MB_CNS Example Book.

Mechanical Engineering Report 2004/10
P. A. Jacobs

Centre for Hypersonics
The University of Queensland.

September 2004, Revised March 2005

Preface

MB_CNS is a collection of programs for the simulation of transient two-dimensional
(or axisymmetric) flows. It is part of the larger collection of compressible flow simulation
codes found at http://www.mech.uq.edu.au/cfcfd/. This manual is a collection of
example simulations: scripts, results and commentary. It may be convenient for new
users of the code to identify an example close to the situation that they wish to model
and then adapt the scripts for that example.

This report will be updated occasionally with new examples and commentary. As
the simulation codes are improved, we will try to maintain compatibility so that older
examples are not “broken”, however, this backward compatibility will not be guaranteed.

Contents
1 Introduction

2 Mach 1.5 flow over a 20° cone

2.1 sitfile ..o

2.2 Shell scripts L

2.3 Notes. e
3 Flow of equilibrium-air over a sphere

3.1 sitfile . ..

3.2 Shell scripts

3.3 Notes.
4 Hypersonic flow of ideal air over a blunt wedge

4.1 sitfile . .o

4.2 Shell scripts

4.3 Notes. e

5 Mach 3 flow over a sharp-nosed two-dimensional body

5.1 sitfile . . L

5.2 Shell seripts

5.3 Notes. e
6 Flow through a conical nozzle

6.1 sitfile

6.2 Shell scripts

6.3 Notes.
7 A section of an ideal compressible-flow vortex

7.1 sitfile .o

7.2 Shell seriptso

7.3 Notes. e
8 Pressure on a flat-faced cylinder

8.1 wsitfile

8.2 Shell scripts L

8.3 Notes.

12
12
15
16

18
21
23
24

26
29
30
31

32
35
37
38

40
41
43
44

1 Introduction

Setting up a simulation is mostly an exercise in writing a textual description of your

flow and its bounding geometry. This is presented to the scriptit program as a text file,

sometimes referred to as a

“sit” file or flow-specification file. Once you have prepared

your flow specification file, the simulation data is generated in a number of stages:

la Create the geometry definition with the command.

$ scriptit.tcl -f job.sit -do-mpost

Input:

Program:

Output:

job.sit

scriptit.tcl

job.p

job.bez

job.mpost

1b Check the geometry definition (visually) by using Metapost to make a viewable

postscript file containing labelled nodes, block boundary curves and blocks. Meta-

post is distributed as part of the TEX document preparation system. It is most

likely already installed on your UNIX/Linux system and there is a stand-alone bi-

nary for Win32 systems.
$ mpost job.mpost

job.mpost

mpost

job.1

2 Generate a grid and initial flow solution (at t = 0).

$ mb_prep.exe -f job

job.p

mb_prep.exe

job.g

job.bez

job.s0

3 Run the simulation code to produce flow data at subsequent times.

$ mb_cns.exe -f job

Job.p mb_cns.exe job.s

job.g job.h

job.s0

4 Extract subsets of the flow solution data for postprocessing. The specific command
for this stage depends very much on what you want to do. The flow solution data is
cell-averaged data associated with cell centres. You may extract the flow data for all
cells at a particular time using mb_post . exe and reformat it for a particular plotting
program or you may extract data along single grid lines (using mb_prof .exe) in a
form ready for display with GNU-Plot or for further calculation. See the shell scripts
in the examples for ideas on what can be done. Since the output of this stage is
always a text file, you may look at the head of the file for hints as to what data is

present.

Originally, scriptit was a C program which read your script, initialized some data
structures and wrote the parameter (job.p) and geometry definition (job.bez) files. Cur-
rently, scriptit is implemented as a TCL program (see e.g. Reference [1]) that has a
few extra procedures and your specification script is really a TCL script. It is worth the
effort to learn just enough Tcl to be dangerous. The Web site http://www.tcl.tk has a
good (short) starting guide.

After doing some initialization, scriptit(.tcl) sources your script file and assembles
the geometry and flow specification data into a form that can be given to the main
simulation codes (mb_prep.exe and mb_cns.exe). The advantage of this approach is that
you have the full capability of the Tcl interpreter available to you from within your script.
You can perform calculations so that you can parameterize your geometry, for example,
or you can use Tcl control structures to make repetitive definitions much more concise.

Additionally, you may use Tcl comments to add documentation to the script file.

The following examples should be studied in together with the HTML reference for
mb_cns programs, and scriptit in particular. These hypertext manuals can be found in
the documentation section at the URL: http://www.mech.uq.edu.au/cfcfd/.

2 Mach 1.5 flow over a 20° cone

This is a small (in both memory and run time) example that is useful for checking that
the simulation and plotting programs have been built or installed correctly. Assuming
that you have the program executable files built and accessible on your system’s search

PATH, try the following commands:

|
$ cd ~/cfcfd/code/mb_cns/examples/cone20
$./cone20_run.sh

$./cone20_plot.sh

And, within a minite or so, you should end up with a number of files with various solution
data plotted. The grid and initial solution are created and the time-evolution of the flow
field is computed for 5ms (with 1105 time steps being required). The commands invoke

the shell scripts displayed in subsection 2.2.

| — , NORTHO NORTH1
F 'E D
1
1
1
1
1
1
i
0.8 [i
1
i
|
: —
! E
| wn
' <
0.6 [' =
i BLOCK-1
=) 1
g g
¥ 4| BLOCK-0Z:
= A
1
0.4 | i
1
1
1
|
i C
1
1
1
0.2 | i
1
i
1
1
1
|
1
oL L _soutHo ;
A B
L 1 1 1 1]
0 0.2 0.4 0.6 0.8 1

Figure 1: Schematic diagram of the geometry for a cone with 20 degree half-angle. This
encapsulated postscript figure was generated from the Metapost file.

The free-stream conditions (p., = 95.84kPa, T, = 1103 K and u. = 1000m/s) are
related to the shock-over-ramp test problem in the original ICASE Report [2] and are set
to give a Mach number of 1.5. From Chart 5 in Ref. [3], the expected steady-state shock

bt

wave angle is 49° and, from Chart 6, the pressure coefficent is

Peone—sur face — Poo ~ 0.387
deo

and the dynamic pressure for the specified free stream is ¢, = %poougo ~ 151.38 kPa.

Figure 4 shows the pressure coefficient estimated as

fx _pooA

= oo A

from the simulated axial force, f,, written into the simulation log file and frontal area of
the cone, A.

cone20.gen p TITLE = ;Mach 1.5 flow over a 20 degree cone.;
x1 x2 dx 0.00e+00 1.00e+00 5.00e—01 y1 y2 dy —1.00e+00 1.00e+00 5.00e—-01
vl v2 dv 9.52e+04 1.49e+05 3.61e+03

o
©
~—
o 1.493¢+05
L 1.457¢+05
o
o
S

>3
o
10 1.060e+05
o | 1.024e+05
! 9.883¢+04

9.522¢+04
o
o
~—
| T 1
0.00 1.50 2.00

Figure 2: Pressure data for flow over a cone with 20 degree half-angle. The shock profile
is not yet straight and the pressure field near the cone surface is not conically symmetric,
although it would become more if we continued the simulation.

cone20.gen S TITLE = ;Mach 1.5 flow over a 20 degree cone.;
x1 x2 dx 0.00e+00 1.00e+00 5.00e—01 yl1 y2 dy —0.00e+00 1.00e+00 5.00e—01
vl v2 dv 3.12e—02 9.69e—01 6.25e—-02

o
<o
~ I A A Y A T
] 9.688e—01
N 9.062e—01
o]
0 |
>\ O *777777777/:
2.188e—01
1.562e—01
9.375e—-02
3.125e—-02
o e
o
o (
| T 1
0.00 0.50 1.00

X

Figure 3: Shock-sensor data for flow over a cone with 20 degree half-angle. For the
adaptive flux calculator, this sensor indicates the regions of the flow where the more

dissipative scheme should be used.

20 degree cone in Mach 1.5 flow

05 X X X X |
0.4 |
i B S ARARASEERAR
e
- ,,3;;’(*/*++
S 03¢ (ﬁ/ﬁﬁ Value from]
g] NACA 1135
: 'J Chart 6
g s‘
= 0.2 + “‘ |
|
01 |
; 10x40+30x40 N
f 20x80+60x80 -----—----
0 ! I .) : '
0 1 2 3 4 5 6

time, ms

Figure 4: Evolution of the axial (drag) force for flow over a cone with 20 degree half-angle

for two mesh resolutions.

2.1 .sit file

cone20. sit
Mach 1.5 flow over a 20 degree cone.

Set up two quadrilaterals in the (x,y)—plane be first defining

the corner nodes, then the lines between thos corners and then

the boundary elements for the blocks.

BEGIN.GEOMETRY
NODE
NODE
NODE
NODE
NODE
NODE

O A0 T
corRrr~rOO
oONO OO
— = =900
cocooNoo

©

[

[

o0

LINE ab
LINE bc
LINE af
LINE be
LINE cd
LINE fe
LINE ed

® -0 T T
Qo Qo o T

Define the boundaries.

POLYLINE north0 1 + fe
POLYLINE east0 1 + be
POLYLINE southO 1 + ab
POLYLINE west0 1 + af
POLYLINE southl 1 + bc
POLYLINE east1 1 + cd
POLYLINE northl 1 + ed

END_.GEOMETRY

BEGIN_FLOW

Gas and flow properties

GAS_TYPE perf_air_14

GASSTATE initial 5955.0 0.0 0.0 304.0 1.0
GASSTATE inflow 95.84e3 1000.0 0.0 1103.0 1.0

Set the boundary discretisation before building the blocks.
DISCRETISE north0 10 .0

DISCRETISE east0 40
DISCRETISE south0 10
DISCRETISE westO0 40
DISCRETISE northl 30
DISCRETISE southl 30
DISCRETISE eastl 40

[eNelelNoNoNo Nl
=R =NoNoNoNolo]
R =NoNoNoN o]
coocooo

Inflow and outflow boundaries.
BOUNDARYSPEC west0 SUP_IN inflow
BOUNDARYSPEC eastl EXTRAPOLATE_OUT

Define two blocks with a common boundary .

Although we have used integers in the block names,

any unique names would be fine.

Same goes for the other entities such as nodes, and boundaries.
BLOCK block —0 + north0O + east0 + southO0 + west0

BLOCK block —1 + northl + eastl 4+ southl + eastO

CONNECTBLOCKS block —0 east block —1 west

Have specified an area—orthogonality grid for block —1,

just for fun.

