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Abstract 
 

In this paper we describe two related approaches to 
estimating the sample sizes required to statistically 
compare the performance of two classifiers: acceptable 
failure rates (AFR) and the area under the receiver 
operating characteristic (ROC) curve (AUC). In 
particular, we consider rare event detection problems, 
where the prior class probabilities are highly skewed, 
and measure performance at a specific operating point 
and for the whole ROC curve. It is shown that the use of 
AUC as a performance measure is preferable to AFR as 
it requires a smaller data set to demonstrate superiority 
of one classifier over another. 
 

1. Introduction 
 

Estimating the required sample size to adequately 
train and then test pattern recognition systems is of great 
practical importance. However, this issue is not trivial for 
a particular problem a priori because of the complex 
inter-relationship of a number of domain specific 
unknowns. For example, either prior knowledge or some 
form of exploratory data analysis must be used to 
estimate the:  
• Intrinsic dimensionality of the problem, i.e., the 

number of features required to classify the data [1]; 
• Complexity of the problem, i.e., the type of decision 

boundary (classification scheme or number of free 
parameters) appropriate for this data [2]; 

• Expected performance, i.e., the level of performance 
we can hope to achieve on this data. 

More commonly perhaps, the sample size problem is 
turned on its head, when one is presented with a pre-
specified number of examples from which to design and 
evaluate a pattern recognition system. We are then faced 
with an optimization problem where we attempt to 
minimize generalization error, ε, (or some other measure 
of performance) by varying the number of features and 
the type, number, or complexity of classifier. This is 
often a computationally expensive exercise and so it may 
not be feasible to exhaustively test all of possible models 

in the solution space [2]. In this case, it is important to 
use a performance measure that is maximally sensitive to 
the differing performance of the classifiers under test. 

In this paper we investigate the sample size estimation 
problem from a practical perspective, specifically where 
the goal is to detect rare events from a large underlying 
population. In particular, we attempt to estimate the 
number of samples required to train and test a classifier 
so that we can demonstrate one of two things: 
1. That the generalization performance has not been 

obtained by a purely random labeling of the 
examples in the test set (Hypothesis: H1); and 

2. That the generalization performance obtained using 
one method (say, feature set, classifier, or parameter 
setting) is superior to another (Hypothesis: H2). 

Both of these require us to formulate a null hypothesis 
and then to specify a level of significance (confidence 
limit) with which we can either reject or not reject that 
hypothesis [3]. We have chosen a statistical significance 
of less than 0.05, i.e., 1 in 20 or better. 

The paper is organized as follows: first, we describe 
typical underlying statistics for a universal screening 
application and then utilize an acceptable failure rates 
(AFR) analysis to estimate the required sample size. 
Next, we propose the use of the Wilcoxon test to estimate 
sample size by highlighting its direct link to the area 
under the receiver operating characteristic (ROC) curve 
(AUC) [4]. We then discuss the differences between the 
two methods in terms of which method requires the 
smaller number of samples to perform a statistically 
significant comparison. 
 

2. Universal Screening 
 

In this paper we use the term “universal screening” to 
cover the broad range of medical tests that are applied 
universally to a target demographic in order to detect an 
underlying disease or abnormality. The goal of universal 
screening programs, such as those for breast cancer, 
cervical cancer, and neonatal hearing impairment, is to 
classify examples (patients) into one of two classes: 
1. Negative, that is the test is within normal limits; or 
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2. Positive, that is the test is abnormal and therefore 
requires further review. 

Cleary the vast majority of cases will be normal and 
so we can expect to observe extremely skewed prior class 
probabilities when screening the target population, e.g., 
πn = 0.95 and πp = 0.05. Note, these priors do not 
represent the underlying probabilities of the condition 
being screened for, but reflect the expected referral rates 
of a typical screening test. That is, positives will consist 
of cases showing the condition being screened for, a pre-
cursor, or an abnormality of unknown significance.  

Universal screening tests (either manual or automated) 
are never 100% accurate. That is, they have a certain 
sensitivity, Se (proportion of positive examples that 
produce a positive test result: the true positive rate, TPR) 
and specificity, Sp (proportion of negative examples that 
produce a negative test result: the true negative rate, 
TNR). Typical values for automated neonatal hearing 
screening are Se = 98% and Sp = 90% [5], and Se = 51%, 
Sp = 98% for the manual Pap smear screening [6]. 
Clearly for a specific screening test, there is a trade-off 
between Se and Sp and hence the cost-effectiveness of 
the screening program. 
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Figure 1: ROC curve and Bayes operating point of three 

classifiers to be compared. 
In this paper, we illustrate the sample size estimation 

problem using performance criteria calculated from data 
with a known Normal distribution. That is, for Normal 
class conditional probabilities we can directly relate the 
Bayes operating point, with known error probabilities, to 
a specific ROC curve, and therefore to AUC. The three 
levels of performance we wish to compare are: 
1. A random classifier with Se = 50%, Sp = 50%, and 

AUC = 50%; 
2. The target classifier with Se = 90%, Sp = 90%, and 

AUC = 96%;  

3. The improved classifier with Se = 95%, Sp = 95%, 
and AUC = 99%;  

The ROC curves and specified Bayes operating points 
for these three cases are shown in Figure 1. Here, the 
operating points (Se = Sp) of the target classifiers have 
been chosen to have a performance suitable for practical 
application in a universal screening program and AUC is 
calculated via Monte Carlo simulation.  

