
Using scriptit.py to define mb cns simulations:

a reference for the flow-description Python modules.

Mechanical Engineering Report 2005/10
P. A. Jacobs

Centre for Hypersonics
The University of Queensland.

July 2005, Revised September 2005

Abstract

A flow simulation is set up by first describing the flow domain as one or more blocks of finite-
volume cells and specifying both initial and boundary conditions. The simulation then proceeds
in a number of stages: (1) start with the input script and prepare the block grids and initial (i.e.
t = 0) flow solution; (2) run the simulation to produce snapshots of the flow solution at one or more
subsequent times; and (3) postprocess the accumulated flow solution data to extract particular data
that may be of interest.

The input script is written in the Python programming language and, when executed by the
scriptit program, it creates various geometric and flow-condition objects as needed. This report
describes the set of classes and functions that are available for creating the flow specification. Of
course, the rest of the Python language is also available and may be used to assist (or automate) the
set-up calculations.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14983108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTENTS CONTENTS

Contents

Contents 2

1 Simulation Overview 4

2 Module scriptit 6

2.1 Functions . 6
2.2 Variables . 6
2.3 Class Block2D . 7

2.3.1 Methods . 8
2.3.2 Instance Variables . 9

2.4 Class Face2D . 9
2.4.1 Methods . 10
2.4.2 Class Variables . 10

2.5 Class GlobalData2D . 11
2.5.1 Properties . 11
2.5.2 Instance Variables . 11

2.6 Class MetapostEnvironment . 13
2.6.1 Methods . 14

2.7 Class MultiBlock2D . 14
2.7.1 Methods . 16
2.7.2 Instance Variables . 16

3 Module geom 18

3.1 Functions . 18
3.2 Class Node . 18

3.2.1 Methods . 18
3.2.2 Properties . 19

3.3 Class Vector . 19
3.3.1 Methods . 20
3.3.2 Properties . 21

4 Module gpath 22

4.1 Functions . 22
4.2 Class Arc . 22

4.2.1 Methods . 23
4.3 Class Arc3 . 23

4.3.1 Methods . 24
4.4 Class Bezier . 24

4.4.1 Methods . 24
4.4.2 Instance Variables . 25

4.5 Class ClosedSurfacePatch . 25
4.5.1 Methods . 26

4.6 Class Edge3D . 27
4.6.1 Methods . 27

4.7 Class Line . 28
4.7.1 Methods . 28

4.8 Class Polyline . 29
4.8.1 Methods . 29
4.8.2 Properties . 30

4.9 Class Spline . 30

2

CONTENTS CONTENTS

4.9.1 Methods . 31
4.9.2 Properties . 31

5 Module flow condition 32

5.1 Class FlowCondition . 32
5.1.1 Methods . 32

6 Module cns bc defs 33

6.1 Variables . 33

7 Module flux dict 35

7.1 Variables . 35

8 Module gas dict 36

8.1 Variables . 36

Index 38

3

Simulation Overview

1 Simulation Overview

Setting up a simulation is mostly an exercise in writing a textual description of your flow and its bounding
geometry. This description is presented to the scriptit.py program as a Python script, and is assumed
to have a “.py” extension. Note that you will have full access to the Python programming language
from within your script. This allows you to do some sophisticated calculations and automate repetitive
parts of the specification (such as generating large numbers of blocks) but it also implies that you have
to work to Python’s syntax1.

Once you have prepared your flow specification file, the simulation data is generated in a number of
stages:

1a. Create the geometry definition with the command.
$ scriptit.py -f job --do-mpost

Input: Program: Output:

job.py - scriptit.py - job.p

- job.bez

- job.mpost

The file job.p contains the parameters that describe the logical connections of blocks, the flow
conditions, and a number of parameters that will control the execution of the simulation. The
file is plain text and may be edited manually if you wish. It’s layout is documented in separate
hypertext documentation2. The job.bez file contains the description of the block boundaries as
sequences of lines, arcs and Bezier curves. Although it is also in plain text, this file is not so easy
to understand. The job.mpost file contains a Metapost description of the geometry specification.

1b. Check the geometry definition (visually) by using Metapost to make a viewable postscript file
containing labelled nodes, block boundary curves and blocks. Metapost is distributed as part of the
TEX document preparation system. It is most likely already installed on your UNIX/Linux/Cygwin
system and there is a stand-alone binary for Win32 systems.
$ mpost job.mpost

job.mpost - mpost - job.1

The job.1 file contains a postscript rendering of your flow geometry that can be used for your
documentation. It may also help in debugging your input script.

2. Generate an initial (i.e. t = 0) flow solution in file job.s0 and a corresponding grid file job.g.
$ mb prep.exe -f job

1For example, if a list is specified as an argument to a particular function then you must supply a valid Python list
object, possibly using the syntax [item0, item1, item3] for a literal list.

2See http://www.mech.uq.edu.au/cfcfd/code/mb cns/doc/.

4

Simulation Overview

job.p -

job.bez

6
mb prep.exe - job.g

- job.s0

3. Run the simulation code to produce flow data at subsequent times.
$ mb cns.exe -f job

job.p -

job.g

6

job.s0

6

mb cns.exe - job.s

- job.h

The whole-of-domain data are saved in job.s while history data at selected cells are saved in file
job.h.

4. Extract subsets of the flow solution data for postprocessing. The specific command for this stage
depends very much on what you want to do. The flow solution data is cell-averaged data associated
with cell centres (i.e. the coordinates of the cell centres are kept with the flow data). You may
extract the flow data for all cells at a particular time using mb post.exe and reformat it for a
particular plotting program or you may extract data along single grid lines (using mb prof.exe)
in a form ready for display with GNU-Plot or for further calculation. See the shell scripts in
the examples for ideas on what can be done. The output of this stage is always a text file and,
sometimes, it is convenient to look at the head of the file for hints as to what data is present.

5

Module scriptit

2 Module scriptit

It is intended for the user to define the flow simulation in terms of the data objects defined in this
program. As part of its initialization, scriptit.py will execute a user-specified job file that contains, in
Python, the user’s script that defines both geometry and flow details.