GRID_TYPE block —1 AO

Assign the initial gas states

FILL.BLOCK block —0 initial

FILL.BLOCK block —1 initial
END_FLOW

BEGIN_CONTROL
TITLE Mach 1.5 flow over a 20 degree cone.
CASE_ID 5
AXISYMMETRIC
VISCOUS
FLUX_CALC adaptive
MAXTIME 5.0e—3
MAXSTEP 3000
TIME_STEP 1.0e—6
DT_PLOT 1.5e-3
DTHISTORY 10.0e—5
HISTORY_CELL block —1 10 1
END_.CONTROL

Name the output files and build them.
MPOST FILE cone20.mpost

MPOST SCALES 0.12 0.12

MPOST XAXIS 0.0 1.0 0.2 —0.05

MPOST YAXIS 0.0 1.0 0.2 —0.04
BEZIER_FILE cone20.bez

PARAMFILE cone20.p

BUILD

QUIT

2.2 Shell scripts

#! /bin/sh

cone20_run.sh

exercise the Navier—Stokes solver for the Cone20 test case.
It is assumed that the path is set correctly.

Generate the Bezier , Input parameter and MetaPost files from the Script File.
The MetaPost file provides us with a graphical check on the geometry
specification and it is worth creating if metapost (mpost) is available.
if [[—f /usr/bin/tclsh]]
then
echo ”Use the new scriptit.”
scriptit.tcl —f cone20.sit —do—mpost > cone20.scriptit—log

if [[—f cone20.mpost |]
then
mpost cone20.mpost
fi
else

echo ”Use the old scriptit.”
scriptit.exe < cone20.sit > cone20.log
fi

Generate the Grid and Initial Solution Files.
mb_prep.exe —f cone20

Integrate the solution in time,
recording the axial force on the cone surface.

The following environment variables allow the shared—memory version
of the code to use one thread for each of the two blocks.

The stacksize requirements may increase as the code develops and

more elements are added to the internal data structures.

export OMPNUMTHREADS=2

export KMP_STACKSIZE=8n

time mb_cns.exe —f cone20 —force 1 2

Extract the solution data and reformat.
If no time is specified , the first solution found is output.
mb_post.exe —fp cone20.p —fg cone20.g —fs cone20.s —fo cone20 —generic

Extract the average coefficient of pressure from the axial force
records that were written to the simulation log file.
awk —f cp.awk mb_cns.log > cone20_cp.dat

echo ”At this point , we should have a new solution”
echo "Run cone20_plot.sh next”

cone20_plot .sh
Pick up the reformatted data and make plots of:

1. Shock indicator
mb_cont.exe —fi cone20.gen —fo cone20_S.ps —var 9 —ps —colour \
—xrange 0.0 1.0 0.5 —yrange —0.0 1.0 0.5 —mesh

2. Pressure.

mb_cont.exe —fi cone20.gen —fo cone20_p.ps —var 6 —ps —colour \
—mirror —xrange 0.0 1.0 0.5 —yrange —1.0 1.0 0.5

mb_cont.exe —fi cone20.gen —fo cone20.gif —var 6 —gif —colour \
—mirror —xrange 0.0 1.0 0.5 —yrange —1.0 1.0 0.5

3. The mesh alone.
mb_cont.exe —fi cone20.gen —fo cone20_mesh.ps —var 6 —ps —colour \
—xrange 0.0 1.0 0.5 —yrange —0.0 1.0 0.5 —mesh —nocontours

4. The average coefficient of pressure on the cone surface.

We assume that the high—resolution data file is also available.

gnuplot <<EOF

set term postscript eps enhanced 20

set output ”cone20_cp.ps”

set style line 1 linetype 1 linewidth 3.0

set title 720 degree cone in Mach 1.5 flow”

set xlabel ”time , ms”

set ylabel ”average C_p”

set xtic 1.0

set ytic 0.1

set yrange [0:0.5]

set key bottom right

set arrow from 5.2,0.387 to 5.8,0.387 nohead linestyle 1

set label ” Value from\nNACA 1135\nChart 6” at 5.0,0.3 right

set arrow from 5.0,0.3 to 5.5,0.387 head

plot 7 cone20_cp.dat” using 1:2 title ”710x40430x40”, \
?cone20_cp-hi—res.dat” using 1:2 title ”"20x80+60x80” with lines

EOF

2.3 Notes

e Run time is approximately 40 seconds on a personal computer with a Celeron 2.4Ghz

processor.
e This cone20.sit file should work in both the old C-scriptit and the newer Tcl-scriptit.

e The scriptit program converts all string labels to uppercase. You may specify upper
or lower case command names but be careful not to mix cases in a single name; the

command will not be found.

10

e There is a shell script (cone20mpi.sh) to run the MPI version of the simulation

code for this example.
e There is also a batch file for running the example on a MS-Windows system.

e Awk script for extracting x-force data from the simulation log file.

cp.awk

Extract the simulation times and axial force values from the log file.
The relevant lines in mb_cns.log start with the string ”XFORCE’

and are of the form:

XFORCE: t n jb ibndy fx_p fx_v [jb ibndy fx_p fx_v [jb ...]]

Present the axial force as an average coefficient of pressure to

compare with that obtained from NACA 1135.

BEGIN {
p-inf = 95.84e3; # Pa
T_inf = 1103.0; #K
u-inf = 1000.0; #m/s
R = 287; # J/kg.K
r_.base = 0.29118; # m
rho_inf = p_inf / (R % T.inf); # kg/mx%3
q-inf = 0.5 * rho_-inf % u_inf % u.inf; # Pa
A = 3.14159 % r_base x r_base; # m*xx2
print ”# time (ms) Cp”;

print ”# rho_inf= ", rho_inf, ” q_inf= ", q_inf, 7 A= "7, A
}
/XFORCE/ {
Select just the simulation time and the force on the cone surface.
t = $2; # in seconds
f = $6; +# pressure force in Newtons
The coefficient of pressure is based on the difference
between the cone surface pressure and the free—stream pressure.
Cp =(f / A— p.inf) / g-inf;
print $2%1000.0, Cp;
}

e The command: $ mb_compare.sh cone20
will compare the newly-computed solution with a reference solution stored in com-
pressed files in the ./reference subdirectory. If all is well, you should get a report
with zero differences for each of the files except the log-file. The log-file will almost

certainly contain differences with respect to run times (or wall-clock times).

11

3 Flow of equilibrium-air over a sphere

This example is a good starting-point for the modelling of hypersonic flow over blunt
bodies. It shows the use of arcs and the use of a look-up table as the equation of state for
a gas in chemical equilibrium but it remains geometrically simple by using a single-block
grid. Also, the .sit file makes use of the Tcl language to parameterize the simulation’s

specification.

0.1

0.08 |-

0.02 -

-0.06 -0.04 -0.02 0 0.02 0.04

Figure 5: Schematic diagram of the geometry for a sphere wrapped by a single-block grid.

The free-stream condition (p,, = 20kPa, T\, = 296 K, u = 4.68km/s) corresponds
to Case 3 in Ref. [4] with M. = 13.6. According to Sawada & Dendou [4], the air is
close to being in chemical equilibrium and there is a very thin boundary layer. The re-
sults show that the inviscid simulation does indeed capture some of the high-temperature
chemistry influence. Ideal stagnation temperature would be 11204 K whereas the simu-
lated temperature along the stagnation line rises to only 6081 K. Secondly, the stand-off
distance for an ideal gas is expected to be approximately 4.63 mm. In Fig. 7 the simulated
shock stand-off distance is 2.66 mm near the stagnation point. This is within 3% of the

experimental value obtained by D.Reda in Sandia’s Ballistics Range (see [4]).

3.1 .sit file

file: ss3.sit
#

Sphere in equilibrium air modelling Case 3 from

K. Sawada & E. Dendou (2001)

Validation of hypersonic chemical equilibrium flow calculations
using ballistic —range data.

12

ss3_final.gen p TITLE = ;Blunt Body ss3: R=31.8e—3, gas=LUT, p=20.0e3, v=4.68e3, T=296.0, viscous=0;
x1 x2 dx —4.00e—02 4.00e—02 2.00e—02 yl1 y2 dy 0.00e+00 8.00e—02 2.00e—02
vl v2 dv 1.72e+05 4.78e+06 3.07e+05

o
o _
e 0%
;0
S
(5000
o | A
© Wnierzzz
S W v 22222
© Yo% 222
~—
Wl ez222
— W reez2z22
S SS
- W 222222
%9022 72222 —
W2 22222
* Wt 272222 7
.S o L
. Wtz 2= Eee
S W o = Sesossy
L
S
o
N i
oL
o
o T T |
—~4.00 —-2.00 0.00 2.00 4.00
x * 10%

Figure 6: Mesh for flow over a sphere.

ss3_final.gen M TITLE = ;Blunt Body ss3: R=31.8e—3, gas=LUT, p=20.0e3, v=4.68e3, T=296.0, viscous=0;
x1 x2 dx —4.00e—02 4.00e—02 2.00e—02 yl1 y2 dy 0.00e+00 8.00e—02 2.00e—02
vl v2 dv 4.32e-01 1.32e+01 8.50e—-01

y*lol

o

o _

o

o 1.319e+01

© | 1.234e+01

o

(@]

< 4e+00

(@]

o 2.983e+00

a 2.133e+00

o 1.283e+00
4.323e—01

o

o

d T T T 1

—4.00 —2.00 0.00 2.00 4.00

x * 107

Figure 7: Mach number data for equilibrium-air flow over a sphere.

13

the body for equilibrium air,

2.56mm

Shock Waves (2001) Vol. 11, pp 43—-51

#

Experimental shock stand—off distance is 2.59mm
Sawada & Dendou CFD value:

#

This script derived from rbody, 22 —Jan—2004.

PJ

#

#

The grid is a bit wasteful because the shock lies close to
however , this grid layout

(as used in rbody) allows us to play with perfect—gas models
without hitting the inflow boundary with the shock.

