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Abstract

In this paper we present an image stitching method based
on dynamic programming and describe its application to
automated slide acquisition for Virtual Microscopy (VM).
Given a large number of fields of view (FOVs) acquired from
a single microscope slide, we composite these images into a
single large ‘virtual slide’ image. The location of each FOV
is determined using a new algorithm based on dynamic pro-
gramming. We compare the performance of the proposed
algorithm to an existing greedy algorithm. In a visual trial
it is shown that the new algorithm provides a significant im-
provement in perceived image quality at image boundaries
compared to the existing algorithm.

1 Introduction

The aim of Virtual Microscopy (VM) is to replace tra-
ditional light microscopes by personal computers in some
scenarios. In VM the microscope slide is automatically
scanned once and then stored in digital form on a central
server. Following this, the slide may be browsed on any per-
sonal computer as though it were physically present. Vir-
tual Microscopy has several benefits over traditional light
microscopy: a virtual slide can be browsed remotely; speci-
mens do not degrade over time; and slides cannot be broken
or lost (they can even be backed up!). In addition to these
direct benefits, the widespread acceptance of VM will lead
to large digital slide databases for the development of image
analysis techniques and also open up a range of applications
such as online learing and quality assurance.

One of the central problems of automated VM is the im-
age acquisition stage. Slides are simply too large to be ac-
quired as a single image, so instead it is necessary to capture
many fields of view (FOVs) before combining these into a
single slide image. Automated microscope stages are used
to browse and align these fields of view — unavoidably
however these stages include some positioning errors. If

left uncorrected these errors lead to large artifacts in the as-
sembled virtual slide. In this paper we present a new image
stitching method for Virtual Microscopy based on dyamic
programming.

1.1 Image stitching

Szeliski presents an authoritative survey of image stitch-
ing (also known as mosaicing) in [14]. The major focus in
image mosaicing is the reconstruction of 3D scenes from
many viewpoints, beginning with the simple case of pla-
nar surfaces imaged from several viewpoints and working
toward stereo matching and more general multiple-view re-
construction. As a result this research has focussed mainly
on the estimation of rotation, affine and projective transfor-
mations using sparse feature-matching methods.

Levin et al. [9] investigated the minimisation of gradi-
ents across a stitching border to best stitch panoramic im-
ages. Panoramic image stitching is similar to the planar im-
age stitching problem considered in this paper. However
the focus of their work is on the best combination of two
images at their borders by appropriate blending. This step
comes after the images have already been aligned using an-
other algorithm.

Duffin and Barrett [5] present a method to simultane-
ously align a large set of images by solving for the parame-
ters of their projective tranformations. The solution is based
on the Levenberg-Marquardt local minimisation technique.
As a result a large overlap ( ) is required between
neighbouring images in order to obtain robust solutions.

The focus in this paper is on image stitching under an
unknown set of translations. The translations form a highly
constrained class of transformations (having only two pa-
rameters) and so we may consider specialised methods
which would be inapplicable for the high-parameter trans-
formations encountered in other image stitching or mosaic-
ing applications.
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2 Image stitching for virtual microscopy

2.1 Image acquisition

The slide scanning system consists of an AcCell 2000
(AccuMed International, Chicago) automated microscope,
which includes an Olympus BX51 microscope plus an au-
tomated slide positioning stage. For colour imaging a
high-resolution camera (Diagnostic Instruments, Sterling
Heights, MI) and a light balanced daylight filter (80A) are
used. Further details may be found in [3].

For the specimens examined in this paper, an area of ap-
proximately is scanned. Slides are scanned
using a large number of fields of view — by rows from top-
to-bottom, with individual rows being scanned in a zig-zag
order (alternately left-to-right and right-to-left). Each field
of view uses a objective and produces a
image. As the camera uses CCD elements this results
in an effective pixel resolution of . Therefore each
image covers an area of , so at least 1000
fields of view are needed to scan one slide. In practice the
fields of view are selected to overlap at their borders so it
is necessary to acquire as many as 1500 fields of view. A
typical virtual slide contains over 4 giga-pixels, therefore
images are stored using the JPEG2000 image compression
standard leading to substantial space savings [4].

