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Abstract 
In this paper we describe an algorithm for extended depth of field (EDF) imaging based on the over-complete 
discrete wavelet transform (OCDWT). We extend previous approaches by describing a, potentially real-time, 
algorithm that produces the EDF image after a single pass through the ‘stack’ of focal plane images. In addition, 
we specifically study the effect of over-sampling on EDF reconstruction accuracy and show that a small degree 
of over-sampling considerably improves the quality of the EDF image. 
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1 Introduction 
Extended depth of field (EDF), or depth of focus, 
algorithms create a single image where all of the 
objects in that image are (apparently) in focus. These 
algorithms are used in many imaging applications, but 
are particularly useful in bright field microscopy 
where the high magnification lenses used result in an 
extremely narrow depth of field. Therefore, an image 
taken at any one focal position will only have a sub-
set of the objects in focus. 

Typically, the input to an EDF algorithm is a set (or 
‘stack’) of images taken at various focal (z) positions: 
s(x,y;z). An EDF algorithm then selects the most ‘in 
focus’ pixels from each image in the stack and creates 
a single EDF image: p(x,y). This EDF image is then 
suitable for either visual or automated analysis as a 
substitute for the 3-dimensional image stack.   

Algorithms based on the wavelet transform (WT) 
have been shown to offer promising results compared 
to methods based on more traditional focus metrics 
[7]. In their simplest form, they perform a WT on 
each image in the focal plane stack and then select the 
largest magnitude wavelet coefficient at each spatial 
location for each scale, j.  
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The inverse WT of these largest amplitude wavelet 
coefficients is then the EDF image. 
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While this simple approach is reasonably effective, it 
is common to enforce some form of spatial constraint 
on the coefficients selected, for example see [4] and 
[7], and to perform post-processing on the EDF image 
to reduce the effects of ringing and/or false colour 
artefacts [3].  

In this paper we propose an extension to this previous 
work on wavelet EDF imaging by describing an 
algorithm that: 

1. Only requires one-pass through the stack of focal 
plane images to both generate of the EDF image 
and to perform post-processing; 

2. Utilises an over-sampled wavelet transform [2], 
where the amount of over-sampling, and hence 
memory and computation load, can be traded-off 
against reconstruction accuracy; 

3. Utilises a simplified contextual constraint based 
on the maximum coefficient amplitude in a local 
neighbourhood across all three orientation sub-
bands at the same wavelet decomposition level. 

This algorithm is evaluated on a set of 100 cytological 
images where each object of interest (the cell nuclei) 
has been segmented at the ‘best’ focal plane by a 
human observer. In particular, we compare the results 
of the proposed method to those obtained using a 
complex wavelet transform [3] and clearly 
demonstrate the effect of varying the amount of over-
sampling in the wavelet decomposition. 
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2 The EDF Algorithm 

2.1 The Over-complete DWT 
The wavelet transform (WT) has been shown to be an 
invaluable tool in signal processing applications such 
as data compression and fast computations [5]. 
However, the most commonly used implementation of 
the WT, the critically sampled DWT (often attributed 
to Mallat [5]), is shift variant. Therefore, the DWT is 
not optimal for applications such as extended depth of 
field imaging because small changes in input image 
alignment can produce significant changes in the EDF 
image. Previously proposed solutions to this problem 
have been to use over-sampled decompositions, such 
as the complex WT [3], or fully sampled 
decompositions, such as the continuous WT or the à 
trous algorithm [6].  

In this paper we utilise a novel over-complete discrete 
wavelet transform (OCDWT) [2] which allows us to 
trade-off the computational efficiency and sparse 
representation inherent in the critically sampled DWT 
and the shift-invariance inherent in the fully sampled 
à trous algorithm. The OCDWT applies the Mallat 
algorithm to the first M levels of an L-level 
decomposition and then applies the à trous algorithm 
to the remaining (L – M) levels [2]. The OCDWT 
algorithm can be viewed as an initial down-sampling 
of the signal prior to a fully sampled à trous 
decomposition. Alternatively, it be seen as a 
generalisation of the DWT, that produces the 
conventional DWT when M = L and produces the 
fully sampled à trous algorithm when M = 0. 