The following JOB name is used to build file names at the end.

set JOB 7 ss3”

Radius of body

set R 31.8e—3;

set T_body 296.0;

set body_type ”sphere”;

Free—stream flow definition
set p-inf 20.0e3;
set T_inf 296.0;
set u_-inf 4.68e3;

m
surface T, not relevant for inviscid flow
choose between ” cylinder” and ” sphere”

Pa
degrees K
flow speed, m/s

For equilibrium chemistry , use the look—up—table.
set gas_name LUT;

set do_viscous O0; # flag for viscous/inviscid calc
set nn 60; # grid resolution , both ix and iy
set t_final [expr 10.0 * $R / Su_inf]; # allow time to settle at nose
set t_plot [expr $t_final / 1.0]; # plot only once

BEGIN.GEOMETRY
set deg2rad [expr atan2(0.0,—-1.0) / 180.0]
set alphal [expr 135.0 % $deg2rad]
set alpha2 [expr 50.8 x $deg2rad]

node a 0.0 0.0

node b [expr —1.0 = 3R] 0.0

node ¢ [expr cos($alphal) x $R]| [expr sin($alphal) x $R]
node d 0.0 $R

node e [expr cos(8%alpha2) x $R]| [expr sin(S$alpha2) x $R]
node f [expr 1.4 % $R] [expr 1.5 x$R]

node g [expr 1.5 x $R] [expr 2.5 x $R]

node h [expr 1.5 x $R] [expr 3.5 * $R]

node i [expr —1.5 % 3R] 0.0

node j [expr —1.5 x $R] [expr 1.5 * $R]

node k [expr —1.0 x $R] [expr 2.8 * $R]

east boundary
arc bc b ¢ a
arc c¢d ¢ d a
arc de d e a

north boundary (reversed)
bezier eh e f g h

south boundary
line ib i b

west boundary
bezier ih i j k h

polyline nO 1 — eh
polyline sO 1 + ib
polyline €0 3 4+ bc 4+ cd + de
polyline w0 1 + ih

END.GEOMETRY

14

BEGIN_FLOW
gas_type $gas_name
gas_state inflow $p_inf $u_inf 0.0 $T_inf 1.0
gas_state initial [expr 0.3 % $p_inf] 0.0 0.0 $T_inf 1.0

discretise n0 $nn 0 1 1.2
discretise s0 $nn 0 1 1.2
discretise e0 $nn 1 0 1.1
discretise wO $nn 1 0 1.1

boundary_spec wO sup_-in inflow
boundary_spec n0 sup-out
boundary_spec e0 fixed_-T $T_body

block block —0 + n0 + e0 + sO0 4+ w0

fill_block block -0 initial
END_FLOW

BEGIN_CONTROL
set TitleText ” Blunt Body $JOB: R=$R, gas=$gas_.name, p=$p_inf, v=8u_inf,”
append TitleText ” T=$T_inf, viscous=%$do_viscous”
title $TitleText
case_id 0
if { $do_viscous } {
viscous
viscous_delay $t_plot

if { [string equal $body_type ”sphere”] } {
axisymmetric
}

flux_calc adaptive

max-time $t_final

max_step 400000

time_step 1.0e—8

cfl 0.40

dt_plot $t_plot

history_cell block —0 $nn 1

dt_history 1.0e—6
END_CONTROL

bezier_file $JOB. bez

param_file $JOB.p

mpost_file $JOB.mpost

mpost_scales [expr 0.02 / S$R] [expr 0.02 / $R]

The following specs for the axes required a bit of fiddling

to get the desired effect.

If you change the radius, you’ll probably have to adjust them again.
mpost xaxis —0.060 0.050 0.020 —0.010

mpost yaxis 0.0 0.110 0.020 —0.060

build

quit

3.2 Shell scripts

#! /bin/sh
file: ss3_setup-lut.sh

cp “/cfcfd/code/cea_tables/cea_table_air.txt ./cea_table.txt
cea_to_binary .exe —extrapolate

mv cea_lut.dat lut.dat

echo "We should now have a Look—Up—Table for air

15

ss3_run.sh
Shell script to set up and run Sawada & Dendou’s sphere case 3.
#

For a clean start

scriptit.tcl —f ss3.sit —do—mpost > ss3.scriptit.log
mpost ss3.mpost

mb_prep.exe —f ss3

The main event
time mb_cns.exe —f ss3

[|
ss3_post .sh

#
TFINAL=67.0e—6

mb_post.exe —fp ss3.p —fg ss3.g —fs ss3.s —fo ss3_final —t $TFINAL \
—logrho —generic

mb_cont.exe —fi ss3_final.gen —fo ss3_final_mesh.ps —ps —var 6 —mesh \
—xrange —40.0e—3 40.0e—3 20.0e—3 —yrange 0.0 80.0e—3 20.0e—3

mb_cont.exe —fi ss3_final.gen —fo ss3_final_p.ps —ps —var 6 —colour \
—xrange —40.0e—3 40.0e—3 20.0e—3 —yrange 0.0 80.0e—3 20.0e—3

mb_cont.exe —fi ss3_final.gen —fo ss3_final_ T .ps —ps —var 5 —colour \
—xrange —40.0e—3 40.0e—3 20.0e—3 —yrange 0.0 80.0e—3 20.0e—3

mb_cont.exe —fi ss3_final.gen —fo ss3_final_-M .ps —ps —var 7 —colour \
—xrange —40.0e—3 40.0e—3 20.0e—3 —yrange 0.0 80.0e—3 20.0e—3

mb_cont.exe —fi ss3_final.gen —fo ss3_final_logrho.ps —ps —var 2 —colour \
—xrange —40.0e—3 40.0e—3 20.0e—3 —yrange 0.0 80.0e—3 20.0e—3

mb_prof.exe —fp ss3.p —fg ss3.g —fs ss3.s —fo ss3_stag_line.data \
—t $TFINAL —yline 0 1
awk —f locate_shock.awk ss3_stag_line.data > ss3.result

3.3 Notes

e This simulation reaches a final time of 67.95us in 5192 steps and, on a Celeron
2.4 Ghz system, this takes 7min, 53s of CPU time. This timing will be a bit
sensitive to the state of the code because the large data structures appear to be
causing a lot of cache misses. If we cut down on the amount of storage for each cell

and reduce the size of the temporary arrays, we can achieve significant reductions
in the CPU time.

e Awk script for extracting the shock location from the stagnation-line flow data.

locate_shock .awk

BEGIN {
p-old = 0.0;
x-old = —2.0; # dummy position
y-old = —2.0;
p-trigger = 2.0e6; # something midway between free stream and stagnation
shock_found = 0;

16

$1 !=7"#” { # for any non—comment line , do something

p-new = $7;

x_new = $1;

y-new = $2;

print "p_new=", p_new, ”"x_new”, x_new, "y_new” , y_new
if (p-new > p_trigger && shock_found == 0) {

shock_found = 1;
frac = (p-new — p_trigger) / (p-new — p_old);

x = x_old + frac * (x-new — x_old);
y = y-old + frac x (y_new — y_old);
print ”shock—location= ", x, y

p-old = p_new;
x-old = x_new;
y-old = y_new;

END {
if (shock_found == 0) {
print ”shock not located”;
}

print ”done.”

17

4 Hypersonic flow of ideal air over a blunt wedge

This example is a partial solution to the CFD exercise for the MECH4470 class in 2004.
Because the original specification was given in nondimensional form, an arbitrary 10 mm
nose radius has been selected for the inviscid simulation. This is also a reasonable size
for a possible wind tunnel experiment. The free-stream condition was specified as having
a Mach number of 5 and the gas was specified as ideal air. Choosing particular values
of poo = 100kPa, T, = 100K, lead to a free-stream velocity of u, = 1002m/s and a
dynamic pressure of g, = 1.75 MPa.

Figure 8: Schematic diagram of the geometry for the blunted 10 degree wedge.

The simulation is started with low-pressure conditions throughout the flow domain
and free-stream conditions applied to the inflow boundary (the west boundary of blk-1
and the north boundary of blk-1). The flow data is allowed to evolve until ¢ f;pu = 399 s,
which corresponds to a particle of the free-stream travelling 40 nose radii. The axial force
(shown in Fig.10) is seen to settle to a value of 28260 N in that time. This corresponds
to a drag coefficient of 0.666.

The surface pressure (shown normalised in Fig. 11) has been extracted from the so-
lution file by mb_prof by selecting the east-most line of cells of the first block and the
south-most line of cells of the second block. The selected data is filtered by an Awk script

to produce the normalised data (and the Newtonian reference data) as plotted.

18

1.750e+06, yd= 0.02426;

x1 x2 dx —2.00e—02 1.00e—01 2.00e—02 y1 y2 dy 0.00e+00 1.00e—01 2.00e—02

vl v2 dv 1.00e+03 1.00e+03 0.00e+00

;Blunt Wedge Rn=10.0e—3, g_inf=

bw_0.gen p TITLE

021

00T

080 090
10T & &

0v0

020

000

1.00

0.80

0.20

—-0.20 0.00

Figure 9: Mesh for the blunt wedge exercise.

Blunted wedge: x-force history

total ——
cylinder
wedge

~

N,

VAN

35000

30000 r

20000 r
15000

N ‘9210}-X

10000

5000

100 150 200 250 300 350 400
t, microseconds

50

Figure 10: History of the axial forces for the blunt-wedge exercise.

19

bw_399.gen

Blunted wedge: surface pressure coefficient.

2 T T T T T . . .
CFD at t=399us
E Modified Newtonian --—-—----
g
£ 15t |
ol
e
(@]
2
[<8]
o
@)
(3]
s 057¢ |
[%)]
0
g
o
O 1 1 1 1 1 | 1 . ;

Figure 11: Surface pressure coefficient data for the blunt-wedge

M TITLE = ;Blunt Wedge Rn=10.0e-3, g_inf= 1.750e+06, yd= 0.02426;

x1 x2 dx —2.00e—02 1.00e—01 2.00e—02 y1 y2 dy 0.00e+00 1.00e—01 2.00e—02
vl v2 dv 0.00e+00 5.00e+00 2.00e-01

y*]Ol

0.60

1.00 1.20

0.80

0.20 0.40

0.00

5.000e+00
4.667e+00

1.000e+00
6.667e—01
3.333e-01
0.000e+00

-0.20 0.00 0.20 0.40

10

exercise.

Figure 12: Mach number data for the blunt-wedge exercise.