The flow simulation definition is organised via the classes: GlobalData2D, FlowCondition, Face2D and
Block2D. These classes provide places to store the configuration information and their function (or
method) names appear as commands in the job description file. See the init () method for each class
to determine what parameters can be specified when creating an object of that class.

The user will define the particular geometry in terms of the data objects defined in the geom and gpath
modules. This geometry definition is created in a bottom-up approach by successively defining Nodes,
simple path elements (such as Line, Arc and Bezier elements) and, possibly, compound path elements
(such as Splines and Polylines). Finally, blocks of finite-volume cells covering the flow domain are
defined via sets of four bounding faces. These faces also carry boundary-condition information.

Note: Physical quantities should be specified in MKS units.

2.1 Functions

connect blocks(A, faceA, B, faceB)

Make the face-to-face connection between neighbouring blocks.

Parameters

A: first block
(type=Block2D object)

faceA: indicates which face of block A is to be connected. The constants NORTH, EAST,
SOUTH, and WEST may be convenient to use.
(type=int)

B: second block
(type=Block2D object)

faceB: indicates which face of block B is to be connected. The constants NORTH, EAST,
SOUTH, and WEST may be convenient to use.
(type=int)

rad to degrees(rad)

Convert radians to degrees.
This is a convenience function for the writing of the MetaPost file but may also be used in the user
script.

Parameters

rad: angle in radians.
(type=float)

Return Value

angle in degrees

2.2 Variables

6

Module scriptit Class Block2D

Name Description

AO Constant indicating use of the area-orthogonality grid generator.
Value: 1 (type=int)

EAST Constant indicating an east face.
Value: 1 (type=int)

gdata Contains the GlobalData2D information describing the
simulation. Note that there is one such variable set up by the
main program and the user’s script should directly set the
attributes of this variable to adjust settings for the simulation.
Value: <scriptit.GlobalData2D object at 0xb7ed07ac>

(type=GlobalData2D)
mpost A global variable holding the state of the

MetapostEnvironment. Note that there is one such variable set
up by the main program and the user’s script should directly
set the attributes of this variable to adjust settings (such as
scale and ranges of the axes) for the Metapost output.
Value:

<scriptit.MetapostEnvironment object at 0xb7ca09ac>

(type=MetapostEnvironment)
NORTH Constant indicating a north face.

Value: 0 (type=int)
RULED Constant indicating ruled-surface style of grid generation.

Value: 2 (type=int)
SOUTH Constant indicating a south face.

Value: 2 (type=int)
TFI Constant indicating transfinite interpolation style of grid

generation. This type of interpolation surface is also known as a
Coons patch.
Value: 0 (type=int)

WEST Constant indicating a west face.
Value: 3 (type=int)

2.3 Class Block2D

builtin .object

Block2D

Python class to organise the setting of block parameters.

A block is defined by its four bounding Face2D objects with assumed positive directions as shown:

. NORTH

. 1 +------->-------+

. | | |

. s WEST | | EAST

. | | |

. 0 +------->-------+

. SOUTH

.

. 0-------r------>1

NORTH and SOUTH boundaries progress WEST to EAST while EAST and WEST boundaries progress
SOUTH to NORTH. To reuse a Face2D object when building multiple blocks, you will need to pay

7

Module scriptit Class Block2D

attention to the orientation of the blocks and the defined positive direction of the Face2D object.

2.3.1 Methods

init (self, face list=[], direction list=[1, 1, 1, 1], fill conditions=None, grid type=0,
hcell list=[], turbulent flag=0, label=’’)

Create a block from four faces.

Parameters

face list: List of the bounding faces which define the block. The order within
the list is NORTH, EAST, SOUTH and WEST.
(type=list of Face2D objects)

direction list: Each value of 1 indicates that we wish to use the corresponding
Face2D in the direction that it presently has. A value of -1 indicates
that we wish to reverse it’s direction for use in this block. Note that
copies of the Face2D objects are made so that the original objects are
not altered.
(type=list of int values)

fill conditions: Either a single FlowCondition or a list of four FlowConditions. If a
list is supplied, the order of items in the list is NE, SE, SW and NW.
(type=FlowCondition or a list of FlowCondition objects)

grid type: Select the type of grid generator from RULED, TFI or AO.
(type=int or string)

hcell list: List of (ix,iy) tuples specifying the cells (for this block) whose flow
data is to be recorded in the history file. For an MPI simulation, there
is one history file for each block but, for a shared-memory simulation,
the history cells for all blocks are written to a single history file.
(type=list of tuples, each with two int values)

turbulent flag: Set to 1 to activate the Baldwin-Lomax turbulence model. Note that
the current implementation assumes that the north boundary is the
only solid wall.
(type=int)

label: Optional label that will appear in the generated parameter file.
(type=string)

Overrides: builtin .object. init
Note: The blocks are given their identity (counting from zero) according to the order in which they
are created by the user’s script.

8

Module scriptit Class Face2D

set BC(self, face name, type of BC, inflow condition=None, sponge flag=None, Twall=None,
Pout=None)

Sets a boundary condition on a particular face of the block.
Sometimes it is good to be able to adjust properties after block creation; this function provides that
capability.

Parameters

face name: Identifier to select the appropriate Face2D within the block.
(type=string or int)

type of BC: Name or index value of the requested boundary condition. See
module cns bc defs for the available options.
(type=int or string)

inflow condition: If the type of boundary requires the user to specify the inflow
condition, this is the parameter to do so.
(type=FlowCondition)

sponge flag: Set to 1 to activate Andrew Denman’s damping layer near the
boundary.
(type=int)

Twall: If appropriate, specify the boundary-wall temperature in degrees
Kelvin.
(type=float)

Pout: If appropriate, specify the value of static pressure (in Pascals) just
outside the boundary.
(type=float)

2.3.2 Instance Variables

Name Description

blkId Index of the block. Blocks are numbered, from zero, in the
order of creation. This numbering is used internally in the
preprocessing, simulation and postprocessing stages. For the
MPI simulations, it also the same as the rank of the process.
Value: <member ’blkId’ of ’Block2D’ objects>

(type=int)
nnx Number of cells in the ix-direction. This value is normally

obtained from the assigned north and south Face2D boundaries.
Note that this ix index direction does not have to be aligned
with the geometric x-direction.
Value: <member ’nnx’ of ’Block2D’ objects> (type=int)

nny Number of cells in the iy-direction This value is normally
obtained from the assigned east and west Face2D boundaries.
Value: <member ’nny’ of ’Block2D’ objects> (type=int)

2.4 Class Face2D

builtin .object

Face2D

Contains the information for one face of a block.