In virtual microscopy a single large image, the ‘virtual
slide’, is constructed from many small fields of view. The
aim of image stitching is to perform this tiling so as to min-
imise visual artifacts at the image borders.

There are several sources of visual artifacts in the acqui-
sition process. During slide scanning there may be changes
in background lighting between neighbouring fields of view,
due to changes in ambient lighting or to fluctuations in the
lamp power supply. These can introduce a clearly visible
tiled effect when the virtual slide is viewed at low magnifi-
cation. In addition to lighting errors, geometric warping can
occur due to radial distortion in the camera. This warps the
individual fields of view which cannot be brought into per-
fect alignment at their borders. However these sources of
error can be ameliorated by appropriate image correction.
The dominant source of artifacts in the virtual slide is poor
alignment of the images during the stitching phase. In par-
ticular, the slide positioning stage used in this work has an
open loop controller which is only accurate to , ie.

pixels. Even a closed looped controller will typically
have (10 pixels) positioning error1. As a result the
fields of view tend to drift out of alignment as a scan pro-
ceeds. This paper addresses the problem of recovering the
unknown translation of these images.

As an example, Figure 1 depicts the result of image
stitching using an existing ‘Greedy’ method as well the

1http://autoscan.com.au

dynamic programming approach proposed in this paper.
We observe a significant horizontal discontinuity running
across the image where two fields of view have been
stitched at their borders.

2.2 Problem formulation

Let us denote the original slide image , ie. a
mapping from the discrete 2D domain to a colourspace

. The automated slide scanning process samples this im-
age into a collection of subset images where
encapsulates the column index and row index of the im-
age in the scan. The goal of an image stitching algorithm
is to invert this sampling process in order to construct an
approximation from the collection .

We have observed that the dominant source of geomet-
ric error is due to errors in translation by the automated
slide positioning stage. Therefore in order to perform image
stitching it is sufficient to estimate the positions of each
image on the slide. Given that we expect some small dis-
tortions to remain in the reconstructed image , we consider
this problem as the optimisation of a suitably designed ob-
jective function. The objective function used in this paper
has the form:

(1)

The objective function to be maximised in Equation 1
simply gives the total similarity between all neighbouring
images after their translation has been recovered. Here

denotes the set of neighbouring images from image
: above, left, right and below. denotes the simi-

larity between these two images, while and
denote the offset of image (resp. ) by the proposed
translation (resp. ).

Figure 2 gives a visual interpretation of Equation 1. Fig-
ure 2(a) depicts a typical image stitching — images are
placed in an approximate grid formation with small offsets
according to the translational errors of the automated image
acquisition system. Figure 2(b) depicts the graph of rela-
tionships between images. Images should align well (ac-
cording to the similarity functional) with their neighbours
above, below, left and right.

The similarity function used in this paper is the Zero-
mean Normalised Cross Correlation (ZNCC) function,

Here and are the two images to be compared,
represents the inner product and (resp. ) denotes the



(a)

(b)

Figure 1. An image stitching artifact. Observe the horizontal line across the middle of the image. (a)
The result of stitching using the Greedy algorithm proposed previously. (b) The result of stitching
using the Dynamic Programming algorithm proposed in this paper.

mean of (resp. ). This similarity function is the opti-
mal statistical estimator for translation under the assump-
tion of additivite white Gaussian noise (AWGN) and un-
known changes in background lighting and contrast [6]. It
may be efficiently computed over a range of translations us-
ing the FFT [10].

3 Method

Two methods for image stitching are considered in this
section. The first of these, the ‘Greedy’ method, estimates
the location of each image in turn. The second method,
the ‘DP’ method, estimates the location of an entire row of
images simultaneously using a dynamic programming algo-
rithm. Figure 3 depicts the two different schemes for stitch-
ing images. The Greedy method has been presented in [3]
and is included here solely for comparison.