20

4.1 .sit file

bw. sit
MECH4470/CFD Exercise: Hypersonic flow over a blunt wedge.
PJ, 06 —Oct—04

Geometry

set Rn 10.0e —3; # radius of cylindrical nose
set xEnd [expr 8.0 % $Rn]; # downstream extent of wedge
set alpha [to_radians 10.0]; # angle of wedge wrt free stream
set delta 10.0e—3; # offset for inflow boundary
Free stream

set g_gas 1.4; # Ideal Air

set R_gas 287.0;

set M_inf 5.0; # Specified Mach number

set p-inf 100.0e3; # Select a static pressure
set T_inf 100.0; # and a temperature

We need to determine velocity.

set a_inf [expr sqrt($T.inf * $R_gas * $g_gas)]; # sound speed
set u-inf [expr $M._inf * $a_inf]; # velocity

Also, handy to know dynamic pressure for nondimensionalization
of the pressures and drag forces.

set g-inf [expr 0.5 * $g_gas * $p_inf x $M_inf * $M_inf]

puts 7 Free—stream velocity , u-inf= $u_inf”

puts 7 static pressure, p_inf= $p_inf”

puts ” dynamic pressure, q-inf= $q_-inf”

For transient simulation , we start with a low pressure.
set p-init 1000.0;

set T_init 100.0;

BEGIN.GEOMETRY
First , specify surface of cylinder and wedge
node a 0.0 0.0; # Centre of curvature for nose
set xb [expr —1.0 % $Rn]
node b $xb 0.0
set xc [expr —1.0 x $Rn * sin($alpha)]
set yc [expr $Rn x cos($alpha)]
node ¢ $xc $yc
arc bc b c a
Down—stream end of wedge
set yd [expr 8yc 4+ ($xEnd — $xc) * tan($alpha)]
node d $xEnd $yd
puts ” height at end of plate yd= $yd”
line c¢d ¢ d

Outer—edge of flow domain has to contain the shock layer
Allow sufficient for shock stand—off at the stagnation line.
set R2 [expr $Rn + $delta]

set xe [expr —1.0 x $R2]

node e $xe 0.0

The shock angle for a 10 degree ramp with sharp leading edge
is 20 degrees (read from NACA 1135, chart 2),

however , the blunt nose displaces the shock a long way out
so we allow some more space.

We need to set the boundary high enough to avoid the shock
set R3 [expr $Rn + 2.0 * $delta]

set xf [expr —1.0 x $R3 * sin($alpha)]

set yf [expr $R3 % cos($alpha)]

node f $xf $yf

Now, put in intermediate control points so that we can use
cubic Bezier curve for the inflow boundary around the nose
and a straight line downstream of point f.

node el $xe $delta

set alpha2 [to_radians 40.0]

set xfl [expr $xf — $delta * cos(S$alpha2)]

set yfl [expr $yf — $delta * sin(S$alpha2)]

node f1 $xfl $yfl

21

bezier ef e el f1 f

set yg [expr $yf + ($xEnd — $xf) x tan($alpha2)]
node g $xEnd S$yg

line fg f g

Define straight—line segments between surface
and outer boundary.

line eb e b

line fc f ¢

line dg d g

Assemble the curve segments into polylines
that will become the block boundaries.

polyline nOwl 1 + fc
polyline sO 1 4+ eb
polyline €0 1 + bc
polyline w0 1 4+ ef
polyline nl 1 + fg
polyline el 1 + dg
polyline sl 1+ cd

END_GEOMETRY

BEGIN_FLOW

gas_-type PERF_AIR-14

gas_state inflow $p_inf $u_inf 0.0 $T_inf 1.0
gas_state initial $p_init 0.0 0.0 $T_.init 1.0
set nnx0 40

set betal 1.2

set nnyO 40

discretise nOwl $nnx0 0 1 $betal
discretise s0 $nnx0 0 1 $betald
discretise e0 $nny0 0 0 0.0
discretise w0 $nny0 0 0 0.0

set nnxl 100

set nnyl $nnx0; # connecting a north edge to a west edge
set betal 1.2

discretise nl $nnx1l 1 0 $betal

discretise sl $nnx1 1 0 $betal

discretise el $nnyl 0 0 0.0

boundary_spec wO sup_-in inflow
boundary_spec nl sup-in inflow
boundary_spec el extrapolate_out

block blk -0 + nOwl + €0 + s0 + w0
block blk—1 + nl + el + sl — nOwl

connect _blocks blk —0 north blk —1 west

fill_block blk—0 initial
fill_block blk—1 initial
END_FLOW

BEGIN_CONTROL

set title_string ” Blunt Wedge Rn=3Rn, ”

append title_string ” q-inf=[format ”%12.3e” $q-inf], ”

append title_string ”yd=[format "%10.5f” $yd]”

title $title_string

case_id 0

flux_calc adaptive

set t_final [expr 40.0 * $Rn / $u_inf]

puts ” Final time= $t_final”

max-time $t_final

max_step 500000

time_step 1.0e—8

dt_plot $t_final

history_cell blk—0 $nnx0 1

dt_history [expr $t_final / 100.0]
END_CONTROL

22

bezier_file bw.bez

param_file
mpost_file
mpost_scales

build

quit

bw.p
bw . mpost
1.5 1.5

4.2 Shell scripts

bw_prep.sh

#

scriptit.tcl —f bw.sit —do—mpost > bw.scriptit.log
mpost bw.mpost
mb_prep.exe —f bw

mb_post.exe —fp bw.p —fg bw.g —fs bw.sO0 —fo bw_0 —generic

XMIN=-20.0e—3
XMAX=100.0e—3
YMIN=0.0
YMAX=100.0e—3
TIC=20.0e—3
mb_cont.exe —fi bw_0.gen —fo bw_O_mesh.ps —ps —var 6 —mesh \

—Xxrange

$XMIN $XMAX $TIC —yrange $YMIN $YMAX $TIC

bw_run.sh

#

time mb_cns.exe —f bw —force 0 1 —force 1 2
mv mb_cns.log bw.mb_cns. log

echo

” Done”

bw_post .sh

TIMES="399”
XMIN=-20.0e—3
XMAX=100.0e—3
YMIN=0.0
YMAX=100.0e—3
TIC=20.0e—3

for TME in $TIMES

do

done

mb_post . exe

mb_cont . exe
—xrange
mb_cont . exe
—levels
—xrange
mb_cont . exe
—levels
—xrange

—fp bw.p —fg bw.g —fs bw.s —fo bw3TME —t $TME.Oe—6 —generic

—fi bw$TME.gen —fo bw_"$TME” _p.ps —ps —var 6 —colour \
$XMIN $XMAX $TIC —yrange $YMIN $YMAX $TIC

—fi bw3TME.gen —fo bw_”$TME” M.ps —ps —var 7 —colour \

0.0 5.0.0 0.2 \

$XMIN $XMAX $TIC —yrange $YMIN $YMAX $TIC

—fi bw$TME.gen —fo bw_"$TME” _sonic.ps —ps —var 7 —colour \
0.0 1.0 0.2 \

$XMIN $XMAX $TIC —yrange $YMIN $YMAX $TIC

23

[
bw_force.sh

Plot the surface pressure on the wedge
TME=399
NX=40
mb_prof.exe —fp bw.p —fg bw.g —fs bw.s —fo bw_surface.dat \
—t $TME.Oe—6 —xline 0 $NX —yline 1 1
awk —f surface_pressure.awk bw_surface.dat > bw_surface_p_coeff.dat

gnuplot <<EOF

set term postscript eps 20

set output " bw_surface_pressure.eps”

set title ” Blunted wedge: surface pressure coefficient.”

set xlabel ”s/Rn”

set ylabel ” Pressure Coefficient , (p — p-inf)/q-inf”

set yrange [0.0:2.0]

plot ” bw_surface_p_coeff.dat” using 1:2 title "CFD at t=399us” with lines, \
?bw_surface_p_coeff.dat” using 1:3 title ” Modified Newtonian” with lines

EOF

Plot the axial force coefficient.
awk —f xforce.awk bw.mb_cns.log > bw_xforce.dat

gnuplot <<EOF

set term postscript eps 20

set output " bw_xforce.eps”

set title ” Blunted wedge: x—force history”

set xlabel ”t, microseconds”

set ylabel "x—force , N”

set yrange [0:35000]

set key top left

plot ” bw_xforce.dat” using 1:2 title ”total” with lines, \
?bw_xforce.dat” using 1:3 title ”cylinder” with lines, \
?bw_xforce.dat” using 1:4 title ”wedge” with lines

EOF

4.3 Notes

e This simulation reaches a final time of 399 us in 5223 steps and, on a Celeron 2.4 Ghz
system, this takes 10 min, 11s of CPU time.

e Selection of the mb_cns.log file showing some x-force data as written during the
simulation. See the function print_forces() in cns_xforce.c for details of the
format.

Step= 420 t= 2.378e-05 dt= 5.958e-08 WC=50.0 WCtFT=749.9 WCtMS=59473.8

CFL_min = 1.645476e-03, CFL_max = 4.949394e-01, dt_allow = 5.957893e-08

Smallest CFL_max so far = 3.381198e-02 at t = 1.000000e-07

dt [0]=5.957893e-08 dt[1]=7.096680e-08

There are 2 active blocks.

Global Residual (for demnsity) = 1.252045e-01

XFORCE: 2.396144e-05 2 0 1 2.372006e+04 0.000000e+00 1 2 7.255583e+02 0.000000e+00

o Awk filter for extracting the x-force data from the simulation log file.

xforce .awk
Extract the simulation times and axial force values from the log file.

BEGIN {
print ”"# time (microseconds) x—force—total only—cylinder only—wedge”;

24

}

/XFORCE/ {
Select just the simulation time and the pressure forces.
t = $2; # in seconds
fx_p-0 = $6; # force on cylinder in Newtons
fx_p-1 = $10; # wedge surface
print $2x1.0e6, fx_p_-0 + fx_p-1, fx_p_-0, fx_p_-1;

e Awk filter for normalising the surface pressure data.

surface_pressure .awk
Normalise the surface pressure with free—stream dynamic pressure and
compute the distance around from the stagnation point.