9

Module scriptit Class Face2D

2.4.1 Methods

init (self, path=None, direction=1, nn=10, cluster tuple=(0, 0, 0.0), type of BC=3,
Twall=300.0, Pout=100000.0, inflow condition=None, sponge flag=0, label=’’)

Initialises a face consisting of a path, discretisation data and boundary-condition data.

Parameters

path: may be a single path element or a list of path elements. The possible
path elements include Line, Arc, Bezier, Polyline and Spline objects.

direction: sense in which the path elements are assembled
nn: number of cells to be distributed along the path
cluster tuple: clustering information consisting of (to-end-0, to-end-1, beta).

to-end-0 is an integer (logical value) indicating whether the cells are
clustered toward the t=0.0 end of the path. A value of 1 indicates
that the cells are indeed to be clustered. to-end-1 is the same
indicator for the t=1.0 end of the path. The beta parameter
indicates the strength of the clustering. A value greater than 1.0 is
used to obtain clustering, with a value approaching 1.0 indicating
strong clustering. A value of zero for beta results in a uniformly
distributed set of cells. See roberts.py and roberts.c
(distribute points 1) for further explanation of the parameters.

type of BC: specifies the boundary condition See module cns bc defs.py for a
dictionary of possible values.

Twall: fixed wall temperature (in degrees K) that will be used if the
boundary conditions needs such a value.

Pout: fixed outside pressure (in Pascals) that will be used if the boundary
conditions needs such a value.

inflow condition: the flow condition that will be applied if the specified boundary
condition needs it

sponge flag: A value of 1 will activate Andrew Denman’s damping terms near the
boundary.
(type=int)

label: optional label for the Face2D object
(type=string)

Overrides: builtin .object. init

copy(self, direction=1)

Makes a complete copy of the face as a new object, optionally reversing the direction.

2.4.2 Class Variables

Name Description

nmin Minimum number of cells along any face and, correspondingly,
across any block.
Value: 2 (type=int)

10

Module scriptit Class GlobalData2D

2.5 Class GlobalData2D

builtin .object

GlobalData2D

Python class to organise the global data.

The user’s script should not create one of these but should specify the simulation parameters by altering
the attributes of the global object gdata.

2.5.1 Properties

Name Description

gas name The (string) name of the gas.

2.5.2 Instance Variables

Name Description

axisymmetric flag A value of 0 sets two-dimensional, planar flow. A value of 1 sets
axisymmetric flow with the x-axis being the axis of symmetry.
Value: <member ’axisymmetric flag’ of ’GlobalData2D’-

objects>

(type=int)
case id An identifier for special cases in which pieces of specialised code

have been embedded into the main simulation program. If you
don’t have such code to activate, the default value of 0 is fine.
Value: <member ’case id’ of ’GlobalData2D’ objects>

(type=int)
cfl The ratio of the actual time step to the allowed time step as

determined by the flow condition and grid. Typically the
default value of 0.5 is good but you may want to try smaller
values if you are having the solution go unstable, especially for
viscous simulations.
Value: <member ’cfl’ of ’GlobalData2D’ objects>

(type=float)
displacement thickness See Andrew Denman.

Value: <member ’displacement thickness’ of ’GlobalDa-

ta2D’ objects>

(type=float)
dt Size of the initial time step. After a few steps, the solver will

have enough information to select a suitable time step, based on
the cfl number.
Value: <member ’dt’ of ’GlobalData2D’ objects>

(type=float)
dt av See Andrew Denman.

Value: <member ’dt av’ of ’GlobalData2D’ objects>

(type=float)
continued on next page

11

Module scriptit Class GlobalData2D

Name Description

dt history Period (in seconds) between writing the data for the selected
cells to the history file.
Value:

<member ’dt history’ of ’GlobalData2D’ objects>

(type=float)
dt plot Period between writing all of the flow field data to the solution

file. Multiple instances can be written to the one file but be
careful not to write too many and fill up your disk.
Value: <member ’dt plot’ of ’GlobalData2D’ objects>

(type=float)
flux calc Specifies the form of flux calculation at cell interfaces. See

module flux dict.py for options.
Value:

<member ’flux calc’ of ’GlobalData2D’ objects>

(type=int or string)
gas name Select the thermochemistry model by setting this parameter.

See module gas dict for available options. If you don’t select
something, the value will default to ’perf air 14’ the first time
that you try to set a FlowCondition.

max step Time stepping will be terminated if the simulation reached this
number of steps.
Value: <member ’max step’ of ’GlobalData2D’ objects>

(type=int)
max time The (simulation) time (in seconds) at which time stepping

should be terminated.
Value: <member ’max time’ of ’GlobalData2D’ objects>

(type=float)
perturb flag See Andrew Denman.

Value:

<member ’perturb flag’ of ’GlobalData2D’ objects>

(type=int)
perturb frac See Andrew Denman.

Value:

<member ’perturb frac’ of ’GlobalData2D’ objects>

(type=int)
reacting flag A value of 1 will make Rowan Gollan’s finite-rate chemistry

active if the appropriate gas name (e.g. ’perf gas mix’) has
been specified.
Value:

<member ’reacting flag’ of ’GlobalData2D’ objects>

(type=int)
t order Specifies the form of time stepping scheme. Select 1 for Euler

stepping. Select 2 for predictor-corrector stepping.
Value: <member ’t order’ of ’GlobalData2D’ objects>

(type=int)
tav 0 See Andrew Denman.

Value: <member ’tav 0’ of ’GlobalData2D’ objects>

(type=float)
tav f See Andrew Denman.

Value: <member ’tav f’ of ’GlobalData2D’ objects>

(type=float)
continued on next page

12

Module scriptit Class MetapostEnvironment

Name Description

time average flag See Andrew Denman.
Value: <member ’time average flag’ of ’GlobalData2D’-

objects>

(type=int)
title A piece of text that will be propagated through the solution

files and subsequently generated plots.
Value: <member ’title’ of ’GlobalData2D’ objects>

(type=string)
turbulent flag Andrew Denman.

