown,
u, is abstracted through the linearPDE class and is defined by:

−Jij,j + Cikluk,l + Dikuk = Yi . (4.2)

The (natural) boundary conditions for the normal component of the flux are con-
sidered in the form

njJij = yi − dikuk . (4.3)

where n denotes the outer normal field on the surface of the domain. Discontinuities
across Γcontact are considered in the form:

njJ
0
ij = njJ

1
ij = ycontact

i − dcontact
ik [u]k . (4.4)

In this condition, J0 and J1 are the fluxes on side 0 and side 1 of the discontinuity
Γcontact, respectively. n is the normal field on the fault pointing away from side 0
and [u] is the jump of u across Γcontact. Moreover, constraints of the form

ui = ri where qi > 0 (4.5)

can be considered. The constraints (4.5) override any condition set by equa-
tions (4.2), (4.3) or (4.4), where ever the characteristic function q is positive.
A, B, C, D, X and Y are functions in the Function object’s function space, y and
d are in the FunctionOnBoundary object’s function space and ycontact and dcontact

are in the FunctionOnContact object’s function space. The functions r and q are
in the Solution object’s function space. When the solution of a PDE is requested,
escript passes the PDE to the solver library which is typically implemented in
C/C++. As explained above the solver library is defined by the Domain of the
PDE. The returned solution belongs to the Solution object’s function space.

In the current version of escript, we have implemented an interface to the
FEM library finley which solves the general type of PDEs defined through the
linearPDE class, see [1]. The package finley is written in C and supports two-
and three-dimensional isoparametric, unstructured meshes. Linear or quadratic
elements can be used. It is also able to handle contact elements. It is parallelized for
ccNUMA architectures, such as the SGI Altix architecture [7], using the OpenMP
paradigm [6]. Test runs of finley and escript show good scalability with up to 200
processors on an SGI Altix 3700. For more details on the parallelization strategies
and a discussion on performance of finley we refer to [1].

5. Example 1: Lame Equation

The following example demonstrates the application of the linearPDE class to
define and solve the Lame equation, which is the basis of a large varity of models
in geoscience. A more advanced example will be discussed in the next section. We

A Programming Language for Modeling the Earth 9

also refer to [2] which discusses the implementation of a mantle convection model
with escript. This example requires the user to calculate the displacement field, u,
of a three-dimensional block of material which is fixed at its base. The surface is
loaded by a pressure, p.

The displacement is given by the equation

−σij,j = 0 (5.1)

where the stress tensor, σ, assumes the role of the flux J defined by (3.1). The
natural boundary conditions

njσij = pi (5.2)

are defined, and, on the bottom of the block, the constraint

ui = 0 (5.3)

is applied. To define the PDE, defined by equations (5.1)– (5.3), using the linearPDE
class we have to set:

Aijkl = λδijδkl + ν(δikδjl + δjkδil) yi = pi

qi =

{

1 xd−1 = 0
0 otherwise

ri = 0
(5.4)

where x = (xi) is a location within the domain.
The following escript script implements a function which returns, for given

Lame coefficients, lam and mu, and a given surface load p, the displacement field
as a solution of the PDE defined above:

def getDisplacement(domain,lam,mu,p):

d=domain.getDim()

x=domain.getX()

hook=Tensor4(0,what=Function(mydomain))

for i in range(d)

for l in range(d)

hook[i,i,l,l]+=lam

hook[i,l,i,l]+=mu

hook[i,l,l,i]+=mu

myPDE=linearPDE(domain)

myPDE.setValue(A=hook,y=p,q=whereZero(x[d-1])*numarray.ones(d))

return myPDE.getSolution()

As r is not defined, it is assumed to be zero. This script can be run with the Lame
coefficients input as single floating-point numbers or as any scalar Data objects
with an appropriate function spaces. Similarly, the surface pressure, p, could be
a vector of floating point numbers, in which case the load is acting on the entire
surface, excluding the locations where the constraints are applied. Alternatively, it
could be defined through “tagging” as described above. The getStress method,
introduced in Section 3, could be used to calculate the stress from the returned
displacement.

10 Gross, Smillie and Davies

Note that alternatively one can implement getDisplacement through the a
suitable subclass of linearPDE which specializes the general PDE.