BEGIN {
q-inf = 1.750¢€6; # free—stream dynamic pressure
p-inf = 100.0e3; # free—stream static pressure
Rn = 10.0e—3; # nose radius
xold = —Rn; # location of the stagnation point
yold = 0.0;
s = 0.0; # distance around from stagnation point
count = 0

pi = 3.1415927;

cone_angle = 10.0/180.0 * pi;

print "# s/Rn Cp(CFD) Cp(Newton) x(m) y(m)”;
}

$1 1= "4 {
count += 1;
x = $1; # cell —centre position
y = 82;
p = $7; # cell —centre pressure
if (count == 1) p_pitot = p; # Close enough to the stagnation point.
dx = x — xold;

dy =y — yold;

s += sqrt(dx * dx + dy * dy);

Estimate Cp using Modified Newtonian Model.

theta = 0.5 * pi — (s/Rn); # local angle of surface

if (theta < cone_angle) theta = cone_angle;

Cp-MN = (p-pitot — p-inf) / q-inf % sin(theta) x sin(theta);
print s/Rn, (p — p-inf)/q-inf, Cp.MN, x, y;

xold = x;

yold = y;

25

5 Mach 3 flow over a sharp-nosed two-dimensional
body

The specifications for this example come from section 5.2 in JD Anderson’s Hypersonics
book [5]. It shows the use of a spline curve as well as being a source of test data for the

Method-of-Characteristics for rotational flow. Data for the spline points was computed

from)
Y _0.008333 + 0.609425 <3> — 0.092593 <3>
ye ye ye
where y. = 1.0.
NORTHO NORTH1
F B D
I
I
I
I
]
]
|
| :
g . S: RIGHT'BLOCK 23
LEF|T'BEOCK =
=
]
I
|
]
| SOUTHI1
| B1
| B2 B3 ¢
SOUTHYAG,
A B

Figure 13: Schematic diagram of the geometry for the sharp body.

The surface pressure (shown in Fig. 15) has been extracted from the solution file
by mb_prof by selecting the south-most line of cells of both blocks. The pressure field
(Fig. 16) shows the curved shock clearly.

26

Y
6.00
|

Pressure, Pa

sharp_0.gen p TITLE = ;Mach 3.0 flow over a sharp 2D body.;
x1 x2 dx —2.00e+00 1.00e+01 2.00e+00 y1 y2 dy 0.00e+00 8.00e+00 2.00e+00
vl v2 dv 5.96e+03 5.96e+03 0.00e+00

10.00 12.00

8.00

4.00

2.00

0.00

—-=2.00 0.00

Figure 14:

Mesh for the sharp body exercise.

Sharp 2D Body in Mach 3 Freestream

800000

700000

600000

500000

400000

300000

200000

100000

"sr']arp_surfacé.dat" using 1.7 ——

0

Figure 15: Pressure data along the body surface.

27

10

sharp.gen p TITLE = ;Mach 3.0 flow over a sharp 2D body,;
x1 x2 dx —2.00e+00 1.00e+01 2.00e+00 yl1 y2 dy 0.00e+00 8.00e+00 2.00e+00
vl v2 dv 1.15e+05 6.92e+05 3.84e+04

o
S
VI
~
o
S
o
— 6.915e+05

6.531e+05

o 6.146e+05
S
©
o o -

> 9 4.225e+05
© 3.840e+05
o
S
< 2.303e+05

1.919e+05

o 1.534e+05
e 1.150e+05
o
o
S
d I I I

I'\ I 1
—-<.00 0.00 2.00 4.00 6.00 8.00 10.00
X

Figure 16: The pressure field for flow over a sharp body. Note that the shock reflects
from the upper boundary, which has a SLIP_WALL boundary condition by default.

28

5.1 .sit file

sharp. sit
Mach 3.0 flow over a curved 2D-planar body.

Set up two blocks, one upstream of the body.

BEGIN.GEOMETRY
NODE a —1.0 0.0
NODE b 0.0 0.0
NODE bl 0.5 0.2732
NODE b2 1.5 0.6975
NODE b3 2.5 0.9365
NODE b4 3.291 1.0
NODE ¢ 10.0 1.0
NODE d 10.0 7.0
NODE e 0.0 7.0
NODE f —1.0 7.0

LINE ab a b
SPLINE bb4 4 b bl b2 b3 b4
LINE b4c b4 ¢

LINE af a f
LINE be b e
LINE cd c¢ d
LINE fe f e
LINE ed e d

Define the boundaries

POLYLINE north0 1 + fe
POLYLINE east0 1 + be
POLYLINE southO 1 + ab
POLYLINE west0 1 + af
POLYLINE southl 2 + bb4 + bdc
POLYLINE eastl 1 + cd
POLYLINE northl 1 + ed

END_.GEOMETRY

BEGIN_FLOW

Gas and flow properties
GAS_TYPE perf_air_14
GASSTATE initial 5955.0

0.0 0. 304.0
GASSTATE inflow 95.8e3 2000.0 O.

1
1103.0 1.

0 .0
0 0
Set the boundary discretisation before building the blocks
DISCRETISE north0 16 0 .0

DISCRETISE east0 60 1
DISCRETISE south0 16
DISCRETISE west0 60
DISCRETISE northl 80
DISCRETISE southl 80
DISCRETISE eastl 60

O R RO
[eNeloleNoNeNe)
O H M= O MO
SN WO w

Inflow and outflow boundaries
BOUNDARYSPEC west0 SUP_IN inflow
BOUNDARYSPEC eastl SUP.OUT

Define two blocks with a common boundary

BLOCK left_block + northO + east0 + southO + westO
BLOCK right_block + northl + eastl + southl + eastO
CONNECTBLOCKS left_block east right_-block west
GRID_-TYPE right_block AO

Assign the initial gas states

FILL.BLOCK left_block initial

FILL.BLOCK right_block initial
END_FLOW

BEGIN_CONTROL
TITLE Mach 3.0 flow over a sharp 2D body.

29

CASE_ID 0

FLUX_CALC ausmdv
MAXTIME 15.0e—3
MAXSTEP 2500
TIMESTEP 1.0e—6
END_CONTROL

Name the output files and build them.
BEZIER-FILE sharp.bez

PARAMFILE sharp.p

MPOST FILE sharp.mpost

MPOST SCALES 0.01 0.01

BUILD

QUIT

5.2 Shell scripts

#! /bin/sh
sharp_prep.sh
A sharp axisymmetric body as described in Andersons Hypersonics text.

Generate the Bezier and Input parameter files from the Script File.
scriptit.tcl —f sharp.sit —do—mpost > sharp.scriptit.log

mpost sharp.mpost

Generate the Grid and Initial Solution Files.
mb_prep.exe —f sharp

Extract the initial solution data and reformat.
mb_post.exe —fp sharp.p —fg sharp.g —fs sharp.s0 —fo sharp_0 —generic

Pick up the reformatted data and make a mesh plot.
mb_cont.exe —fi sharp_-0.gen —fo sharp_O_mesh.ps —var 6 —ps —mesh \

—mirror —xrange —2.0 10.0 2.0 —yrange 0.0 8.0 2.0

echo At this point, we should be ready to start the simulation.

[|
#! /bin/sh
sharp_run.sh

Exercise the Navier—Stokes solver for a sharp axisymmetric body.

Integrate the solution in time.
time mb_cns.exe —f sharp

echo At this point , we should have a final solution in sharp.s

#! /bin/sh
sharp_post.sh
Sharp axisymmetric body, extract data and plot it.

Extract the solution data over whole flow domain and reformat.
mb_post.exe —fp sharp.p —fg sharp.g —fs sharp.s —fo sharp —generic

Pick up the reformatted data and make a contour plot.
mb_cont.exe —fi sharp.gen —fo sharp.gif —var 6 —gif —colour —mirror \

30

—xrange —2.0 10.0 2.0 —yrange 0.0 8.0 2.0

mb_cont.exe —fi sharp.gen —fo sharp_p.ps —var 6 —ps —colour —mirror \
—xrange —2.0 10.0 2.0 —yrange 0.0 8.0 2.0

Extract surface pressure and plot.
mb_prof.exe —fp sharp.p —fg sharp.g —fs sharp.s —fo sharp_surface.dat \
—yline 0 1 —yline 11

gnuplot <<EOF

set term postscript eps 20

set output ”sharp_surface_p.eps”

set title ” Sharp 2D Body in Mach 3 Freestream”
set xlabel "x, m”

set ylabel ” Pressure, Pa”

set xrange [0.0:10.0]

set yrange [0.0:800.0e3]

plot ”sharp_surface.dat” using 1:7 with lines
EOF

echo At this point , we should have a plotted data.

5.3 Notes

e This simulation reaches a final time of 15 ms in 2021 steps and, on a Celeron 2.4 Ghz
system, this takes 3min, 40s of CPU time.

31

6 Flow through a conical nozzle

Good quality experimental data for wall pressure distribution in a conical nozzle with a
circular-arc throat profile and a is available in Ref.[6]. In the original experiment the
flow of air through the facility was allowed to reach steady state and static pressures
were measured at a large number of points along the nozzle wall. In contrast, the present
simulation is transient with just the transonic plus supersonic parts of the flow field
reaching steady state.

Figure 17 shows the outline of the simulated flow domain which is set up to approxi-
mate the largest subsonic area ratio used in the experiment. The relatively long upstream
part of the simulated tube provides the gas through an unsteady expansion from zero
speed and pressure of 500 kPa (state 4) up to a small Mach number (state 3). These state
labels refer to the those for the hypothetical shock tube problem in which state 1 is the
initial low-pressure condition, state 4 is the initial high-pressure condition, state 2 is the
post-shock condition of the low-pressure gas, and state 3 is the expanded high-pressure
gas condition. Assuming that flow in the subsonic and transonic regions of the nozzle is
steady, the expected Mach number is M3 = 0.13812 for an area ratio of Az/A, = 4.238]1.

.
B3

No

0.04)

BLKO

Wo

0.02

0 S0

-0.25 -0.2 -0.15 -0.1 -0.05

o

0.05

Figure 17: Schematic diagram of the full flow domain for the duct and conical nozzle.

Along the C'; characteristic connecting states 4 and 3, the Riemann invariant can be

written as
2a
J+ =u-+)
v—1

and so the relation between states 4 and 3 can be written as

a -1

_4 =1 + ’Y—]M3

as 2

Because the unsteady expansion is isentropic and a = /vRT', the pressure ratio can be

written as

ps3

which gives a specific pressure ratio of py/p; = 1.2102. Since the experiment used a steady

-1 2v/(v=1)
P4 [1 47 ; M3:|

expansion from a large reservoir at stagnation conditions to the equivalent of our state 3,

32

the corresponding stagnation pressure for state 3 is computed from

D3 2

— v/(v=1)
Pos [1 + 7—M?f}
which gives pg3 = 418.7kPa in the current simulation.

back 00.gen p TITLE = ;BACK ET AL NOZZLE;

x1 x2 dx —8.00e—02 8.00e—02 4.00e—-02 yl y2 dy —8.00e—02 8.00e—02 4.00e-02
vl v2 dv 1.94e+04 4.84e+05 3.10e+04

(@)
s @]
D
(@]
<
— (@]
(@]
<~
=
™S
(@]
<
T
(@]
S
C‘D T T T 1
—0.80 —0.40 0.00 0.40 0.80
x * 101

Figure 18: Mesh of lines joining the centres of every-second finite-volume cell with pressure
contours superimposed.