It should also be noted that, as with any statistical test, 
there is also an implicit assumption that the samples used 
to train and test a pattern recognition system are 
representative of the general population. If this 
assumption is true, then performance estimated on this 
data should be indicative of performance in general. 

 

3. Sample Size Estimation Methods 
 

Clearly, in any universal screening application there 
will be highly skewed prior class probabilities. In such 
cases it is not efficient to train a pattern recognition 
system using a random sample of the underlying 
population [7]. Therefore, it is common practice to enrich 
the training sample with additional positive cases, so that 
the priors are approximately equal. In the following we 
calculate sample sizes based on: 
1. The naturally occurring prior probabilities: πn = 

0.95, πp = 0.05; and 
2. Equal priors of πn = 0.5, πp = 0.5, so that number of 

negative and positive samples is equal (Cn = Cp). 
However, it should be noted that if we use ε as our 

performance measure, we will have to adjust results 
obtained with equal priors to estimate performance on the 
underlying population [7]. Alternatively, a performance 
measure such as AUC, which is independent of class 
priors, can be used [4]. 

In the following, we have not specifically taken 
advantage of the fact that when comparing classifiers, 
performance is nearly always estimated on the same 
subset of data. That is, the experimental design is often 
paired, or blocked, and is therefore more sensitive [3]. 
However, a paired comparison may not always be 
possible for universal screening, especially if it involves 
performing two separate tests on the patient. Therefore, 
the sample sizes estimated below, which do not assume 
paired data, will be conservative relative to a paired 
comparison.  In addition, it is assumed in the following 
that some form of cross-validation (say, 10-fold cross-
validation or leave-one-out) will be used for training and 
testing the system [7]. In this way, each data point is used 
as a test point for the classifier (trained on a sub-set of 
the remaining data) only once. Again, the sample sizes 
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estimated may be conservative if some form of stratified 
cross-validation or boot-strapping is used. 

 
3.1. Acceptable Failure Rates (AFR) 
 
In this section we will determine the sample size 

necessary to show that a proposed classifier has better 
performance than another, baseline classifier, in terms of 
the false negative rate (FNR). Here, FNR has been 
chosen because positive samples are naturally the most 
infrequent events and so determine the lower bound on 
the sample size. In addition, false negatives often have 
the greatest misclassification cost in a universal screening 
program and so they are of critical importance.  

To test the first hypothesis, H1, we need to compare 
the random classifier (FNR = 50%) to the target classifier 
(FNR = 10%). The (rare) events, which have a 
probability of 0.5 and 0.05 respectively, will generate a 
Binomial expectation with a mean, µ = pCp and a 
variance, σ2 = (1-p)pCp. For our purposes, there is a 
reasonably large number of samples (say, > 10), and so 
we can assume the distribution to be Normal. Therefore, 
we use the large sample z test, 

σ
µ−

= px
z . 

For H1 we wish to test the (null) hypothesis that a 
FNR of 10% was generated by a purely random labeling 
of the positive samples. At a statistical significance of 
less than 0.05, this relates to z > 1.645. Therefore, Cp = 5 
giving a sample size N = 10 assuming equal class priors, 
or N = 100 (Cp = 5, Cn = 95) assuming a prior of πp = 
0.05. 

For H2 we wish to test the hypothesis that an 
improvement in performance of reducing the FNR from 
10% to 5% was obtained by-chance. In this case, Cp = 98 
giving a sample size N = 196 assuming equal class priors, 
or N = 1960 (Cp = 98, Cn = 1862) assuming natural 
priors. Therefore, a sample size greater than or equal to 
this will allow us to determine that a classifier with a 
FNR of 10% will deliver an estimate of less than 5% with 
a by-chance probability of 0.05.  

 
3.2. The Area under the ROC Curve (AUC) 
 

A classifier effectively performs a (perhaps non-
linear) projection from the multi-dimensional feature 
space into a one-dimensional classification score. The 
classifier is trained to associate low values of the 
classification score (normally 0 or –1) with negative 
samples and high values of the classification score 
(normally +1) with positive samples. When a sample of 
unknown class is presented to the classifier the 

classification score has to be thresholded to determine 
the actual class to which the example belongs. By 
varying the decision threshold (cut point) it is possible to 
graph the variation in the probability of a false positive 
against the probability of a true positive. This type of 
graph is often referred to as a receiver operating 
characteristic (ROC) curve [8]. The area under the ROC 
curve (AUC) is a useful overall performance measure of 
classifier performance, e.g., an AUC of 1 indicates 
perfect classification, whilst an AUC of 0.5 indicates a 
classifier that randomly assigns samples to classes. It is 
known that the AUC represents the probability that a 
randomly chosen positive example is correctly rated 
(ranked) with a larger classification score than a 
randomly selected negative example, i.e., ( )np xxP >  [4]. 
Moreover, this probability of correct ranking is the same 
quantity estimated by the non-parametric Wilcoxon 
statistic, W (also often referred to as the U, or Mann-
Whitney test) [3]. Therefore, the Wilcoxon test can be 
used to test the (null) hypothesis that two samples come 
from identical populations without having to make any 
assumptions about the shape of those distributions. In 
addition, we can also calculate the standard error of W, 