6. Example 2: Quasi-Static Fault System Model

To illustrate the usage of escript in a more realistic scenario, we discuss the im-
plementation of a stick–slip model applied to a crustal fault system. We adopt a
quasi-static model, as proposed by [4], to calculate the displacement field, u, of
the domain of interest. To simplify the presentation, we will restrict our attention
to the two-dimensional case of a linear–elastic material. The domain of interest is
a rectangle which is fixed at the bottom while being both compressed and sheared
at the top. There is no restriction on the fault system, nor on the structure of the
mesh used for the dicretization.

At any time the displacement has to fulfill the equations (5.1), with a natural
boundary similar to (5.2), and constraints (5.3). At the fault Γcontact the contact
condition

fi = σ0
ijnj = σ1

ijnj (6.1)

must hold at all times. The normal contact stress fi is decomposed in its normal
component fn and its tangential component fτ :

fi = fnni + fττi (6.2)

where τ = (−n1, n2) denotes the tangential vector on the fault.
The sides facing the fault may not penetrate, i.e. the normal component, [u]n,

of the jump, [u], across the fault is non negative:

[u]n := [u]ini ≥ 0. (6.3)

The normal contact stress, fn, is chosen to work against penetration by setting

fn = min(En[u]n, 0) (6.4)

where En is a penalty parameter.
In the tangential direction a stick-slip friction model is used. The contact

stress has to meet the yield condition

Φ := |fτ | − µd|fn| ≤ 0 (6.5)

where µd is the dynamic friction coefficient yet to be defined. In the following,
tevent is the time when the fault changes from the stick state (Φ < 0) to the slip
state (Φ = 0) or from the slip state to the stick state. Note that tevent is a function
of its position on the fault. The tangential dislocation, [u]τ , and the slip, s, after
an event are defined by

[u]τ := [u]iτi and s = [u]τ − [u]τ (tevent) . (6.6)

For the stick state (Φ < 0), we set

fτ = felast
τ = Eτs + fτ (tevent) (6.7)

A Programming Language for Modeling the Earth 11

where Eτ is a positive constant. This condition forces the fault to maintain its
tangential dislocation at the value [u]τ (tevent) after changing from slip to stick.
For the slip state (Φ = 0), we set

fτ = sgn(f elast
τ)µdfn (6.8)

where sgn(s) denotes the sign of argument s. Combining conditions (6.7), (6.8)
and (6.5) we obtain

fτ = sign(f elast
τ) · max(|felast

τ |, µdfn) . (6.9)

To define the dynamic friction coefficient µd, we use a slip weakening frictional
relation

µd = µ0 + (µs − µ0)

(

1 −
max(|s|, Dc)

Dc

)

(6.10)

where µ0 the minimum dynamic friction, µs the static friction coefficient and Dc is
the critical slip distance. In more realistic models, slip weakening given by (6.10)
has to be combined with slip-rate weakening, see [3], which is ignored here to
simplify the presentation.

To calculate the displacement field, u(n), of the material at time t(n) we use
the incremental approach

u(n) = u(n−1) + h(n)u̇(n) (6.11)

where u(n−1) is the displacement field at time t(n−1), h(n) = t(n) − t(n−1) is the
step size and u̇(n) is the velocity field. The step size is chosen to be sufficiently

small. For instance, one can choose h(n) such that the relative size h(n) ‖u̇(n)‖
‖u(n−1)‖

of

the displacement increment stays below a given tolerance. We need to formulate
a PDE to calculate the velocity u̇(n). In the following the upper index (n) refers
to values at time t(n).

By changing to rates one can immediately derive a PDE for the u̇(n):

−σ̇ij,j = 0 with σ̇ij = λu̇k,kδij + µ(u̇i,j + u̇j,i) (6.12)

with the natural boundary conditions

σ̇ijnj = pi (6.13)

and constraint

u̇i = 0 (6.14)

The given pressure function, p, specifies the normal stress rate on the surface.
Along the fault, from (6.2) we obtain

ḟ
(n)
i = ḟ (n)

n ni + ḟ (n)
τ τi (6.15)

with

ḟ (n)
n = G(n−1)[u̇(n)]n with G(n−1) =

{

En , [u(n−1)]n ≤ 0 ,
0 , otherwise .