Figure 19 shows the pressure distribution throughout the flow domain at ¢ = 1.0 ms. A
shock, starting at the transition from circular arc to straight wall in the early supersonic

part of the nozzle, can be seen propagating toward the centreline as the flow proceeds to
the exit plane.

The flow in the nozzle is reasonably steady, as indicated by the histories shown in

Fig.20 but the unsteady expansion can be seen reflecting from the inflow boundary at
x = —0.245m in Fig.19.

33

back_10.gen p TITLE = ;BACK ET AL NOZZLE;
x1 x2 dx —2.50e—01 1.00e—01 5.00e—02 yl y2 dy —1.00e—01 1.00e—-01 5.00e—-02
vl v2 dv 2.07e+04 4.03e+05 2.55e+04

(@]
oo
(oM
(@)
©
[aV
4.034e+05
(@] 3.779e+05
(@]
L CR
o
~— o
S
% —
>\O
o
(@]
Q a 9.726e+04
o 7.175e+04
2 4.623e+04
S 2.072e+04
\
o
©
~
‘ |

T T T T T T
250 -2.00-1.50 —1.00 —0.50 —0.000.50 1.00
x * 10!

Figure 19: Pressure contours within the flow domain at 1.0 ms.

(a) (b)
Mach number history at the nozzle exit Static pressure history at the nozzle exit
10000
9000 [
8000 [
7000
6000 [
5000 [
4000 +
3000
2000
1000 |

’ceil_l.dat‘ using‘1:7 e 'cell_i.dat’ using 16 —

p, Pa

.
0 0.0002 0.0004 0.0006 0.0008 0.001 0 0.0002 0.0004 0.0006 0.0008 0.001
time, s time, s

Figure 20: Development of the flow at a “history point” near the centre of the exit plane:
(a) Mach number; (b) static pressure.

34

Figure21 shows that the simulation matches the experimental data closely. The re-
flected expansion is shown clearly in the left figure and indicates that, at the time of

writing this report, the subsonic boundary condition is not working as well as it should.

(a) (b)

Pressure along the nozzle wall Pressure along the nozzle wall
1.2 T T T T 0.6 T T T T T

T T —————
simulation simulation
experiment + experiment +

03

p/pt
.
plpt

0 0
-10 -8 -6 -4 -2 0 2 4 -1 -0.5 0 0.5 1 15 2 25 3

distance from throat (inches) distance from throat (inches)

Figure 21: Normalised pressure distribution along the nozzle wall: (a) full length of flow
domain; (b) just the supersonic part of the nozzle.

6.1 .sit file

back . sit

Conical nozzle from Back, Massier and Gier (1965)

BEGIN.GEOMETRY
NODE a0 —0.254 0.040525
NODE z0 —0.254 0.0
NODE al —0.053812 0.040525
NODE z1 —0.053812 0.0
NODE a2 —0.026518 0.029954
NODE z2 —-0.026518 0.0
NODE b3 0.0 0.059055
NODE a3 0.0 0.019685
NODE z3 0.0 0.0
NODE a4 0.010190 0.021026
NODE z4 0.010190 0.0
NODE a5 0.076200 0.038712
NODE z5 0.076200 0.0

Lines that run vertically.
LINE z0a0 z0 a0
LINE z3a3 z3 a3
LINE zba5 z5 ab

Lines that run along the x—axis
LINE z0z3 z0 z3
LINE 2z3z5 z3 z5

Lines and arcs for the tube and nozzle wall
LINE a0al a0 al

ARC ala2 al a2 zl

ARC a2a3 a2 a3 b3

ARC a3a4 a3 a4 b3

LINE a4ab5 a4 ab

Define the boundaries that will be used to

35

build the blocks.

POLYLINE nO 3 + alal + ala2 4+ a2a3
POLYLINE s0 1 + z0z3
POLYLINE w0 1 + z0a0
POLYLINE eOwl 1 + z3a3
POLYLINE nl 2 4+ a3a4d + adab
POLYLINE s1 1 + z3z5
POLYLINE el 1 + zbab
END_GEOMETRY
BEGIN_FLOW

Gas and flow properties
GAS_TYPE PERF_AIR_14
GASSTATE stagnation 500.0e3

0.0 0. 300.
GASSTATE low_pressure 30.0 0.0 0.

0 01.0
0 300.0 1.0

Set the boundary discretisation before building the blocks
DISCRETISE n0 360 0 0 0.0

DISCRETISE s0 360 0 0 0.0
DISCRETISE w0 60 0 0 0.0
DISCRETISE eOwl 60 0 0 0.0
DISCRETISE nl 120 0 0 0.0

DISCRETISE s1 120 0 0 0.0
DISCRETISE el 60 0 0 0.0

BOUNDARYSPEC w0 SUBSONIC_IN stagnation
BOUNDARYSPEC el SUP.OUT

Define blocks
BLOCK blk0 + n0 + eOwl + sO + w0
BLOCK blkl + nl + el + sl + eOwl

CONNECTBLOCKS blk0 east blkl west

Assign the initial gas states

FILL.BLOCK blk0 stagnation

FILL BLOCK blkl low_pressure
END_FLOW

BEGIN_.CONTROL
TITLE Back et al nozzle
CASE_ID 0

AXISYMMETRIC
FLUX_CALC Adaptive

MAXTIME 1.00e-3
MAXSTEP 5000
TIMESSTEP 1.0e-7
DT PLOT 0.2e-3
DTHISTORY 10.0e—6

HISTORY_CELL blk1 1 5 # At throat
HISTORY_CELL blkl 120 5 # At exit plane
END_.CONTROL

Name the output files and build them.
BEZIER-FILE back. bez

PARAMFILE back.p

MPOST FILE back.mpost

MPOST SCALES 0.8 0.8

MPOST XAXIS —0.250 0.080 0.05 —0.01
MPOST YAXIS 0.0 0.050 0.020 —0.265
BUILD

EXIT

36

6.2 Shell scripts

#!/bin/sh

back.bat

Exercise the Navier—Stokes solver for the conical nozzle
as used by Back, Massier and Gier (1965) AIAA J. 3(9):1606 —1614.
It is assumed that the path is set and that

the script file ”"back.sit” has been correctly written.
Stage 1:

Generate the input parameter and Bezier files

(back.p and back.bez respectively)

from the script file.

A record of the transactions is recorded in the log file
7back.log” so that, if anything goes wrong,

you can browse the log file and diagnose the problem.

scriptit.exe < back.sit > back.log
scriptit.tcl —f back.sit —do—mpost > back.log
mpost back.mpost

Stage 2:

Pick up the input parameter and Bezier files
and generate the grid and initial solution files
(back.g and back.s0).

Write these files as binary data.

FIHFHHHR

mb_prep.exe —wb —f back

Stage 3:

Pick up the grid and initial solution files as

binary data and integrate the solution in time.
The solution data at later times will be written
to the solution output file ” back.s”

FFHEFHFHIH

time mb_cns.exe —rb —wb —f back

Finished:

#!/bin/sh
Dback_plot.sh

Stage 4: Extract particular times from the solution set.
The following line extracts the first solution in the ”back.s”
#
mb_post.exe —rb —fp back.p —fg back.g —fs back.s \
—t 0.0 —fo back_00 —generic

Pick up the reformatted data and make a plot of the mesh.
Note that this plotted mesh is created by joining cell—centres.
It is not the xtruex mesh used by the flow solver.
The ixskip , iyskip also allow the plotted mesh to be coarser
than the true mesh.
#
mb_cont.exe —fi back_00.gen —fo back_00.ps —ps —mesh —var 6 \
—ixskip 2 —iyskip 2 —mirror \
—xrange —0.080 0.080 0.040 —yrange —0.080 0.080 0.040
Static pressure contours after nozzle—flow settles.
#
mb_post.exe —rb —fp back.p —fg back.g —fs back.s \
—t 1.0e—3 —fo back_10 —generic

mb_cont.exe —fi back_10.gen —fo back_-10.ps —ps —colour —var 6 \

37

file .

—mirror \

—xrange —0.250 0.100 0.050 —yrange —0.100 0.100 0.050

Finished:

back_history.sh

Extract the flow history data at the nozzle exit plane.

This is then plotted using gnuplot and an assessment

can be made as to whether the flow has reached steady state.

mb_hist.exe —fi back.h —fo cell_1.dat —ncell 2 —cell 1

gnuplot <<EOF
set term postscript eps 20
set output ’back_history_-M .eps’

set title ’'Mach number history at the nozzle exit’
set xrange [0.0:1.0e—3]

set xlabel ’time, s’

set ylabel M’

plot ’cell_1.dat’ using 1:7 with lines
EOF

gnuplot <<EOF

set term postscript eps 20

set output ’'back_history_p.eps’

set title ’'Static pressure history at the nozzle exit’
set xrange [0.0:1.0e—3]

set xlabel ’time, s’

set ylabel ’p, Pa’

plot ’cell_1.dat’ using 1:6 with lines
EOF

6.3 Notes

e The simulation reaches a final time of 1 ms in 4535 steps and, on a Celeron 2.4 Ghz
system, this takes 40 min, 36s of CPU time. This is equivalent to 19.2 us per cell

per predictor-corrector time step.

e If the code is compiled with the GNU C compiler for debugging, the run time
is approximately 1.6 times longer than for the standard optimisation level. This
debugging mode eliminates optimisation, includes debugging symbols in the code
and is linked to the Electric-Fence debugging library for malloc(). Peace of mind

comes at a price.

e The pressure is normalised with respect to the stagnation pressure using the follow-
ing AWK script.

normalize . awk
Normalize the surface pressure over the length of the nozzle.

38

BEGIN {
p0 = 418.7e3

print ”# Normalized surface pressure for the Back nozzle

(simulation)”
print ”# x(inches) p/pt”

$1 != "#” { +# For non—comment lines in the data file do...
p $7
r = $2
X $1
print x/0.0254, p/p0

39

7 A section of an ideal compressible-flow vortex

This flow example was used by Ian Johnston in his thesis and it comes with an analytic
solution [7]. With respect to MB_CNS, it illustrates the use of a specified flow profile as
an input and it shows the use of profile extraction, again.