Value:

<member ’turbulent flag’ of ’GlobalData2D’ objects>

(type=int)
viscous delay Sometimes, the viscous terms make it difficult to start a

calculation without encountering numerical instability. Set this
parameter to the delay (in seconds) from simulation start to the
time at which the viscous terms will be allowed to become
active (if viscous flag was set to 1).
Value:

<member ’viscous delay’ of ’GlobalData2D’ objects>

(type=float)
viscous flag Set to 1 to activate viscous transport terms. Set to 0 (the

default) for inviscid flow simulation.
Value:

<member ’viscous flag’ of ’GlobalData2D’ objects>

(type=int)
x order Specifies the form of reconstruction from cell-average data to

cell interface data. Select 1 for low-order (i.e. no)
reconstruction. Select 2 for a higer-order (limited quadratic)
reconstruction.
Value: <member ’x order’ of ’GlobalData2D’ objects>

(type=int)

2.6 Class MetapostEnvironment

builtin .object

MetapostEnvironment

A place to put the metapost settings.

A metapost file will contain a rendering of the geometry objects defining the simulation domain. Since
the coordinates for mb cns are in metres, you will probably have to apply suitable scale factors to get a
drawing that can be printed to an A4 page conveniently. Also, because the origin of a postsript figure is
in the bottom-left corner of the page, you may have to reset the origin to see all of the geometry elements
if some of them have negative coordinates.

13

Module scriptit Class MultiBlock2D

2.6.1 Methods

origin(self, x=0.0, y=0.0)

Set the origin on the page for the rendered picture.
For example, it is sometimes good to select an origin of (0.05, 0.05) to get the origin 5 centimetres up
and right from the bottom-left corner of the page.

scales(self, xscale=None, yscale=None)

Set the scale factors for the drawing.
Model coordinates are multiplied by these scales to get page coordinates.

xaxis(self, xmin=None, xmax=None, xtic=None, xaxis offset=None)

Set the x-axis scale parameters.

Parameters

xmin: Minimum value for x-axis scale.
(type=float)

xmax: Maximum value for x-axis scale.
(type=float)

xtic: Interval between tic marks and labels.
(type=float)

xaxis offset: The vertical offset (from ymin) for drawing the length of the scale.
Negative values will lower the x-axis scale.
(type=float)

yaxis(self, ymin=None, ymax=None, ytic=None, yaxis offset=None)

Set the y-axis scale parameters.

Parameters

ymin: Minimum value for y-axis scale.
(type=float)

ymax: Maximum value for y-axis scale.
(type=float)

ytic: Interval between tic marks and labels.
(type=float)

yaxis offset: The horizontal offset (from xmin) for drawing the length of the scale.
Negative values will move the y-axis scale to the left.
(type=float)

2.7 Class MultiBlock2D

builtin .object

MultiBlock2D

Allows us to specify a block of sub-blocks.

A number of internally-connected Block2D objects will be created when one MultiBlock2D object is cre-
ated. Internal boundaries are defined by first using TFI interpolation to locate a set of intermediate points
(that will become the corners of the individual blocks) and then fitting interpolating splines through this

14

Module scriptit Class MultiBlock2D

array of points. Individual block boundaries are then subpaths of the original outer boundaries or of the
newly created splines in the interior of the block cluster.

Note that the collection of Block2D objects will be stored in a list of lists with each inner-list storing a
j-column of blocks:

. North

. 1 +-------------+-------------+

. | | [0][1] | [1][1] |

. s West +-------------+-------------+ East

. | | [0][0] | [1][0] |

. 0 +-------------+-------------+

. South

. 0 --r--> 1

The user script may access an individual block within the MultiBlock2D object as object.blks[i][j].
This will be useful for connecting blocks within the MultiBlock cluster to other blocks as defined in the
user’s script.

Some properties, such as fill conditions and grid type, will be propagated to all sub-blocks. Individual
sub-blocks can be later customised.

15

Module scriptit Class MultiBlock2D

2.7.1 Methods

init (self, face list=[], direction list=[1, 1, 1, 1], nb w2e=1, nb s2n=1, nn w2e=None,
nn s2n=None, cluster w2e=None, cluster s2n=None, fill conditions=None, grid type=0,
turbulent flag=0, label=’blk’)

Create a cluster of blocks within a set of 4 boundaries.

Parameters

face list: List of the bounding faces which define the block. The order within
the list is NORTH, EAST, SOUTH and WEST.
(type=list of Face2D objects)

direction list: Each value of 1 indicates that we wish to use the corresponding
Face2D in the direction that it presently has. A value of -1 indicates
that we wish to reverse it’s direction for use in this block. Note that
copies of the Face2D objects are made so that the originals are not
altered.
(type=list of int values)

nb w2e: Number of sub-blocks from west to east.
(type=int)

nb s2n: Number of sub-blocks from south to north.
(type=int)

nn w2e: List of discretisation values for north and south boundaries of the
sub-blocks. If a list is not supplied, the original number of cells for the
outer boundary is divided over the individual sub-block boundaries.
(type=list of int values)

nn s2n: List of discretisation values for west and east boundaries of the
sub-blocks. If a list is not supplied, the original number of cells for the
outer boundary is divided over the individual sub-block boundaries.
(type=list of int values)

cluster w2e: If a list of cluster tuples is supplied, individual clustering will be
applied to the corresponding south and north boundaries of each
sub-block. If not supplied, a default of no clustering will be applied.
(type=list of cluster tuples)

cluster s2n: If a list of cluster tuples is supplied, individual clustering will be
applied to the corresponding west and east boundaries of each
sub-block. If not supplied, a default of no clustering will be applied.
(type=list of cluster tuples)

fill conditions: A single FlowCondition that is to be used for all sub-blocks
(type=a single FlowCondition object)

grid type: Select the type of grid generator from RULED, TFI or AO.
(type=int or string)

turbulent flag: This flag will be propagated to all sub-blocks.
(type=int)

label: A label that will be augmented with the sub-block index and then
used to label the individual Block2D objects.
(type=string)

Overrides: builtin .object. init

2.7.2 Instance Variables

16

Module scriptit Class MultiBlock2D

Name Description

blks This holds the collection of sub-blocks, each being a Block2D

object.
Value: <member ’blks’ of ’MultiBlock2D’ objects>

(type=a list of lists of Block2D objects)

17

Module geom

3 Module geom

Provides basic 3D/2D Vector and Node classes for constructing geometric descriptions.