3.1 Greedy matching

In the ‘Greedy’ method we place each image in turn in
raster scan order. Consider the placement of image with

, after having already placed all previous images
with or . Then we may

simply select the location of image so as to maximise
the objective in Equation 1:

(2)

where denotes only those neighbouring images which
have been placed previously (ie. the image above and the
image to the left). In other words we place the current image
simply to best match the neighbouring images which have
already been placed, without regard to those images which
have yet to be placed. A weighted variant of this method is
presented in [3].



(a)

(b)

Figure 2. The image stitching model. (a)
Images corresponding to fields of view are
stitched into a large image of the entire slide.
(b) The stitching grid. Points correspond to
images while lines relate neighbouring im-
ages.

3.2 Matching by dynamic programming

Whereas the Greedy matching method optimised the
placement of a single field of view, here we present a
method to optimise the placement of an entire row of im-
ages simultaneously. Consider the placement of the row
of images after having already placed all previous im-
ages with . Then we would like to select the
locations of these images so as to maximise the ob-
jective :

(3)

(a)

(b)

Figure 3. (a) Greedy image stitching places a
single image at a time. (b) DP-based image
stitching places a whole row of images simul-
taneously. Solid rectangles denote images
placed beforehand, while dashed rectangles
denote images being placed by an iteration of
the method.

Here we decompose the sum into two components: the
terms contributed by the prior placement of the row above,
and the terms contributed by the relative placement of im-
ages within the current row. For clarity of expression here
we have ignored boundary terms (ie. we ignore the fact that
there is no ‘left’ image for the left-most image in this sum).

The optimisation problem posed by Equation 1 involves
placing all images simultaneously. Here we have con-
structed a sub-problem (3) corresponding to placing an en-
tire row of images simultaneously. This sub-problem is
amenable to a solution by Dynamic Programming. Dy-
namic Programming (DP) is a template for a broad class
of algorithms consisting of two parts [11]:

1. A recursive formulation of the problem
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Figure 4. The trellis which forms the basis for
image stitching by dynamic programming.
denotes the image index within the current
row, while denotes the position of the
image. Overlaid is a maximum path corre-
sponding to the optimal set of positions for
the images in the current row.

2. A caching scheme to avoid solving the same problem
twice

For problems which may be expressed using trellises, Dy-
namic Programming is more often known as Viterbi’s algo-
rithm [15].

To maximise Equation 3 we construct a trellis. A path
through a trellis consists of a sequence of vertices connected
by edges. The score for a path is the total of the scores
for the vertices and edges along that path. The number of
columns in our trellis will be the number of images in the
row to be stitched. We equate vertices with potential posi-
tions for each field of view, so that a path through the con-
structed trellis then assigns positions to each image in the
row.

Now by assigning suitable scores to the vertices and
edges in this trellis, we may equate the score of any path
with the objective function for row-wise stitching presented
in Equation 3. In particular, the vertex scores in the trel-
lis are simply the first component in Equation 3 while the
edge scores are the second component in Equation 3. This
is a common framework within image analysis and has been
applied to stereo matching [8, 7, 12] and image segmenta-
tion [13, 1] for example. Further details of the transforma-
tion from Equation 3 to a trellis, or the consequent optimal
path extraction may be found in [8] for example.

Figure 4 depicts this trellis for a row consisting of im-
ages. A maximum path is overlaid which corresponds to the
optimal placement of images within this row.

4 Results

4.1 Example

Figure 5 depicts an example of a stitching artifact at the
vertical border between two images. Presented here are the
results from Greedy matching (a) and from DP matching
(b). In this example, the dynamic programming based al-
gorithm produces a visually superior result to the Greedy
method.

4.2 Visual trial

A visual trial was conducted so as to evaluate the results
from the proposed DP method. Results from the Greedy
method are used as a reference. The trial took the form of a
two alternative forced choice (2AFC) test in which subjects
are presented with stitching results from the same field of
view, one computed using the Greedy method and the other
using the DP method. Subjects were instructed to select
the result which is ‘visually superior’. While making their
decision they were able to toggle between the two views,
however a blank grey image is interposed for 2 seconds so
that insignificant differences are not highlighted.