The flow domain (Fig. 22) includes only part of the first quadrant of an ideal vortex
flow in inviscid air with R = 287J/kg-K, v=1.4). The NORTH and SOUTH boundaries
are specified as reflecting walls at radii r, and r;, representing the outer and inner radii
of the vortex segment that is centred at node A. The WEST boundary has the specified

inflow as a function of radius

p(r) = p; [lJrWT_lM'f{l—<%>2Hﬁ ;

(2
) = (p) |

7".
u(r) = uz?l :

with 7, = 1.384R; and the properties at the inner radius being M; = 2.25, p; = 1.0kg/m?
and p; = 100 kPa.

WESTO0

Figure 22: Schematic diagram of the first quadrant domain for the compressible-flow
vortex.

Figures 23 through 25 show the radial distributions of flow properties and highlight

some of the problems with the crude reflecting-wall boundary condition. Other than at

40

the boundaries, there is close agreement between the analytic and numerical solutions.
The errors at the inner and outer radii stand out clearly because we know that the trends
of the flow property variations should continue at these boundaries and not mirror what

is just inside the flow domain.

Inviscid Vortex

35

25

p/p;

exact
45 degrees +
exit plane x

1 1.05 11 115 1.2 1.25 13 1.35 14
rlr;

Figure 23: Radial distributions of pressure.

Inviscid Vortex
15

1.45

1.35
13
1.25

TIT,

12

exact
45 degrees +
1.15 90 degrees x

1.05 i R

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 14
rlr;

Figure 24: Radial distributions of temperature.

7.1 .sit file

vtx . sit
Inviscid supersonic vortex —— flow in a bend.

41

Inviscid Vortex

0.95

0.85

u/y;

0.8

0.75

0.7 :

T
exact

45 degrees +
90 degrees x

1 1.05

Figure 25: Radial distribution

Set up a single , curved block.
BEGIN.GEOMETRY
NODE a 0.0

NODE b 0.0
NODE ¢ 0.0
NODE d 1.0
NODE e 1.3
ARC bd
ARC ce
LINE bc
LINE de

Qoo o

Define the boundaries

POLYLINE north0 1 + ce

POLYLINE east0 1 + de

POLYLINE south0 1 + bd

POLYLINE west0 1 4+ bc
END_GEOMETRY

BEGIN_FLOW
Gas and flow properties
GAS_TYPE perf_air_14

11

1.15

of circumferential velocity.

The following are not really important because the
actual data will be taken from the profile.dat file.
GASSTATE initial 100.0e3 0.0 0.0 348.43

GASSTATE inflow 1.000e3 841.87 0.0 348.43

Set the boundary discretisation
DISCRETISE north0 80 0 0 0.0

DISCRETISE east0 40 0 0 0.0
DISCRETISE south0O 80 0 0 0.0
DISCRETISE west0 40 0 0 0.0

Inflow and outflow boundaries
BOUNDARYSPEC west0 STATIC_PROF
BOUNDARYSPEC east0 SUP.-OUT 300.0

1.0
1.0

BLOCK duct 4 north0 + east0 + southO + west0

FILL.BLOCK duct initial
END_FLOW

BEGIN_.CONTROL

42

TITLE Inviscid vortex flow around a bend.
We need to set CASE.ID 0 to get the data read from profile.dat.
CASE_ID 0

FLUX_CALC ausmdv
MAXTIME 20.0e—3
MAXSTEP 6000
TIMESTEP 1.0e—6
DT_PLOT 5.0e—3
END_.CONTROL

Name the output files and build them.
BEZIER_FILE vtx.bez

PARAMFILE vtx.p

MPOSTFILE vtx.mpost

MPOST_SCALES 0.1 0.1

BUILD

EXIT

7.2 Shell scripts

[
#! /bin/sh

vtx_run.sh
Exercise the Navier—Stokes solver for the inviscid vortex test case.
It is assumed that the path is set correctly.

Generate the Bezier , Input parameter and MetaPost files from the Script File.
scriptit.exe < vtx.sit > vtx.log
scriptit.tcl —f vtx.sit —do—mpost > vtx.scriptit —log

mpost vtx.mpost

Generate the inflow profile.
awk —f make_profile.awk

Generate the Grid and Initial Solution Files.
mb_prep.exe —f vtx

Integrate the solution in time.
time mb_cns.exe —f vtx

echo At this point, we should have a computed solution in vtx.s

#! /bin/sh

vtx_plot .sh

Exercise the Navier—Stokes solver for the inviscid vortex test case.
It is assumed that the path is set correctly.

Extract the solution data and reformat.
mb_post.exe —fp vtx.p —fg vtx.g —fs vtx.s —fo vtx —t 20.0e—3 —generic

Pick up the reformatted data and make a contour plot.
mb_cont.exe —fi vtx.gen —fo vtx.ps —var 6 —ps —colour \
—xrange 0.0 1.5 0.5 —yrange 0.0 1.5 0.5

Extract radial profiles at 45 degrees and at 90 degrees from the inlet.
mb_prof.exe —fp vtx.p —fg vtx.g —fs vtx.s —fo vtx_profile_45.dat \

—t 20.0e—3 —xline 0 40
awk —f extract_radial.awk vtx_profile_45.dat > radial_profile_45.dat

mb_prof.exe —fp vtx.p —fg vtx.g —fs vtx.s —fo vtx_profile_90.dat \

43

—t 20.0e—3 —xline 0 80
awk —f extract_radial.awk vtx_profile_90.dat > radial_profile_90.dat

Generate postscript plots of the radial profiles.
gnuplot radial_profile.gnu

echo At this point, we should have a plotted the solution

7.3 Notes

e This simulation reaches a final time of 20 ms in 5081 steps and, on a Celeron 2.4 Ghz
system, this takes 3min, 54 s of CPU time.

e The inflow that was applied to the WEST boundary as a STATIC_PROFile was gen-
erated with the following AWK script and written to the file profile.dat. MB_CNS
looks for this file when the STATIC_PROF boundary condition is used. See com-
ments in the init_profile_data() function in the C-module cns_bc.c for details

of the expected file format.

make_profile.awk
Set up an inflow profile for the inviscid vortex case
PJ, 20 —Feb—-01
#
function pow(base, exponent) {
print base, exponent
return exp(exponent * log(base))

¥
BEGIN {
Rgas = 287 # J/kg K
g = 1.4 # ratio of specific heats
=40
r_i = 1.0 # metres
r-o = 1.384
dr =(r.o —r_i) / n

Set flow properties ar the inner radius.

p-i = 100.0e3 # kPa

M.i = 2.25

rho_i = 1.0 # kg /mx*3
T_i = p-i / (Rgas * rho_i) #K

a_i =sqrt(g * Rgas = T_.i) #m/s

u_i = M.l * a_i #m/s

print p_i, M., rho.i, T.i, a_i, u.i

Generate the profile along the radial direction.

print n > " profile.dat”
for (1 =1; i<=mn;++i) {
r =r.i +dr x (i — 0.5)
print ” i: ” s i , ” I'*”, T
u =u-i % r.i /r
t1 =r_i / r
t2 = 1.0 + 0.5 % (g — 1.0) * M. % Mi % (1.0 — t1 % t1)
rho = rho.i * pow(t2, 1.0/(g — 1.0));
P = p-i * pow(rho/rho_.i, g)
T =p / (rho * Rgas)

print p, u, 0.0, T > ”profile.dat”
print r/r_.i, p/p-i, u/ui, 0.0, T/T.i > "radial_profile_0.dat”
} # end for

44

e The plots were generated via the following scripts

extract-radial .awk
Extract the radial profile data from mb_prof.exe generated files.
BEGIN{

roi = 1.0; p-i = 100.0e3; u-i = 841.87; T_.i = 348.43;
}

$1 1= 74" {
x=9%1; y=92; p=987; u=2984; v=285; T = $10
r =sqrt(x * x +y *xy)
speed = sqrt(u * u + v * v)
print r/r_.i, p/p-i, speed/u-i, 0.0, T/T_i

radial_profile.gnu

set term postscript eps enhanced 20

set output "radial_profile_p.eps”

set title ”Inviscid Vortex”

set xlabel ”"r/r_i”

set ylabel ”p/p_i”

set yrange [1.0:4.5]

set key 1.35, 2

plot ”radial_profile_0.dat” using 1:2 title ”exact” with lines, \
"radial_profile_45 .dat” using 1:2 title 745 degrees”, \
?radial_profile_90.dat” using 1:2 title ”exit plane”

set term postscript eps enhanced 20

set output "radial_profile_u.eps”

set title ”Inviscid Vortex”

set xlabel ”"r/r_i”

set ylabel "u/u_i”

set yrange [0.7:1.0]

set key

plot ”radial_profile_0.dat” using 1:3 title ”exact” with lines, \
?radial_profile_45 .dat” using 1:3 title 745 degrees”, \
?radial_profile_90 .dat” using 1:3 title 790 degrees”

set term postscript eps enhanced 20

set output "radial_profile_T .eps”

set title ”Inviscid Vortex”

set xlabel ”"r/r_i”

set ylabel "T/T_i”

set yrange [1.0:1.7]

set key 1.35, 1.2

plot ”radial_profile_0.dat” using 1:5 title ”exact” with lines, \
?radial_profile_45 .dat” using 1:5 title 745 degrees”, \
?radial_profile_90 .dat” using 1:5 title 790 degrees”

45

8 Pressure on a flat-faced cylinder

This example models the bar gauge type of pressure sensor as used in the expansion-tube
facilities. It also shows the application of a multiple-block grid to describe the flow domain
(Figure 26) around a flat-faced cylinder whose axis is aligned with the free-stream flow
direction. The free-stream Mach number is 4.76 to match one of the higher Mach number

conditions reported in Ref.[§].

N1 N2
003 15 ' .
i
|
|
|
i
|
|
i
i
|
|
!
|
|
|
|
|
i
1
0.02 | '
1
i
- al
= BLK1 = BLK2]
=,
|
|
|
001 |
|
,,,,,,,,,, NSO1 g s2
B E o
B BLKO 8
S0
oL e o

1 1 1
-0.01 0 0.01 0.02 0.03
X

Figure 26: Schematic diagram of the full flow domain around the flat-faced cylinder.