For 2D modelling, the z-coordinate can be omitted so that it takes its default value of 0.0.

3.1 Functions

cross(a, b)

Vector cross product.

Return Value

vector product.

distance between nodes(a, b)

Return the distance between Nodes a and b.

dot(a, b)

Vector dot product.

Return Value

scalar product.

3.2 Class Node

builtin .object

geom.Vector

Node

Defines a nodal-point in 3D space to be subsequently used in the definition of line segments.

3.2.1 Methods

init (self, x=0.0, y=0.0, z=0.0, label=’’)

Create a Vector from its Cartesian components.

Parameters

x: x-component
(type=float)

y: y-component
(type=float)

z: z-component
(type=float)

label: optional text label that will appear in the MetaPost file.
(type=string)

Overrides: geom.Vector. init extit(inherited documentation)

18

Module geom Class Vector

copy(self)

Create and return a new instance which is a copy of the original.

translate(self, dx, dy=0.0, dz=0.0)

Translate node position by displacement Vector dx or by displacement (dx, dy, dz) in Cartesian
coordinates.

Parameters

dx: displacement
(type=either Vector or float)

dy: (optional) Cartesian displacement in the y-direction
(type=float)

dz: (optional) Cartesian displacement in the z-direction
(type=float)

Inherited from Vector: abs , add , del , div , mul , neg , pos , rdiv , rmul ,
sub , getLabel, getX, getY, getZ, setLabel, setX, setY, setZ, sum, unit

3.2.2 Properties

Name Description

Inherited from Vector: x (p. 19), y (p. 19), z (p. 19)

3.3 Class Vector

builtin .object

Vector

Known Subclasses: Node

Defines a vector 3D space.

The vector is created in the C module data space and new-style object properties to access the C-module
values.

19

Module geom Class Vector

3.3.1 Methods

init (self, x=0.0, y=0.0, z=0.0, label=’’)

Create a Vector from its Cartesian components.

Parameters

x: x-component
(type=float)

y: y-component
(type=float)

z: z-component
(type=float)

label: optional text label that will appear in the MetaPost file.
(type=string)

Overrides: builtin .object. init

abs (self)

Absolute value is the magnitude of the Vector.

add (self, other)

Element by element addition.

div (self, other)

mul (self, other)

Element-by-element multiplication.

neg (self)

Negation of all elements for -x.

pos (self)

+x

rdiv (self, other)

rmul (self, other)

sub (self, other)

Element-by-element subtraction.

sum(self)

Add elements together.

20

Module geom Class Vector

unit(self)

Return Value

unit vector with same direction as this vector.

3.3.2 Properties

Name Description

label text label for the vector
x x-coordinate of the vector
y y-coordinate of the vector
z z-coordinate of the vector

21

Module gpath

4 Module gpath

The user-specified geometry data is organised via the following classes: Node, Line, Arc, Bezier, Spline,
and Polyline. This module builds on the Vector and Node classes provided by the module geom and
provides curvilinear path-building classes.

The path elements Line, Arc, Bezier are a mix of Python top-level classes and lower-level C functions
on arrays of points. Although it would have been much neater and more maintainable to use a pure
Python implementation, we wanted to use the same basic code for both the C and the Python programs.

The compound Polyline and Spline objects are also a mix of Python classes and C functions on
GPathPolyline structures.

4.1 Functions

interpolate TFI 2D mbcns(edge list, r, s)

Locate a point p(r,s) using transfinite interpolation.

Parameters

edge list: List of 4 paths in mb cns order [N,E,S,W].
(type=list of Polyline-derived objects.)

r: interpolation parameter in the ix-index direction
(type=float, 0.0<=r<=1.0)

s: interpolation parameter in the iy-index direction
(type=float, 0.0<=s<=1.0)

interpolate TFI 3D(edge list, r, s, t)

Locate a point p(r,s,t) using transfinite interpolation.

Parameters

edge list: list of 12 paths in Elmer order.
(type=list of Polyline-derived objects.)

r: interpolation parameter in the i-index direction
(type=float, 0.0<=r<=1.0)

s: interpolation parameter in the j-index direction
(type=float, 0.0<=s<=1.0)

t: interpolation parameter in the k-index direction
(type=float, 0.0<=t<=1.0)

4.2 Class Arc

builtin .object

Arc

Known Subclasses: Arc3

Defines a circular-arc from Node a to Node b with centre at c.

22

Module gpath Class Arc3

4.2.1 Methods

init (self, a, b, c)

Parameters

a: Starting point for arc.
(type=Node object)

b: Finish point for arc.
(type=Node object)

c: Centre of curvature.
(type=Node object)

Overrides: builtin .object. init
Note: The radii c–>a and c–>b must match closely.

eval(self, t)

Locate a point on the arc.

Parameters

t: interpolation parameter.
(type=float, 0<=t<=1.0)

Return Value

a Vector for the point location.

length(self)

Return Value

the length of the arc.

translate(self, dx, dy=0.0, dz=0.0)

Displace the Arc in Cartesian space.

Parameters

dx: displacement Vector representing (dx, dy, dz) or x-component of displacement.
(type=Vector or float)

dy: y-component of displacement (if dx was a scalar)
(type=float)

dz: z-component of displacement (if dx was a scalar)
(type=float)

4.3 Class Arc3

builtin .object

gpath.Arc

Arc3

Defines a circular-arc from Node a through Node b ending at Node c.

23

Module gpath Class Bezier

4.3.1 Methods

init (self, a, b, c)

Parameters

a: Starting point for arc.
(type=Node object)

b: Intermediate point on arc.
(type=Node object)

c: Finish point for arc.
(type=Node object)

Overrides: gpath.Arc. init
Note: The points must not be colinear.

Inherited from Arc: eval, length, translate

4.4 Class Bezier

builtin .object

Bezier

Defines a Bezier polynomial curve.

Note: The curve goes through the end-points but that the intermediate points generally do not lie on
the curve.