Twenty-six images containing stitching artifacts were se-
lected from slide images stitched with both the Greedy and
the DP methods beforehand. These images were taken from
a collection consisting of a single cytology and three histol-
ogy slides. Images were selected independently for both
Greedy and DP. They were selected as being representative
of the worst stitching artefacts present for each method on
each slide. Six subjects were selected who had good or cor-
rected vision; three were experienced in light microscopy
and three were not. The images were presented on a stan-
dard 19 inch TFT monitor in a darkened room to optimise
viewing conditions.

Table 1 presents the results collated by subject. It lists,
for each observer, the number of preferences in favour of the
DP method and the Greedy method. We now statistically
analyse this data.

Our null hypothesis is that the two methods are indistin-
guishable, while the alternative hypothesis is that the DP
method produces visually superior results to the Greedy
method. According to the null hypothesis we expect to
make six observations of a Binomial process with 26 data
points and probability in favour of the DP method.
We recall that a Binomial process has mean and
standard deviation . Pooling the results
from the six subjects we obtain , and

. Totalling the entries from Table 1 we obtain a
score of 92:64 (DP:Greedy). Given the large ( )
number of observations, we may apply the theorem of de
Moivre-Laplace to approximate this Binomial distribution



Table 1. Two alternative forced choice — re-
sults per viewer

Viewer DP Greedy

B1 18 8
A1 17 9
A2 16 10
S1 15 11
E1 13 13
S2 13 13

Total 92 64

Table 2. Two alternative forced choice — re-
sults per image.

DP:Greedy Count

6:0 1
5:1 4
4:2 10
3:3 5
2:4 5
1:5 1
0:6 0

by a normal distribution with the same mean and variance.
Subsequently we obtain a one-sided score

, which equates to a 98.8% probability that the alternate
hypothesis should be accepted. Under the given testing con-
ditions then, we may confidently state that the DP method
produces visually superior results to the Greedy method. It
is also worth noting that results for the three observers ex-
perienced in light microscopy (B1, A1 and A2) show this
trend more strongly than for the other three observers.

Table 2 presents the results of DP vs. Greedy on the 26
independent images. Although there are only 6 observa-
tions per image, we may still analyse the resulting distribu-
tion. The null hypothesis, that there is no visible difference
between the two methods, indicates that we should expect
the results on each image to be Binomial distributed with

and . The probability of 5 or 6 viewers
voting in favour of DP is then , ie. a 90% one-
sided confidence interval requires that approximately 5 of
the 6 viewers vote in favour of DP to obtain a statistically
significant result. This is the case on 5 of the 26 images; on
only one of the 26 images does Greedy achieve this (Fig-
ure 6). Therefore it is clear that the DP method provides
an improvement over the Greedy method in the majority of
cases.

4.3 Discussion

During the course of the visual trial the subjects noted
that the major criterion for evaluating the quality of the
stitching process was the presence (or absence) of disconti-
nuities across the stitching border. This suggests that the use
of the ZNCC similarity function may be misguided; perhaps
in future work we could consider a function which more di-
rectly penalises these discontinuities.

We have presented a method to place a single image at
each step (the Greedy method) as well as a method to place
an entire row at each step (the DP method). It might seem
that we could extend the current method to simultaneously
optimise the placement of the entire image set. However
dynamic programming can only be applied to optimise 1D
sequences (such as rows or columns). In fact there is good
reason to believe that obtaining the global optimum over all
images is NP-hard [2].

We have noted that both matching methods seem to be
fairly reliable when the images overlap significantly. Cur-
rently images overlap by 45% of their width and height at
each border. However, such a large overlap necessitates a
longer scan time — more than three times greater than if
no overlap was required. In future we will be comparing
the two stitching methods on scans with significantly less
overlap. It is hoped that the DP method will be more robust
than the Greedy method which will allow us to reduce the
scanning time, which can be up to a day for a large slide at
present.

5 Conclusion

We have developed an image stitching algorithm based
on dynamic programming and compared its performance to
a simpler existing algorithm. The results demonstrate that
the proposed method produces visually superior images, re-
ducing the number and extent of stitching artifacts. Future
work will use the new method to reduce the required over-
lap between images which has the potential to vastly reduce
the slide scanning time.
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