( ) ( )( ) ( )( )
np

np
W CC
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If Cn and Cp are both reasonably large (say, > 8) the 
sampling distribution of W can be approximated closely 
with a Normal distribution [3]. Therefore, a large sample 
z test can again be performed. However, this time we 
have to determine the value of Cn and Cp that reduce σW 
to a level where the difference in W (mean AUC) 
becomes statistically significant.  

In order to perform equivalent tests to those 
performed in Section 3.1, hypothesis, H1, must test 
whether a classifier with an AUC of 0.96 was a by-
chance result from a random-choice classifier, with an 
AUC of 0.5. Therefore, to obtain a probability of less 
than 0.05 (z > 1.645) of accepting the null hypothesis 
with an AUC = 0.96, we require Cp = 3 giving a sample 
size N = 6 assuming equal class priors, or N = 40 (Cp = 2, 
Cn = 38) assuming a prior of πp = 0.05. 

For H2, we must test a hypothesis that is equivalent to 
the decrease in FNR from 10% to 5% (see Section 3.1). 
Therefore, H2 corresponds to a null hypothesis than an 
AUC = 0.99 was a by-chance result from a classifier with 
an AUC = 0.96. The alternate hypothesis is that an 
improved classifier with AUC = 0.99 is significantly 
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better than the target classifier with an AUC of 0.96. For 
this difference (of 0.03) to be statistically significant (z > 
1.645) we require Cp = 71 giving a sample size N = 142 
assuming equal class priors, or N = 1320 (Cp = 66, Cn = 
1254) with natural priors. These results are summarized 
in Table 1. 

Table 1: Estimated sample sizes using acceptable 
failures rates (AFR) and the Wilcoxon test (AUC) for 

equal and natural class priors. 

Method AFR 
πp = 0.5 

AFR 
πp = 0.05 

AUC 
πp = 0.5 

AUC 
πp = 0.05 

H1 sample size 10 100 6 40 
H2 sample size 196 1960 142 1320 

 
4. Discussion 
 

Clearly, to test hypothesis H1: that the performance of 
the classifier is equivalent to a random classifier; we do 
not a large amount of data using either AFR or AUC. 
This is not surprising as it would be very unlikely to 
attain the level of performance at the target operating 
point purely by-chance. However, in both cases (equal 
and natural class priors) AUC requires fewer samples to 
reject this hypothesis. 

In order to test hypothesis H2: that, at the specified 
operating point, the FNR rate has decreased from 10% to 
5% (AUC increased from 0.96 to 0.99); we require 
significantly more samples of data. In both cases (equal 
and natural class priors), AUC requires less samples than 
AFR to reject this hypothesis. This clearly illustrates that 
AUC is a more sensitive measure of performance than 
either Se or Sp and confirms previous experimental 
results [8]. In addition, it is natural to expect AUC to be 
more sensitive as it is obtained by effectively averaging a 
number of operating points (equal to the number of data 
points) and so will have a lower variance than the 
performance measured at any one operating point. 

Figure 2 shows the z values for a constant 0.05 
improvement in AUC and sensitivity for various levels of 
performance between 0.5 and 0.95. In this case, the 
sample size is fixed (N = 200) and the class priors are 
equal. It can be seen that as performance increases the 
5% improvement in performance becomes significant 
when AUC = 0.85, but the 5% change in sensitivity does 
not become significant until Se = 0.9. Therefore, with a 
sample size of 200 a change in AUC from 0.85 to 0.9 is 
statistically significantly, while a change in Se from 0.85 
to 0.9 is not. However, in this case there is no guarantee 
that a sensitivity of 0.85 lies on a ROC curve with an 
AUC of 0.85 and so these results should be taken as 
purely illustrative. 
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Figure 2: AUC and sensitivity z values, for a 5% 
improvement in AUC and Se, N = 200 (Cn = Cp ). 

5. Conclusions 
 
Enriching the data by altering the priors is an effective 

way of reducing the required sample size to train and test 
a classifier. While moderate amounts of data are required 
to test if a classifier is superior to a random classifier, 
significantly more data is required to test if two similar 
classifiers are significantly different. Use of AUC as a 
performance measure is preferable to AFR as it is 
independent of class priors and requires less data to 
demonstrate superiority of one classifier over another. 
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