(6.16)

12 Gross, Smillie and Davies

In the stick state it is

ḟ (n)
τ = Eτ [u̇(n)]τ (6.17)

and for the slip state with µ
(n−1)
d ≈ µ

(n)
d and f (n−1) ≈ f (n) we obtain

ḟ (n)
τ = sgn(f el(n−1)

τ f (n−1)
n)

[

µ
(n−1)
d ḟ (n)

n + f (n−1)
n µ̇

(n)
d

]

(6.18)

where

µ̇
(n)
d = K(n−1)[u̇(n)]τ , K(n−1) =

{

−sgn(s(n−1))µs−µ0

Dc

, |s(n−1)| < Dc ,

0 , otherwise.
(6.19)

Combining equations (6.16), (6.17), (6.18) and (6.19) the contact condition on the
fault is

ḟ
(n)
i = (G(n−1)njni + H(n−1)njτi + J (n−1)τjτi)[u̇

(n)
j] (6.20)

with H(n−1) = 0 and J (n−1) = Eτ in the stick state and

H(n−1) = sgn(f el(n−1)
τ f (n−1)

n)µ
(n−1)
d G(n−1) (6.21)

J (n−1) = sgn(f el(n−1)
τ)|f (n−1)

n |K(n−1) (6.22)

in the slip state.
Equation (5.1) with boundary conditions (5.2) and contact condition (6.20)

forms a PDE for the increment u̇(n), in a similar manner to way in which the
problem of section 5 was treated, except for the fact that now a contact condition
has to be included. In addition to equation (5.4) we need to set:

dcontact
ij = G(n−1)njni + H(n−1)njτi + J (n−1)τjτi (6.23)

The following escript script implements the quasi-static algorithm where some
variable initializations have been omitted for brevity:

hook=Tensor4(0,what=Function(dom))

for i in range(dom.getDim()):

for l in range(dom.getDim()):

hook[i,i,l,l]+=lame_lambda

hook[i,l,i,l]+=lame_mu

hook[i,l,l,i]+=lame_mu

pde=LinearPDE(dom)

pde.setValue(A=hook,y=p,q=whereZero(x[d-1])*numarray.ones(d))

side0=FunctionOnContactOne(dom)

side1=FunctionOnContactZero(dom)

n=side0.getNormal()

tau=matrixmult([[0,-1],[1,0]],n)

while t<t_end:

j=u.interpolate(side1)-u.interpolate(side0)

j_tau,j_n=inner(j,tau),inner(j,n)

s=j_tau-j_tau_ev

mu_d=mu_0+(mu_s-mu_0)*(1-minimum(abs(s),D_c)/D_c)

A Programming Language for Modeling the Earth 13

f_tau_el=E_tau*s+f_tau_ev

f_n=minimum(E_n*j_n,0)

f_tau=sign(f_tau_el)*minimum(abs(f_tau_el),mu_d*abs(f_n))

stck,stck_old=whereNegative(abs(f_tau)-mu_d*abs(f_n)),stck

ev=abs(stck_old-stck)

j_tau_ev=j_tau*ev+j_tau_ev*(1.-ev)

f_tau_ev=f_tau*ev+f_tau_ev*(1.-ev)

K=-sign(s)*(mu_s-mu_0)/D_c*whereNegative(abs(s)-D_c)

G=E_n*whereNonPositive(j_n)

H=sign(f_tau_el*f_n)*mu_d*G*(1-stck)

J=sign(f_tau_el)*f_n*K*(1.-stck)+E_tau*stck

pde.setValue(d_contact=G*outer(n,n)+outer(H*n+J*tau,tau))

v=pde.getSolution()

h=tol*Lsup(u)/Lsup(v)

u+=h*v

t+=h

mydomain, lam, mu, t_end, mu_0, mu_s, E_n and E_tau constitute the input for this
script. When the script is applied to real crustal fault systems, the Lame coefficients
are typically defined through a geological database and the friction coefficients are
fault dependent. With no modifications, the given script can deal with these cases
when the corresponding variables are defined as tagged Data objects.

7. Conclusions

escript is a high–level language to implement mathematical models and solution
algorithms. It hides the actual representation of data and the transformation be-
tween data representations from the user. This allows the development of scripts
that, without subsequent modification, can be used for different data representa-
tions and discretization methods.