4.4.1 Methods

init (self, B)

Defines a Bezier polynomial of order N=len(B)-1.

Parameters

B: The control nodes of the curve, B[0] –> B[-1].
(type=list of Node objects)

Overrides: builtin .object. init

eval(self, t)

Locate a point on the Bezier curve.

Parameters

t: interpolation parameter.
(type=float, 0<=t<=1.0)

Return Value

a Vector for the point location.

24

Module gpath Class ClosedSurfacePatch

length(self)

Return Value

the length of the Bezier curve.

Note: This is obtained approximately by sampling the curve.

translate(self, dx, dy=0.0, dz=0.0)

Displacee the Bezier curve.

Parameters

dx: displacement Vector representing (dx, dy, dz) or x-component of displacement.
(type=Vector or float)

dy: y-component of displacement (if dx was a scalar)
(type=float)

dz: z-component of displacement (if dx was a scalar)
(type=float)

4.4.2 Instance Variables

Name Description

N The order of the curve is N = len(B)-1.
(type=int)

4.5 Class ClosedSurfacePatch

builtin .object

ClosedSurfacePatch

A ClosedSurfacePatch is defined by 4 bounding Polyline paths. It is intended mainly for the generation
of 3D blocks by sweeping out volumes.

25

Module gpath Class ClosedSurfacePatch

4.5.1 Methods

init (self, cA, cB, cC, cD)

Create a ClosedSurfacePatch.

Parameters

cA: ’South’ curve
(type=Polyline-derived object)

cB: ’North’ curve
(type=Polyline-derived object)

cC: ’West’ curve
(type=Polyline-derived object)

cD: ’East’ curve
(type=Polyline-derived object)

Overrides: builtin .object. init
Notes:

• The logical layout for the bounding curves is:

. cB

. +------->--------+

. | |

. cC ^ ^ cD

. | |

. +------->--------+

. cA

These curves must meet at the corners.

• In the 3D simulation code, this ClosedSurfacePatch can represent any of the 6 faces
of a block. Curves cA and cB progress in the positive i-index direction for Top,
Bottom, North and South faces. Curves cC and cD progress in the positive j-index
direction for Top and Bottom faces. Curves cA and cB progress in the positive
j-index direction for West and East faces. Curves cC and cD progress in the positive
k-index direction for North, South, West and East faces.

extrude(self, cE, direction)

Extrudes the ClosedSurfacePatch to form a closed volume.

Parameters

cE: curve along which the extrusion is done.
(type=Polyline-derived object)

direction: provides a hint as to which way we want to extrude the surface.
(type=string being one of ’i’, ’j’, or ’k’)

Return Value

the list of 12 edges defining a 3D block.

26

Module gpath Class Edge3D

interpolate TFI(self, r, s)

Locate a point on the ClosedSurfacePatch.

Parameters

r: interpolation parameter for along curves cA and cB
(type=float, 0.0<=r<=1.0)

s: interpolation parameter for along curves cC and cD
(type=float, 0.0<=s<=1.0)

Return Value

a Vector value for the point.

4.6 Class Edge3D

builtin .object

gpath.Polyline

Edge3D

An Edge3D is a specialized Polyline that contains some extra data for mesh generation in the 3D flow
simulation code.

4.6.1 Methods

init (self, path=None, direction=1, t0=0.0, t1=1.0, cluster tuple=(0, 0, 0.0), label=’’)

Initialises an edge consisting of a path, and cluster data that may be used for mesh generation

Parameters

path: may be a single path element or a list of path elements. The possible
path elements include Line, Arc, Bezier, Polyline and Spline objects.

direction: sense in which the path elements are assembled
cluster tuple: clustering information consisting of (to-end-0, to-end-1, beta) See

roberts.py and roberts.c (distribute points 1) for an explanation of the
parameters.

label: optional label (string) for the object

Overrides: gpath.Polyline. init

copy(self, direction=1)

Parameters

direction: Set to -1 to reverse the sense of the path for this copy.
(type=int)

Return Value

a separate copy of the Edge3D object, possibly reversed.

Overrides: gpath.Polyline.copy

Inherited from Polyline: append, eval, get t0, get t1, length, nelements, set t0, set t1, translate

27

Module gpath Class Line

4.7 Class Line

builtin .object

Line

Defines a straight-line segment.

4.7.1 Methods

init (self, a, b)

Define the directed line from Node a to Node b.

Parameters

a: Starting point on line.
(type=Node object)

b: Finishing point on line.
(type=Node object)

Overrides: builtin .object. init

eval(self, t)

Locate a point on the line.

Parameters

t: interpolation parameter.
(type=float, 0<=t<=1.0)

Return Value

a Vector for the point location.

length(self)

Return Value

the length of the line.

translate(self, dx, dy=0.0, dz=0.0)

Displace the Line.

Parameters

dx: displacement Vector representing (dx, dy, dz) or x-component of displacement.
(type=Vector or float)

dy: y-component of displacement (if dx was a scalar)
(type=float)

dz: z-component of displacement (if dx was a scalar)
(type=float)

28

Module gpath Class Polyline

4.8 Class Polyline

builtin .object

Polyline

Known Subclasses: Edge3D, Spline

Polylines are composed of a number of gpath elements.

This is also the data-structure used in the C-functions that define the edges of the grid.

4.8.1 Methods

init (self, pathElements=[], direction=1, t0=0.0, t1=1.0)

Create, possibly initialising from a list of gpath elements.

Parameters

pathElements: either a list of gpath objects or a single such object
direction: sense in which to assemble the pathElements
t0: starting value for the evaluation parameter (defines a subpath)
t1: end value for the evaluation parameter (defines a subpath)

Overrides: builtin .object. init

append(self, other, direction=1)

Parameters

other: The item to append.
(type=a Polyline object or other gpath object)

direction: A value of -1 will reverse the sense of the appended object.
(type=int)

copy(self, direction=1)

Parameters

direction: Set to -1 to reverse the sense of the copy.
(type=int)

Return Value

a separate copy of the Polyline, possibly reversed.

eval(self, t)

Locate a point on the Polyline path.

Parameters

t: interpolation parameter.
(type=float, 0<=t<=1.0)

Return Value

a Vector for the point location.