The simulation is started with low pressure stationary gas throughout the domain and
the inflow conditions are applied to the west boundaries of blocks 0 and 1. After allowing
50 us for the flow to reach steady state, the pressure distribution throughout the domain
is shown in Fig.27. The stand-off distance of 2.814 mm was determined by searching for
the pressure jump along the row of cells adjacent to the centreline.

Figure 28 shows the distribution of pressure across the face of the cylinder. The
simulation data agrees closely with Kendall’s measurements except in the region the
sharp corner where there is inadequate resolution and an absence of viscous effects in the

simulation.

46

bar_476_50.gen p TITLE = ;Bar Gauge Simulation.;
x1 x2 dx —1.00e—08 3.00e—02 1.00e—-02 yl1 y2 dy —3.00e—02 3.00e—02 1.00e—02
vl v2 dv 1.36e+05 2.87e+06 1.82e+05

(@}
Q
™
(@)
S
N 2.865e+06
2.683e+06
N 9 //
o< 74
— M
* S (
>~ o
S t\
(@}
S]
T \ ’
\\\ 6.817e+05
o 4.997e+05
o 3.178e+05
C\‘I i 1.359¢+05
o
o
[ap)
‘ T T T 1

Figure 27: Pressure contours within the flow domain at 50 us.

Normalized surface pressure over cylinder face, M=4.76.
1.2 T T T T T

0.8 b

p/p-centre
o
(o))

0.4 g
0.2 |+ 4
simulation
o experimlent E))))
0 0.2 0.4 0.6 0.8 1

r/r-max

Figure 28: Normalised pressure across the face of the cylinder compared with experimental
measurements [8].

47

8.1 .sit file

bar_476 .sit
Bar gauge (or flat—faced cylinder) M=4.76, ideal air

BEGIN.GEOMETRY
NODE a —10.0e—3 0.0
NODE b —10.0e—3 5.0e—3
NODE ¢ —10.0e—3 30.0e-3
NODE d 0.0 0.0
NODE e 0.0 5.0e—3
NODE f 0.0 30.0e—3
NODE g 30.0e—-3 5.0e—3
NODE h 30.0e—3 30.0e—-3

Lines that run vertically.

LINE ab a b
LINE bc b ¢
LINE de d e
LINE ef e f
LINE gh g h
Lines that run horizontally.
LINE ad a d
LINE be b e
LINE cf ¢ f
LINE eg e g
LINE fh f h

Define the boundaries that will be used to
build the blocks.

POLYLINE ns01 1 + be
POLYLINE sO 1+ ad
POLYLINE w0 1+ ab
POLYLINE €0 1 4+ de
POLYLINE nl 1 + cf
POLYLINE ewl2 1 4+ ef
POLYLINE w1l 1 + bc
POLYLINE n2 1 + fh
POLYLINE e2 1+ gh
POLYLINE s2 1+ eg
END.GEOMETRY
BEGIN_FLOW

Gas and flow properties

GAS_-TYPE PERF_AIR_14

GASSTATE inflow 100.0e3 1653.0 0.0 300.0 1.0
GASSTATE initial 30.0 0.0 0.0 300.0 1.0

Set the boundary discretisation before building the blocks
DISCRETISE ns01 120 0 0 0.0
DISCRETISE s0 120 0 0 0.0
DISCRETISE w0 40 0 0 0.0
DISCRETISE €0 40 0 0 0.0

DISCRETISE nl 120 0 0 0.0
DISCRETISE ewl2 80 1 0 1.2
DISCRETISE wl 80 1 0 1.2

DISCRETISE n2 1201 0 1.1
DISCRETISE e2 80 1 0 1.2
DISCRETISE s2 1201 0 1.1

BOUNDARYSPEC w0 SUP_IN inflow

BOUNDARYSPEC wl SUP_IN inflow
BOUNDARYSPEC e2 SUP.OUT

48

Define blocks

BLOCK blk0 4+ ns01 + eO + s0 + w0
BLOCK blkl 4+ nl + ewl2 + nsO01 + wl
BLOCK blk2 + n2 + e2 + s2 + ewl2

CONNECTBLOCKS blk0 north blkl south
CONNECTBLOCKS blkl east blk2 west

Assign the initial gas states

FILL.BLOCK blk0 initial

FILL.BLOCK blkl initial

FILL.BLOCK blk2 initial
END_FLOW

BEGIN_CONTROL
TITLE Bar Gauge Simulation.
CASE_ID 0

AXISYMMETRIC
FLUX_CALC Adaptive

MAXTIME 50.0e—6
MAXSTEP 15000

TIME.STEP 2.0e—8
DT PLOT 5.0e—6
DT_HISTORY 0.5e—6

HISTORY_CELL blk0 120 1

HISTORY_CELL blk0 120 5

HISTORY_CELL blk0O 120 10
END_.CONTROL

Name the output files and build them.
BEZIER_FILE bar_476 . bez

PARAMFILE bar_476.p

MPOST FILE bar_476 .mpost

MPOST SCALES 5.0 5.0

MPOST XAXIS —10.0e—3 32.0e—3 10.0e—3 —2.0e—3
MPOST YAXIS 0.0e—3 32.0e—3 10.0e—3 —12.0e—3
BUILD

EXIT

8.2 Shell scripts

#!/bin/sh

bar_476_run .sh

Exercise the Navier—Stokes solver for

Mark Sutcliffe ’s bar gauge.

It is assumed that the path is set and that

the script file ”"bar_476.sit” has been correctly written.
Stage 1:

Generate the input parameter and Bezier files

(bar_476.p and bar_476.bez respectively)

from the script file.

A record of the transactions is recorded in the log file
7bar_476.log” so that, if anything goes wrong,

you can browse the log file and diagnose the problem.

scriptit.exe < bar_476.sit > bar_476.log
scriptit.tcl —f bar_476.sit —do—mpost > bar_476.log
mpost bar_476 . mpost

49

Stage 2:

Pick up the input parameter and Bezier files
and generate the grid and initial solution files
(bar_476.g and bar_476.s0).

Write these files as binary data.

FIHFEHE

mb_prep.exe —wb —f bar_476

Stage 3:

Pick up the grid and initial solution files as

binary data and integrate the solution in time.
The solution data at later times will be written
to the solution output file ” bar_476.s”

FFHEHFRH

time mb_cns.exe —rb —wb —f bar_476

Finished:

#!/bin/sh
bar_476_plot.sh

Stage 4: Extract particular times from the solution set
#

mb_post.exe —rb —fp bar_476.p —fg bar_476.g —fs bar_476.s \
—t 50.0e—6 —fo bar_476_50 —generic

Stage 5:
Pick up the reformatted data and make a contour plot.

mb_cont.exe —fi bar_476_50.gen —fo bar_476_50.ps —ps —colour —var 6 \
—mirror —xrange —0.010 0.030 0.010 —yrange —0.030 0.030 0.010

Finished:

bar_476_profile.sh
Extract the flow data across the face of the bar gauge.

mb_prof.exe —fp bar_476.p —fg bar_476.g —fs bar_476.s —fo raw_profile.dat \
—t 50.0e—6 —rb —xline 0 120

awk —f normalize.awk raw_profile.dat > norm_profile.dat

gnuplot <<EOF

set output ”bar_476_norm_p.eps”

set term postscript eps 20

set xrange [0:1.1]

set yrange [0:1.2]

set title ” Normalized surface pressure over cylinder face, M=4.76.”

set xlabel ”r/r—max”

set ylabel ”p/p—centre”

set key bottom left

plot ?norm_profile.dat” using 1:2 title ”simulation” with lines, \
”kendall_profile.dat” using 1:2 title ”experiment” with points 4

”»

EOF

#!/bin/sh
bar_476_standoff.sh

mb_prof.exe —rb —fp bar_476.p —fg bar_476.g —fs bar_476.s \

90

—fo bar_476_stag_line.dat \
—t 50.0e—6 —yline 0 1

awk —f locate_shock.awk bar_476_stag_line.dat

8.3 Notes

e The simulation reaches a final time of 50 us in 2951 steps and, on a Celeron 2.4 Ghz
system, this takes 19min, 54s of CPU time. This is equivalent to 16.9 us per cell

per predictor-corrector time step.

e The surface pressure is normalised with respect to the stagnation pressure after the

bow shock, using the following AWK script.

normalize .awk

Normalize the surface pressure over the centreline static pressure.
BEGIN {

p-centre = —1.0;
}

$1 !: 77#77 {
p = $7;
r = $2;
if (p-centre < 0.0) p_centre = p;
print r/0.005, p/p-centre;

e Along a row of cells that have been extracted using mb_prof, the shock is detected

using the following AWK script.

locate_shock .awk

BEGIN {
p-old = 0.0;
x-old = —2.0;

p-trigger = 200.0e3;
shock_found = 0;

}
$1 I=7"#” { # for any non—comment line
p-new = $7;
x_new = $1;
print "p_new=", p_new, ”x_new” , Xx_new
if (p-new > p_trigger && shock_found == 0) {
shock_found = 1;
frac = (p-new — p_trigger) / (p-new — p-old);
x = x-old + frac x (x_new — x_old);
print ”shock located at x = 7, x
}
p-old = p_new;
x_old = x_new;
}

51

END {
if (shock_found == 0) {
print ”shock not located”;
}

print ”done.”

52

References

1]

B. B. Welch. Practical Programming in Tcl and Tk. Prentice Hall PTR, Upper Saddle
River, NJ, 2000.

P. A. Jacobs. Single-block Navier-Stokes integrator. ICASE Interim Report 18, 1991.

Ames Research Staff. Equations, tables and charts for compressible flow. NACA
Report 1135, 1953.

K. Sawada and E. Dendou. Validation of hypersonic chemical equilibrium flow calcu-
lations using ballistic-range data. Shock Wawves, 11:43-51, 2001.

J. D. Anderson. Hypersonic and High Temperature Gas Dynamics. McGraw-Hill, New
York, 1989.

L. H. Back, P. F. Massier, and H. L. Gier. Comparison of measured and predicted flows
through conical supersonic nozzles, with emphasis on the transonic region. A.I.A.A.
Journal, 3(9):1606-1614, 1965.

A. Aftosmis, D. Gaitonde, and T. S. Tavares. Behaviour of linear reconstruction
techniques on unstructured meshes. A.1.A.A. Journal, 33(11):2038-2049, 1995.

J. M. Kendall. Experiments on supersonic blunt-body flows. Progress Report 20-372,
Jet Propulsopn Laboratory, California Institute of Technology, Pasadena, California.,
February 1959.

93