2.2 Wavelet Coefficient Selection 
Previous wavelet EDF algorithms have demonstrated 
the need for both spatial and sub-band consistency 
checks to be performed as part of the wavelet 
coefficient selection [3]. Spatial consistency implies 
that coefficient selection should be based on a local 
neighbourhood around each wavelet coefficient, 
whilst sub-band consistency implies that coefficient 
selection should be based on all three sub-bands at 
each scale, j. Typically, spatial consistency is 
implemented by computing the variance [7], or 
maxima [4] over a 3x3 or 5x5 neighbourhood. We 
chose to select coefficients based on their magnitude, 
rather than variance, as large magnitude wavelet 
coefficients:  

• Correspond to the sharp, high-contrast features in 
the image; 

• Make the largest (energy) contribution to the 
reconstruction; 

• Require no numerical computation to find. 

In this way, we select the coefficients from plane z 
that are maximal over the neighbourhood function, nθ, 
defined as the 3x3 neighbourhood around the 
coefficient cjθ(m,n) in all (three) orientation sub-
bands, θ, at each scale, j. 
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It should be noted that this proposed coefficient 
selection criteria can be calculated in one-pass, one 
focal plane at a time, thus making it suitable for real-
time implementation. The method simply has to store 
the current maximum coefficient values, ĝjθ(n,m), and 
update this if the coefficients from the new focal 
plane, cj(n,m;z), produce a larger |nθ|. This avoids both 
the necessity of loading the complete stack of focal 
planes into memory at one time and the multi-pass 
processing implied by applying consistency checks to 
a map image of the selected z-planes (e.g., as in [7]). 
However, the proposed method is still capable of 
generating the final map image of selected z planes 
for each coefficient and this can be used for 
topological visualisation. 

2.3 Post-processing 
A limitation of the post-processing proposed in [3] is 
that it requires a second pass through the image stack 
in order to be computed. Therefore, we have 
implemented a simplified post-processing step that 
can be estimated from the focal plane images during 
wavelet coefficient selection. It requires that the 
maximum and minimum pixel values in the focal 
plane stack are calculated for each spatial location. 
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The EDF image is then processed to ensure that its 
pixel values lie within the same range as those in the 
original image stack. 
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Figure 1 Example images from test dataset. (a) Image from a single focal plane showing two objects, one in 
focus and one out of focus; (b) same as (a) but taken at a focal plane where the object on the left is in focus; (c) 

example EDF image showing both objects synthetically in focus; (d) annotation of nucleus objects superimposed 
on the EDF image of (c). 

3 Evaluation Methodology 
Extended depth of field methods have previously been 
empirically evaluated using simulated data [3] or 
micrometer test slides [7]. Our objective was to use 
biological data in an application-driven evaluation 
protocol. We compared how closely the EDF images 
replicated images of selected objects of interest 
captured at their (different) optimal focal planes. This 
has application, for example, in scene segmentation 
where it may be more efficient to perform the 
segmentation on a single (EDF) image rather than on 
a number of images from different focal planes and 
then merging results. 

3.1 Data Capture 
A set of test images was captured from a biological 
sample consisting of Papanicolaou-stained cervical 
cells, at 40x magnification. One hundred non-
overlapping fields of views (FOVs) were captured 
from a single slide. The specimen was approximately 
20µm ‘thick’ in the z-dimension. The numerical 

aperture of the microscope objective used was 0.75 
which gives a maximal depth of field of 
approximately 1µm.  Therefore, for each FOV, a stack 
of twenty planes of focus were imaged at a separation 
in the z-dimension of 1µm. 

3.2 Annotation 
For each FOV, a number of image objects were 
selected for hand annotation. For each image object, 
the optimal focal plane for that object was selected by 
eye. Each object was then delineated by hand using a 
Wacom® PL400 pen-and-tablet and custom software 
written for the task. Both the delineated contour and 
the selected plane of focus were recorded for each 
object.  

Data Consistency Check 
In order to verify that there was no systematic bias in 
the focal plane chosen for hand annotation, a simple 
consistency check was performed. For each annotated 
object, a focus measure was computed over the pixels 
corresponding to that object for all planes of focus. 



Then, for each object, the plane number with maximal 
computed focus and human selected plane were 
compared. It was found that 98.4% of objects agreed 
to within one (±1) plane of focus (Figure 2). The 
focus measure used was the mean (Beucher’s) 
gradient [1]. 
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Figure 2. Histogram showing the correlation between 
the human and computed optimal focal plane for all 

image objects in the dataset. 