Arithmetic operations and the transformations upon the representations of
Data objects are implemented in C++. As between PDE solutions operations on
Data objects are processed on data from the processor cache, sufficient performance
is achieved even if complex expressions are evaluated. Moreover, perfect scalability
on parallel architectures can be observed as operations on samples are independent.
For distributed shared memory architectures, such as the SGI Altix systems [7], the
memory manager of escript, which reallocates discarded memory, is important to
achieve good performance, mainly because the allocation of distributed arrays does
not scale well on these systems. Profiling of simulations implemented in escript

have shown that the compute time is predominantly spent in the PDE solver
library, solving PDEs and calculating gradients and interpolations. Typically, the
time spend on performing arithmetic operations on Data objects stays below 10%
of the overall compute time, even if rather complex arithmetic operations have to
be executed. In fact, the fraction of time spend in escript tends to become smaller

14 Gross, Smillie and Davies

for larger meshes and more processors. We see the overhead of using a scripting
rather then compiler-based language as acceptable in particular when considering
the much higher productivity that can be achieved with a script based development
environment.

Acknowledgment

Project work is supported by Australian Commonwealth Government through
the Australian Computational Earth Systems Simulator Major National Research
Facility, Queensland State Government Smart State Research Facility Fund, The
University of Queensland and SGI.

References

[1] M. Davies, L. Gross, H.–B. Mühlhaus, Scripting High Performance Earth Systems

Simulations on the SGI Altix 3700 Proc. 7th Intl Conf. on High Performance Com-
puting and Grid in Asia Pacific Region (2004), 244–251.

[2] M. Davies, H.–B. Mühlhaus, L. Gross: Thermal Effects in the Evolutioon of Initially

Layered Mantel Material, Pure. Appl. Geophys., submitted 2004.

[3] P. Mora, D. Place, Simulation of the Frictional Stick-slip Instability, 143 (1994), 61–87.

[4] H. L. Xing, P. Mora, A. Makinouchi, Finite Element Analysis of Fault Bend Influence

on Stick-Slip Instability along an Intra-Plate Fault Pure Appl. Geophys. 161 (2004),
2091–2102.

[5] M. Lutz, Programming Python, 2nd Edition O’Reilly (2001).

[6] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon, Parallel

Programming in OpenMP, Academic Press (2001).

[7] M. Woodacre, D. Robb, D. Roe, K. Feind, The SGI Altix 3000 Global Shared-Memory

Architecture., Silicon Graphics (2003).

[8] D. J. Higham, N. J. Higham, MATLAB Guide., SIAM (2000).

[9] J. R. Rice, R .F. Boisvert, Solving Elliptic Problems Using ELLPACK. Springer Series
in Computational Software 2 (1985).

[10] L. Gross, VECFEM- The Solver for Non-linear Partial Differential Equations in
E. N. Houstis, E. Gallopoulos, J.R. Rice, R. Bramley: Enabling Technologies for Com-

putational Science Kluwer Academic Publishers (2000).

[11] X.–L. Luo, A. N. Stokes, N. G. Barton, Turbulent flow around a car body - report of

Fastflo solutions Proc. WUA-CFD Conference, Freiburg (1996).

[12] P. Pacheco, Parallel Programming with MPI., Morgan-Kaufmann (1997).

[13] P. Greenfield, J. T. Miller, J. Hsu, R. L. White. An Array Module for Python. in
Astronomical Data Analysis Software and Systems XI (2001).

[14] The Kitware, Inc.: Visualization Toolkit User’s Guide. Kitware, Inc publishers.

A Programming Language for Modeling the Earth 15

Lutz Gross
Earth Systems Science Computational Center
The University of Queensland
St. Lucia., QLD 4072
Australia
e-mail: gross@esscc.uq.edu.au

Jonathan Smillie
Earth Systems Science Computational Center
The University of Queensland
St. Lucia., QLD 4072
Australia
e-mail: jgs@esscc.uq.edu.au

Matt Davies
Earth Systems Science Computational Center
The University of Queensland
St. Lucia., QLD 4072
Australia
e-mail: matt@esscc.uq.edu.au

16 Gross, Smillie and Davies

Figure 1. Dependency of Function Spaces. An arrow indicates
that a function in the function space at the starting point can be
interpreted as a function in the function space of the arrow target.

Figure 2. Element Tagging. A rectangular mesh over a region
with two rock types white and grey. The number in each cell refers
to the major rock type present in the cell (1 for white and 2 for
grey).