29

Module gpath Class Spline

length(self)

Return Value

the Polyline length

Note: The length will be updated with the addition of each new element.

nelements(self)

Return Value

the number of elements in Polyline.

translate(self, dx, dy=0.0, dz=0.0)

Displace the Polyline.

Parameters

dx: displacement Vector representing (dx, dy, dz) or x-component of displacement.
(type=Vector or float)

dy: y-component of displacement (if dx was a scalar)
(type=float)

dz: z-component of displacement (if dx was a scalar)
(type=float)

4.8.2 Properties

Name Description

t0 Lower bound for subrange.
t1 Upper bound for subrange.

4.9 Class Spline

builtin .object

gpath.Polyline

Spline

Defines a cubic-spline path.

30

Module gpath Class Spline

4.9.1 Methods

init (self, B)

Creates the spline as a set of Bezier segments, then casts it as a Polyline.

Parameters

B: interpolation points, B[0] –> B[-1].
(type=list of Node objects.)

Overrides: gpath.Polyline. init
Note: The internal representation is a set of N cubic Bezier segments that have the B[j] nodes as end
points.

Inherited from Polyline: append, copy, eval, get t0, get t1, length, nelements, set t0, set t1, translate,
write to file

4.9.2 Properties

Name Description

Inherited from Polyline: t0 (p. 29), t1 (p. 29)

31

Module flow condition

5 Module flow condition

A Python module to specify the flow conditions that may be applied as initial and boundary conditions
in the 2D and 3D flow codes.

It is intended that this module be imported by scriptit.py and elmer prep.py.

5.1 Class FlowCondition

builtin .object

FlowCondition

Python class to organise the setting of each flow condition.

5.1.1 Methods

init (self, p=100000.0, u=0.0, v=0.0, w=0.0, T=300.0, mf =[1.0], Tv=None, Te=None,
label=’’)

Create a FlowCondition.

Parameters

p: static pressure, Pa
(type=float)

u: x-component of velocity, m/s
(type=float)

v: y-component of velocity, m/s
(type=float)

w: z-component of velocity, m/s
(type=float)

T: static temperature, degrees K
(type=float)

mf: mass fractions of the component species
(type=list of float values)

Tv: (optional) vibrational temperatures, degrees K
(type=list of float values)

Te: (optional) separate electron temperature, degrees K
(type=float)

Overrides: builtin .object. init
Notes:

• If a gas model has not already been selected, the ’perf air 14’ model with be
implicitly chosen.

• The lengths of the lists of mass fractions and vibrational temperatures (if relevant)
must match the number of species in the previously selected gas model.

deepcopy (self, visit)

Provides a deep copy mechanism for the flow state

32

Module cns bc defs

6 Module cns bc defs

Dictionary to look up boundary-condition index from name or number.

Boundary conditions are implemented within the simulation by setting flow data in ghost cells to suitable
values. This is done once per time step, before evaluating the fluxes.

6.1 Variables

Name Description

ADIABATIC A solid, no-slip wall without heat transfer. (i.e. the near-wall
temperature is reflected in the ghost cells)
Value: 4 (type=int)

ADJACENT This boundary joins that of another block. Normally, this
boundary condition would be set implicitly when making block
connections.
Value: 0 (type=int)

COMMON Synonym for ADJACENT.
Value: 0 (type=int)

EXTRAPOLATE OUT Extrapolate all flow properties from just inside the boundary
into the ghost-cells outside the boundary. This works fine for a
strong supersonic outflow.
Value: 2 (type=int)

FIXED P OUT Something like EXTRAPOLATE OUT but with the pressure set to
some user-specified value. It is probably best to set this
pressure at the same value as the initial fill pressure so that this
boundary condition will be passive until a wave arrives at the
boundary.
Value: 11 (type=int)

FIXED T A solid, no-slip wall with a user-specified temperature.
Value: 5 (type=int)

RRM Andrew Denman’s recycled and renormalised boundary
condition.
Value: 12 (type=int)

SLIP Synonym for SLIP WALL

Value: 3 (type=int)
SLIP WALL A solid but inviscid wall. Effectively, this boundary condition

copies reflects the properties just inside the boundary into the
ghost cells.
Value: 3 (type=int)

STATIC PROF A steady inflow boundary with a variable set of flow conditions
across the boundary.
Value: 10 (type=int)

SUB OUT Synonym for SUBSONIC OUT

Value: 7 (type=int)
SUBSONIC IN An inflow boundary for which the total pressure and

temperature have been specified and the velocity from just
inside the boundary is copied into the ghost cells.
Value: 6 (type=int)

continued on next page

33

Module cns bc defs Variables

Name Description

SUBSONIC OUT An outflow boundary which will try to prevent wave reflection
at the boundary in the presence of subsonic flow. (Doesn’t work
so well at present.)
Value: 7 (type=int)

SUP IN Fully-prescribed inflow (e.g. supersonic inflow).
Value: 1 (type=int)

SUP OUT Synonym for EXTRAPOLATE OUT.
Value: 2 (type=int)

TRANSIENT UNI An transient inflow boundary which has a uniform flow
condition applied across the full boundary.
Value: 8 (type=int)

34

Module flux dict Variables

7 Module flux dict

Dictionary to look up flux-calculator index from name or number.

7.1 Variables

Name Description

ADAPTIVE A switched AUSMDV/EFM scheme that uses EFM near shocks
and AUSMDV elsewhere. This is a good all-rounder for
shock-tunnel work.
Value: 4 (type=int)

AUSM M. S. Liou’s AUSM approximate flux calculator. Fast but tends
to be a bit noisy.
Value: 1 (type=int)

AUSMDV A version of Wada and Liou’s AUSMDV scheme.
Value: 3 (type=int)

EFM Mike Macrossan’s version of Dale Pullin’s equilibrium flux
calculator as coded by Paul Petrie-Repar. When you need a
dissipative scheme, this is a good one.
Value: 2 (type=int)

RIEMANN An exact Riemann-solver-based flux calculator. It is slow and
only works for ideal gas models at the moment.
Value: 0 (type=int)

35

Module gas dict

8 Module gas dict

Dictionary to look up gas-type index from name or number.

Either the string name or the integer index can be used to set the gas model.