3.3 Discrepancy Measure 
In order to compare the EDF schemes under test, the 
mean squared error (MSE) between the EDF images 
and the best focal plane selected by eye was computed 
for each delineated object in each FOV. This 
compares how closely the original pixel intensities of 
each dataset object are reconstructed in the EDF 
images.  

4 Results 
The proposed method was first evaluated to observe 
the effect of over-sampling. That is, by varying the 
parameter M that determines the number of levels of 
the DWT that are critically sampled. A plot of MSE 
versus M for a (L = 5) level transform is shown in 
Figure 3.  

Next, the proposed method was evaluated with 
reference to a recently reported method [3], which has 
been implemented in publicly available software, 
making direct comparison with our results possible. 
To make the comparison as fair as possible we chose 
a mother wavelet with approximately the same 
support length and regularity as the complex 
Daubechies used in [3]: a 4th order, linear phase, bi-
orthogonal spline [6]. In addition, we performed an (L 
= 7) level decomposition, the default in [3], and again 
varied the amount of over-sampling by varying the 
parameter M. 

 

012345
35

40

45

50

55

M

M
ea

n 
S

qu
ar

ed
 E

rr
or

 
Figure 3. Plot of mean squared error (MSE) versus M, 

the number of critically sampled levels in the 
OCDWT. 

Table 1 illustrates both the MSE and memory usage 
for the wavelet transform component of the various 
EDF algorithms (for an image with N pixels). 
Memory usage for the CWT is twice that of the DWT 
(which is N, [6]) as the wavelet coefficients are now 
complex-valued. For a 2-dimensional, L level, 
OCDWT, critically sampled to level M, memory 
requirements is given by [2]: 
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Table 1. Mean square error (MSE) and memory usage 
for various (L=7) level wavelet transforms. 

Method MSE Memory 
OCDWT (M = 1) 29.28 10N 
OCDWT (M = 3) 32.75 2.5N 
OCDWT (M = 5) 36.41 1.18N 
OCDWT (M = 7) 37.31 N 
CWT [3] 38.52 2N 

5 Discussion 
Figure 3 clearly shows the reduction in MSE of the 
EDF image as the amount of over-sampling in the WT 
is increased. It also illustrates that the shift variant 
nature of the (Mallat) DWT (M = L = 5) leads to poor 
MSE due to aliasing interfering with the coefficient 
selection. Although, the fully sampled à trous 
decomposition (M = 0) has the minimum MSE, the 
decreasing gradient of the graph in Figure 3 shows 
that increasing the amount of over-sampling has a 
diminishing return in terms of reducing MSE. 
Therefore, an acceptable trade-off between memory 
usage and performance is obtained around M = 2. 
These results confirm similar results already 
demonstrated in an edge detection scenario [2]. They 
also question whether the advantage of the CWT over 
the DWT is due to its complex-valued nature or the 



fact that it is over-sampled compared to the critically-
sampled DWT. 

From Table 1 it can be seen that the proposed 
algorithm produces reduced MSE, for all values of M, 
compared to the previous EDF method based on the 
CWT. Table 1 also illustrates the memory 
requirements of the WT utilised in each of the 
methods and demonstrates that the approach utilised 
in the OCDWT is effective at reducing MSE for only 
modest increases in memory requirements.   

The efficacies of the other aspects of the proposed 
method are illustrated by a significant rise in MSE 
when either no post-processing is performed (MSE 
increases by approximately 40) or when no contextual 
information is taken into account (MSE increases by 
approximately 8). These results are similar to those 
presented in [3].  

6 Conclusions 
We have proposed an algorithm for extended depth of 
field (EDF) imaging based on an over-complete 
discrete wavelet transform (OCDWT) and a novel 
sub-band neighbourhood coefficient selection 
strategy. The algorithm is efficient and potentially 
real-time as it can be implemented in one-pass, one 
focal plane at a time. The performance of the 
proposed technique was shown to be superior to a 
previously published technique on a set of 100 
manually annotated cytology images. It was also 
demonstrated that by utilising the OCDWT it is 
possible to produce significantly improved EDF 
images at an over-sampling factor of around two. 
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