8.1 Variables

Name Description

ARGON LJ Ideal argon with Lennard-Jones viscosity.
Value: 27 (type=int)

ARGON POWERV Argon with power-law viscosity for MNM.
Value: 23 (type=int)

EQ AIR 1SP Equilibrium Air, 1-specie, Tannehill equation of state.
Value: 4 (type=int)

EQ CO2 Carbon-dioxide in chemical equilibrium.
Value: 9 (type=int)

EQ N2 Nitrogen in chemical equilibrium (see n2eq.c).
Value: 7 (type=int)

IONIZE AR N2 Mix of ionizing argon (species 1) and inert nitrogen in
vibrational equilibrium (species 0).
Value: 16 (type=int)

LOWT AIR 14 Low temperature air, GAMMA = 1.4, fudged Sutherland
constants.
Value: 1 (type=int)

LUT Single species gas with a look-up-table for thermodynamic and
transport properties. The simulation programs expect to find a
binary version of the table in a file called ’lut.dat’ in your
current directory.
Value: 99 (type=int)

LUT2 Two species gas with look-up-tables for thermodynamic and
transport properties. The simulation programs expect to find
binary versions of the tables in files called ’lut-0.dat’ and
’lut-1.dat’. If any particular table is not present, the programs
then try ’lut-0.dat’ and finally ’lut.dat’ before giving up.
Value: 98 (type=int)

LUT MIX One LUT gas with a mix of 4 ideal gases. The species are
0=LUT, 1=argon 2=helium, 3=nitrogen and 4=air.
Value: 96 (type=int)

LUTN Multiple-species (actually 5 species) gas with look-up-tables for
all species. The simulation programs expect to find binary
versions of the tables in files called ’lut-0.dat’ through
’lut-4.dat’. If any particular table is not present, the programs
then try ’lut-0.dat’ and finally ’lut.dat’ before giving up.
Value: 97 (type=int)

MULTI T GAS Rowan’s gas mixture with multiple temperatures translational
+ vibrational + electrons. Look in your ’species.dat’ file for
details.
Value: 26 (type=int)

NIT0 Another nitrogen model for MNM.
Value: 18 (type=int)

continued on next page

36

Module gas dict Variables

Name Description

NIT1 Another nitrogen model for MNM.
Value: 19 (type=int)

NIT2 Another nitrogen model for MNM.
Value: 20 (type=int)

PERF AIR 13 Perfect gas, air, GAMMA = 1.3.
Value: 2 (type=int)

PERF AIR 14 Perfect gas, air, GAMMA = 1.4.
Value: 0 (type=int)

PERF AR 167 Perfect gas Argon with GAMMA = 1.667.
Value: 6 (type=int)

PERF AR AIR Mix of argon (species 1) and air (species 0), both asperfect
gases.
Value: 15 (type=int)

PERF CO2 Carbon-dioxide – perfect gas.
Value: 10 (type=int)

PERF GAS MIX Rowan’s perfect gas mix of species defined in ’species.dat’
Value: 22 (type=int)

PERF HE 167 Perfect gas, Helium, GAMMA = 1.667.
Value: 3 (type=int)

PERF HE AIR Perfect gas mix of helium (species 1) and air (species 0).
Value: 12 (type=int)

PERF HE N2 Perfect gas mix of helium (species 1) and nitrogen (species 0).
Value: 11 (type=int)

PERF N2 Nitrogen – perfect gas.
Value: 8 (type=int)

PERF N2 LOWG Perfect gas nitrogen with low GAMMA to simulate high T.
Value: 17 (type=int)

PERF NE H Perfect gas mix of neon atoms (species 0) and hydrogen atoms
(species 1).
Value: 25 (type=int)

PERF NE H2 Perfect gas mix of neon (species 0) atoms and hydrogen (species
1) molecules.
Value: 24 (type=int)

PERF R22 AIR Perfect gas mix of R22 (species 1) and air (species 0).
Value: 21 (type=int)

VIBEQ N2 Nitrogen molecules with vibrational equilibrium.
Value: 13 (type=int)

VIBEQ N2 HE Mix of helium (species 1) with nitrogen in vib. equilibrium
(species 0).
Value: 14 (type=int)

WEIRD 167 Weird air with GAMMA = 1.667 to match the DSMC satellite
simulations.
Value: 5 (type=int)

37

Index

cns bc defs (module), 33–34

flow condition (module), 32
FlowCondition (class), 32

deepcopy (method), 32
init (method), 32

flux dict (module), 35

gas dict (module), 36–37
geom (module), 18–21

cross (function), 18
distance between nodes (function), 18
dot (function), 18
Node (class), 18–19

init (method), 18
copy (method), 18
translate (method), 19

Vector (class), 19–21
abs (method), 20
add (method), 20
div (method), 20
init (method), 20
mul (method), 20
neg (method), 20
pos (method), 20
rdiv (method), 20
rmul (method), 20
sub (method), 20

sum (method), 20
unit (method), 20

gpath (module), 22–31
Arc (class), 22–23

init (method), 23
eval (method), 23
length (method), 23
translate (method), 23

Arc3 (class), 23–24
init (method), 24

Bezier (class), 24–25
init (method), 24

eval (method), 24
length (method), 24
translate (method), 25

ClosedSurfacePatch (class), 25–27
init (method), 26

extrude (method), 26
interpolate TFI (method), 26

Edge3D (class), 27
init (method), 27

copy (method), 27
interpolate TFI 2D mbcns (function), 22

interpolate TFI 3D (function), 22
Line (class), 27–28

init (method), 28
eval (method), 28
length (method), 28
translate (method), 28

Polyline (class), 28–30
init (method), 29

append (method), 29
copy (method), 29
eval (method), 29
length (method), 29
nelements (method), 30
translate (method), 30

Spline (class), 30–31
init (method), 31

scriptit (module), 6–17
Block2D (class), 7–9

init (method), 8
set BC (method), 8

connect blocks (function), 6
Face2D (class), 9–11

init (method), 10
copy (method), 10

GlobalData2D (class), 11–13
MetapostEnvironment (class), 13–14

origin (method), 14
scales (method), 14
xaxis (method), 14
yaxis (method), 14

MultiBlock2D (class), 14–17
init (method), 16

rad to degrees (function), 6

38

